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1. Introduction

Let H be a real Hilbert space endowed with inner product and induced norm denoted by (-, )
and || - ||, respectively. Let @ # C C H be a closed and convex set.
In this article, our study is related to a classical variational inequality (VI) of seeking an element
ii € C verifying
(f(id),u —i) >0, VueC, 1)

where f : H — H is a given operator, under the following assumptions:

(i) VI(C,f), the solution set of (1), is nonempty;
(ii) fis pseudomonotone on H, i.e.,

(flia),u—i) > 0= (f(u),u—id) >0, Vu,ii € H; 2)
(iii) f is x-Lipschitz continuous on H (for some x > 0), i.e.,

1f(x) = fFWIl < xllx = yll, Vx,y € H.
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Numerical iterative methods have been presented, developed and adopted widely as algorithmic
solutions to the concept of variational inequalities. This notion, that mainly involves some important
operators, plays a key role in applied mathematics, such as obstacle problems, optimization problems,
complementarity problems as a unified framework for the study of a large number of significant
real-word problems arising in physics, engineering, economics and so on. For more information,
the reader can refer to [1-12].

For solving VI (1) in which the involved operator f may be monotone, several iterative algorithms
have been introduced and studied, see, e.g., [13-18]. Among them, the more popular iterative technique
is the projected gradient rule ([19-23]): for the fixed previous iteration x,_1, calculate the current
iteration x; via the following manner

Xn = PC[xn—l - Tf(xn—l)]/ n=>1, 3)

where P means the projection operator from H onto C and the positive constant 7 is the step-size.

The projected gradient rule (3) is an effective technique for solving VI (1). However, the involved
operator f should be strongly monotone or inverse strongly monotone. In order to overcome this
flaw, in [21], Korpelevich put forward an extragradient technique: for the fixed previous iteration x,_1,
calculate the current iteration x, via the following manner

4)
xn = Pclxy—1—7f(yn-1)], n > 1,

{]/nl = Pclxy—1 — 7f(x4—1)],

where the step-size T € (0,1/x).

Korpelevich’s algorithm (4) provides an important idea for solving monotone variational
inequality. Please refer to the references [24-27] for several important extended version of
Korpelevich’s algorithm.

The another motivation of this paper is to study the following fixed point equation:

find x € C such that x = Tx, (5)

where T : C — C is a pseudocontractive operator.

Now, it is well-known that fixed point algorithm of successive approximation is one of the
most important techniques in numerical mathematics ([28-40]). Focusing on the research with
pseudocontractive operators originated in their relations with the important class of monotone
operators. Algorithmic approximation theories and experiments of pseudocontractive operators
have been studied extensively in the literature, see, for example, [41-47].

Motivated and inspired by the work in this field, the purpose of this paper is to investigate the
problem of pseudomonotone variational inequality (1) and fixed point of pseudocontractive operators.
We construct an iterative algorithm for seeking a common solution of the pseudomonotone variational
inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the
proposed procedure is given. Several related corollaries are included.

2. Preliminaries

Let H be a real Hilbert space. Let C C H be a nonempty, closed and convex set. Recall that an
operator f : C — C is said to be monotone if

(f(x) = f(y),x—y) 20, Vx,y € C.

An operator T : C — C is said to be pseudocontractive if

1T — Tk <l — ||+ ||(1 = Tyu — (1= T)ut|?
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forall u, ut € C.

Recall that an operator f : C — C is called weakly sequentially continuous, if for any given
sequence {x,} C C satisfying x, — &%, we conclude that f(x,) — f(%).

Recall that the metric projection P : H — C is an orthographic projection from H onto C,
which possesses the following characteristic: for given x € H,

(x — Pc[x],y — Pc[x]) <0,Vy € C. (6)
The following symbols will be used in the sequel.

e u, — z! denotes the weak convergence of u, to zt.

e u, — z' stands for the strong convergence of u, to z*.

e  Fix(T) means the set of fixed points of T.

o wy(uy) = {u": FHuy} C {un} such that u,, — u'(i — c0)}.

Lemma 1 ([1]). Let H be a real Hilbert space. Then, we have
160+ (1 = 8)u" > = 6lJuf)> + (1 = 8) "> = 6(1 = 6)[|u — u"|]?,
Vu,ut € Hand vt € [0,1].

