
mathematics

Article

Graph of Outputs in the Process of Synthesis Directed
at CPLDs

Marcin Kubica * and Dariusz Kania

Institute of Electronics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland;
dariusz.kania@polsl.pl
* Correspondence: marcin.kubica@polsl.pl; Tel.: +48-32-237-26-14

Received: 8 November 2019; Accepted: 24 November 2019; Published: 3 December 2019 ����������
�������

Abstract: The paper focuses on the methodology of designing a cyber physical systems (CPS) physical
layer using programmable devices. The CPS physical layer can be implemented in programmable
devices, which leads to a reduction in their costs and increases their versatility. One of the groups
of programmable devices are complex programmable logic devices (CPLDs), which are great for
energy-saving, low-cost implementations but requiring flexibility. It becomes necessary to develop
mathematical CPS design methods focused on CPLD. This paper presents an original technology
mapping method for digital circuits in programmable array logic (PAL)-based CPLDs. The idea is
associated with the process of multilevel optimization of circuits dedicated to minimization of the
area of a final solution. In the technology mapping process, the method of a multioutput function
was used in the graph of outputs form. This method is well known from previous papers and
proposes optimization of a basic form of the graph of outputs to enable better use of the resources of
a programmable structure. The possibilities for the graph of outputs were expanded in the form of
sequential circuits. This work presents a new form of a graph that describes the process of mapping
and is known as the graph of excitations and outputs. This graph enables effective technology
mapping of sequential circuits. The paper presents a series of experiments that prove the efficiency
of the proposed methods for technology mapping. Experiments were conducted for various sizes
of PAL-based logic blocks and commercially available CPLDs. The presented results indicate the
possibility of more effective implementation of the CPS physical layer.

Keywords: CPLD; Cyber Physical Systems; graph of outputs; logic synthesis; technology mapping

1. Introduction

The key implementation of cyber physical systems (CPS) is the proper implementation of the
physical layer. This layer is responsible for the implementation of key functions of CPS systems. In the
simplest case, this layer performs the functions of communication, measurement and usually provides
preliminary processing of obtained data (filtration, approximation, etc.). According to the authors,
the issue of designing the physical layer has not been sufficiently discussed in the work on cyber physical
systems. As a rule, this layer is implemented in embedded systems. This approach has significant
limitations such as: the architecture imposed by the manufacturer, which is not always adapted to the
requirements of cyber physical systems, limitations resulting