Lemma 2 ([45]). Let C a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be an
. . . 1
L-Lipschitz pseudocontractive operator. Let 0 < 1 < Wi ARk Then,

[t = T((1 = m)a+yTa)l? < |la—u'|* + (1 = m)lla - T(A - n)a+yTa)|?,
forallii € Cand u® € Fix(T).

Lemma 3 ([18]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : H — H
be a continuous and pseudomonotone operator. Then xt € VI(C,f) iff x* solves the following dual
variational inequality

(f(u"),u’ —x") >0, vu' € H.

Lemma 4 ([47]). Let H be a real Hilbert space, C a nonempty closed convex subset of H. Let T : C — C bea
continuous pseudocontractive operator. Then

(i)  Fix(T) is a closed convex subset of C;
(ii) T is demi-closed, i.e., uy, — il and T(uy,) — u' imply that T(i1) = u.

Lemma 5 ([15]). Let {un} C (0,00), {yn} C (0,1) and {6, } be three real number sequences. If p 1 <
(1 — yn)pn + 0y for all n > 0 with Y57 1 vy = o0 and limsup, ., 0u/vn < 0o0r Y57 (0] < oo,
then limy, _ye0o i = 0.

3. Main Results

Let @ # C be a convex and closed subset of a real Hilbert space H. Let the operator f be
pseudomonotone on H, weakly sequentially continuous and Lipschitz continuous on C with Lipschitz
constant ¥ > 0. Let T : C — C be an L-Lipschitz pseudocontractive operator with L > 1.

Next, we first present the following iterative algorithm for solving pseudomonotone variational
inequality and fixed point problem of pseudocontractive operator T. In what follows, assume that
AN :=VI(C, f)NFix(T) # @.
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Remark 1. By virtue of (6), we know that ut € VI(C, f) < u' = Pclu® — tf(u")] forall T > 0. Thus,
if at some iterative step x, = Pc[x, — f(xn)], then xy is a solution of variational inequality (1) and hence
wy(xn) C VI(C, f).

Remark 2. For given x,, we can find m(xy) such that (14) holds. In fact, we can choose m(xy) such that
) < % due to the Lipschitz continuity of f. So, (14) is well-defined. At the same time, there exists a

positive ¢ > 0 such that 40" > ¢ > 0 for all x,. As a matter of fact, if m(x,) = 0, then 4"(n) = ¢ = 1.

ey Cn)

If m(xy) > 0, then we have > 0, which implies that 0 < Zi < ") < 1 for all n.

Proposition 1. If x, # Pc[x, — f(xn)], then Xy — yu + uy™ ) f(yn) # 0.
Proof. Let x* = Py (u). Owing to x, € C and y, € C, we have
(f(x*),xy —x*) >0, (7)

and

(f(x%),yn — x7) > 0. ®)

Applying the pseudomonotonicity (2) of f to (7) and (8), we obtain

(f(xn), xn —x*) 20, )

and

(f(yn), yn —x*) 2 0. (10)

Since y, = Pclxy — uy™ ") f(x,,)], using the characteristic (6) of projection Pc, we have

(xn — .”'Ym(x")f(xn) —Yn, Yn —x*) 2 0. (11)
Hence,

(n = Y+ 1" F(yn), 10 — x*) = (xw — yu — py"™ O f(xn), 20 — x*) + ™ (F (200), 20 — 7)
+ 1" (F(yn), %0 = yn) + gy F (Y)Y — x7)
(by (9) and (10)) > (xp — yn — y'ym("")f(xn),xn —x") + Pl'Ym(x")<f(yn)/xn — Yn)
= (xn = yn = py" ) (F () = F(Yn)), Xn — yn)
+ (= yn — py" O f(xn), Y — x7) (12)
(by (11)) > (xn =y — py" ) (F(xn) = F(Yn)), Xu — Yu)
= [l = yull* = wy™ ) (F(x0) = f(Yn), Xn = yn)
> lxn = yull* = 1y || £ (xn) = FYu) |10 = Yl
> (1= 0)|lxn — yull* (by (14)).

Since Pclxy, — f(xn)] # xp, it follows that Pc[x, — vf(x4)] # x, for all v > 0. Thus, y, # xn.
According to (12), we deduce x, — yy, + uy™ ) f(y,) #0. O

Remark 3. In case 1, we have f(x,) # 0 (by Remark 1) and x, — yy, + uy™ ") f(y,,) # 0 (by Remark 2)
forall n > 0. According to Proposition 1, the sequence {uy } is well-defined and hence the sequence {x,}
is well-defined.
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Now, in this position, we give the convergence analysis of the iterative sequence {x, } generated
by Algorithm 1.

Algorithm 1: Iterative procedures for VI and FP.
Let u € C be a fixed point. Let {a, }, {0, } and {6, } be three real number sequences in (0,1).
Lety € (0,1),x€(0,1),0 € (0,1) and 7 € (0,2) be four constants.
Step 1. Let xg € C be an initial value. Set n = 0.
Step 2. Assume that the sequence {x, } has been constructed and then calculate Pc[x, — f(xy)].

Step 3. Case 1. If Pc[x, — f(xn)] # xp, then calculate the sequence {y, } by the following
manner

Y = Peloon — py" ) f ()], (13)

where m(x,) = min{0,1,2,3, - - - } and satisfies

m@) || £ (xn) = F(ya) || < 0llxn — yall, (14)

and consequently, calculate the sequences {u,}, {z,} and {x,11} by the following rule

2 = Y + 1y £ (yn) }

10 = Y+ py™ ) £ (y) |12
zn = (1= o)ty + 0uT[(1 — 6y) iy + 8, Tuy],

X1 = apit+ (1 — ay)zy.

sty = P % = 7(1 = 0)||x = ya
(15)

Case 2. If Pc[x, — f(xn)] = x4, then calculate the sequence {x,;1} via the following form

zpn = (1= 0y)xn +0uT[(1 — 64)xp + 6, Txn),
Xpi1 = gt + (1 — ay)zy.

Step 4. Set n := n + 1 and return to Step 2.

Theorem 1. Suppose that the iterative parameters {w, }, {0 } and {6, } satisfy the following assumptions:

(C1):limy oo 0y = 0and Y gy = 00;
. = 5 1
(C0< o< <o <o << 7\/@“#71 > 0.

Then the sequence {x, } generated by Algorithm 1 converges strongly to Pa (u).

Proof. Step 1. the sequence {x,} is bounded. First, we consider Case 1. In this case, from (15) and
(12), we have

n = x*2 <

Xp—X*—1(1—0)|x, —

”2 Xn — yn+y7 H

%0 — yn +m’”("n>f yn ||2
*HZ_'_ 72(1_9)2||xn—yn||

1260 = Y+ py™ ) f ()2
27(1 = 0)|lxn — yul? )

a X0 — yu + py™ @) £(y,)] 2 (xn —yn + V7m(x )f(]/n)rxn —x")
< ||xn _ x*HZ . (2- T)T(l - 9)2||xn — ]/n||4
- 20—y + sy £ (y) |12

=|lxy —x

(16)

<l — |2
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In the light of (15) and Lemmas 1 and 2, we obtain

llzn = x*[I* = (1 = o) (un — x*) + 0 (T[(1 = 81t + 65 T ) — x*) |7
= (1 —0)||un — x*||? = 00(1 — 0) || T[(1 = 80ty + 80 Ttty] — 11 ||?
+ 0| T[(1 = 6n)uin + 85 Tutn] — x* ||
< (1= on)|Jun — x*)|? = 00(1 = 0) | T[(1 = 6) 1ty + 80 Tttn] — un|? 17)
+ 0 ([Jn — x> 4+ (1= ) 1un — T[(1 = 8 )n + 64 Tut]||?)
= ||ty — x> = 00 (80 — o) ||t — T[(1 = 6ty + 6, Tu] ||

< Jfoun — x| %
By (15), (16) and (17), we get
141 = X7 = flan (0 = x7) + (1 = an) (20 — 7|

< (U= an)llzn = 27| 4 e — 27|
< (U= an)[lxn = 7] + anflu =27
By induction, we can deduce that ||x,11 — x*|| < max{||u — x*||, |[xo — x*||}. Hence, the sequence
{xn} is bounded. It is easy to check that the sequence {x,} is also bounded in Case 2.
Step 2. wy(xn) C A. We firstly discuss Case 1. On account of (15), we achieve
1 = 1|17 = [lan (1 = %) + (1= an) (20 — )|

* 12 * * (18)
< (1 —an)|lzn — x"||7 + 200 (u — x*, 2,7 — x7).

By virtue of (16), (17) and (18), we have

1 = 2 < (1= w20 = x> = (1= )0 (6 — @)1 — T[(1 = )1t + 8 Tun] ||

a2t =02l —yall*
(1—ay) 5
10 = Y + uy™ ) £ (ya) |

= (1 an)||xn — x| + an [ — (1= )0 (On — o)

+ 20 (U — x*, x50 — xF)

ity — T[(1 = 8n)tt + 6, Tuy] |2 (19)
Xn

(2= 1)T(1 = 0)*||xn — yull*

— (11—« +2u_x*1x 1_x* .
( n)lanxn — Y + py™ ) ()2 < " >}
Write s, = ||x, — x*||? and
_ _0)2 _ 4
th=—(1—an) 2 =71 = 6)lxn — yul +2(u—x*,xy01 — x%)
D‘onn —Yn+ .”')’m(x")f(]/n)nz (20)
y — T[(1 — 8ty + 8, Tuy]||?
_(1_0‘71)‘771(511—‘77!)“ - [( n) u " n]” ,
Xn
foralln > 0.
We can adapt (19) as
Sn1 < (1 —ap)sy + anty (21)
foralln > 0.

Now, we show that limsup, . t, is finite. First, thanks to (20), we deduce that t, < 2(u —
x*, X1 — x*) < 2fju — x*||||xy4+1 — x*||. This together with the boundedness of {x,} implies that
limsup, ., t, has a upper bound.
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Next, we show that limsup, . t, has a lower bound. As a matter of fact, we can prove that
limsup, ..ty > —1. Assume the contrary that limsup,,_, . t, < —1. If so, there exists N such that
t, < —1whenn > N. Hence, for all n > N, from (21), we deduce

Sp41 < (1 - “n)sn + anty
< (1 - “n)sn — &y
=5y —an(1+sy)

<s; — .

It follows that s,11 < sy — Yj_y @k, Which implies that limsup,, . s, < sy —limsup, Y/ ok =
—oo. It is a contradiction. So, —1 < limsup, ,t;, < +o0. Thus, we can select a subsequence
{xn,} C {xu} (because of the boundedness of {x,}) verifying x,, — x* € C and

(2 — T)T(l - 9)2||x71i — Yn; H4

limsupt, = lim t,, = lim [ — +2(u — X%, xp 41 — X7)
1—00

o oLty = Y+ " f ) 2 (22)
— T[(1 = 8, )tt, + O, Tua ||
_Uni(‘sni—gni)nun’ [( Zé)unz‘F n; MHI]H :|
n

1

Based on the boundedness of {x, 1}, without loss of generality, assume that lim; s 2(u — x*, x, 41 —
x*) exists. Hence, according to (22), we deduce that the following limit

(2= 1)T(1 = 0)?[lxn, — Y, |I*

. U, — T[(1 = 8, )1t + 8. Tuay, ]|
111’11 [ (o) +Uni((sni - U”li) ” m [( nl) w L ”JH ] (23)
e “"i”xﬂi = Yny Py f(]/n,)”z Xn;
exists.
Since lim;_,, &y, = 0 and liminf;_,, 0, (dy, — 0;) > 0, it follows from (23) that
_ 4
e ”xﬂi —Yn; + ﬂ')’m i f(y”i>||2
and
Lim [Juty; — T[(1 — 6, )ttn; + O, Tun,]|| = 0. (25)
1— 00
Note that [|x,,, — Y. + #y"™*) £ (y,,.)|| is bounded. In virtue of this fact and (24), we derive
1—00
Combining (14) and (26), we obtain
lim ||f(xn,-) _f(yﬂi)H =0. (27)

i—00

As aresult of (15), we have the following estimate

2 Xn —Yn + py" ) f(y)
[0 — v + ™) £ (yn)

Jitn = xull = |[Pe [x = (1 = 6) |0 — yu 7|~ Pelwl

(1= 6) o — gl
T lxn =y A+ py™ S f(y) |
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This together with (24) implies that
lim |Ju,, — x| = 0. (28)
i—00
Applying the characterization (6) of projection P, we have
(atn; — V'Ym(x”i)f(xnf) — Yy Y, —x') >0, Vx' € C.

It yields

1

W@"" — ",y — 1), V2t € C. (29)

<f(x'rl,-)r xt - xn,‘> > <f(x71f)rynf - xni> +
Noting that {f(xy,)} and {yy, } are bounded, 779 < py™¥m) <y due to Remark 2, in view of (26) and
(29), we obtain
liminf(f(x,,),x" —x,.) >0, Vat € C. (30)
1—00

Thanks to (30), we can choose a positive real numbers sequence {¢;} satisfying lim;_,, €; = 0. For each
€j, there exists the smallest positive integer k; such that

(f(xnl.j),xJr — Xn,-].> +€; >0, Vj >k (31)

fxn;)

Moreover, for each j > 0, f(xni]_) # 0 (by Remark 3), letting w(xni]_) W,
i

then (f(xnz.j ), w(xnij )) = 1. By virtue of (31), we have
<f(xni].)/x+ + ejw(x”ij) - xni].> >0,
which implies, together with the pseudomonotonicity of f on H, that
(F(x" + ejw(xnij)),x’L + ejw(xnij) — xnij> > 0.
It follows that
(O =) 2 (F) = 3 + g0t ), + o, ) — o) + (F), —ejox, ). (32)

Since the sequence {x, } is bounded, without loss of generality, we assume that x,, — v € C as
j
j — oo. Furthermore, f(x,, ) = f(v) due to the weakly sequentially continuity of f. Assume that
j
f(v) # 0 (otherwise, v € VI(C, f) and wy(x,) C VI(C, f)). Thus, we have

1ijnli?f||f(xnij)ll > [If @),

and consequently,

e
lim |lejw(xy, )|| = lim —L =0
j—oo ]

e 7o 1

This together with (32) and f being Lipschitz continuous, we deduce

(f(x"),x" —0) > 0. (33)
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It follows from Lemma 3 that v € VI(C, f) and hence wy(x,) C VI(C, f).
Since T is L-Lipschitzian, we have

[ttn = Tun|| < flun — T[(1 = 8p)tn + 6nTun] || + [ T[(1 = ) ttn + 6p Tutn] — Tt
< Nl — T[(1 = 8n)utn + 6nTun]|| + LOn||ttn — Tuyl|,

which yields
1
|ty — Tuy|| < 7 llttn — T[(1 = 6n)utn + 6 Tuin]||. (34)
On the basis of (25), (28) and (34), we derive
Jim, l2n;, = Txm, || = 0. (35)

Consequently, applying Lemma 4 to (35) to deduce that v € Fix(T). Thus, v € VI(C, f) N Fix(T) = A.
In case 2, we have x, € VI(C, f) and the following estimate (by the similar argument as (19))

21 = [ < (1= an)lxn = 2|1 = (1= 2n)00 (8 — ) [ xn = T[(1 = 81)xn + 8, Txa]||?
+ 20 (U — x*, x40 — x¥)

—T[(1— Tx,]||?
_ (1 _lxn)Hxn —x*||2—|—1xn[— (1 _“n)o-n((sn _Un) ||xn [( (sn)xn ~+ oy XH]H

[ 97)
+2(u—x*, xy41 — x*)}
Consequently, there exists a subsequence {x;,} C {x,} such that
Xp — T[(1 — 6,V + 6,.Tx,. 11|12
N e o LR
jooo T i &y
It follows that
lim [|x; — Txy ]| = 0.
J—0
Thus, we also deduce that wy, (x,) C A.
Step 3. x, — Pp(u).
In Case 1 or Case 2, we have
limsup(u — x*,x,11 —x*) = (4 —x*,v—x") <O0. (36)

n—oo

From (16), (17) and (18), we obtain

st = 21 = [l (1 = %) + (1= an) (20 — 2|2

< (1 —ap)||xn — x*||° + 20 (u — x*, x 01 — x¥).
Finally, applying Lemma 5 with (36) to (37), we conclude that x, — x*. This completes the proof. [

Remark 4. We assume that f is x-Lipschitz continuous. However, the information of « is not necessary priority
to be known. That is, we need not to estimate the value of x.

Remark 5. It is obvious that monotonicity implies pseudomonotonicity. Hence, our theorem holds when the
involved operator f is monotone.
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Assume that the above Algorithm 2 does not terminate in a finite iterations.

Algorithm 2: Iterative procedures for VI.
Step 1. Fixed four constants v € (0,1), u € (0,1),6 € (0,1) and T € (0,2). Let xo € C be an
initial value. Set n = 0.
Step 2. Assume that the sequence {x, } has been constructed and then calculate Pc[x,, — f(xn)].
If Pcxy — f(x4)] = xp, then stop. Otherwise, continuously proceed the following steps.
Step 3. Calculate

Yn = Pclxn — ,”’)’m(x")f(xn)]/
where m(x,) = min{0,1,2,3, - - } and satisfies

"W f Gen) = £ )|l < 01120 — -

Step 4. Let u € C be a fixed point. Let {«, } be a real number sequence in (0,1). Compute the
sequence {x, 1} via the following form

2 =yt H" ) flyn) )

xn+1:anu+(l—0(n)PC|:le_T(1_9)|‘x”_y”| ”x —y +‘ur)/m(xn)f(y )”2
n n n

Step 5. Set n := n + 1 and return to Step 2.

Corollary 1. Suppose that VI(C, ) # @. Assume that the iterative parameter {«, } satisfies condition (C1)
in Theorem 1. Then the sequence {x, } generated by Algorithm 2 converges strongly to Pyyc g)(u).

Corollary 2. Suppose that Fix(T) # Q. Assume that the iterative parameters {a, }, {0y} and {6, } satisfy the
conditions (C1) and (C2) in Theorem 1. Then the sequence {x, } generated by Algorithm 3 converges strongly

to Priy(r) (1)

Algorithm 3: Iterative procedures for FP.

Step 1. Let xg € C be an initial value. Set n = 0.

Step 2. Assume that the sequence {x, } has been constructed. Let u € C be a fixed point. Let
{an}, {on} and {6, } be three real number sequences in (0, 1). Compute the sequences {z, }
and {x;41} via the following iterations

{Zn = (1 — U'n)xn + U'nT[(l - (Sn)xn + 5nTxn]r

Xpi1 = aptt + (1 — ay)zy.

4. Applications

Let @ # C be a convex and closed subset of a real Hilbert space H. Recall that an operator
T : C — C s said to be a-strictly pseudocontractive if there exists a constant & € (0, 1) satisfying

1Tz — T2 <[]z — 2" P + || (I = T)z — (I - T)z"||?
forallz,zt € C.

Remark 6. It is easy to check that the class of pseudocontractive operators strictly includes the class of strictly
pseudocontractive operators.
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Proposition 2 ([48]). Let @ # C be a convex and closed subset of a real Hilbert space H. Let T : C — C is
said to be an a-strictly pseudocontractive operator. Then,

(i) Tis %—Lipschitz;
(ii) I — T is demi-closed at 0.

Now, by using Remark 6 and Proposition 2, we can apply Theorem 1 for solving pseudomonotone variational
inequalities and fixed point problem of strictly pseudocontractive operators.

Theorem 2. Let @ # C be a convex and closed subset of a real Hilbert space H. Let the operator f be
pseudomonotone on H, weakly sequentially continuous and Lipschitz continuous on C with Lipschitz constant
k> 0. Let T : C — C be an a-strictly pseudocontractive operator. Suppose that the iterative parameters {a, },
{on} and {6, } satisfy the following assumptions:

(C1):limy—yoo 0y = 0and Y5 &y = 00;
: = 5 1
(CO<o <oy <T <y <o< mﬂ(

Then the sequence {x, } generated by Algorithm 1 converges strongly to Pa (u).

Vn > 0) where L = 2.

Remark 7. In [49], Anh and Phuong introduced an iteration algorithm for solving pseudomonotone variational
inequalities and fixed point problem of strictly pseudocontractive operators. Theorem 2 extends the main result
of ([49] Theorem 3.3) from weak convergence to strong convergence.

Remark 8. In [50], Strodiot, Nguyen and Vuong presented a shrinking projection algorithm for solving
variational inequalities and fixed point problem of strictly pseudocontractive operators. Note that the the
computation of projection Pc, , (([50] Algorithm 1-VI) is expensive. Our Algorithm 1 is more applicable.
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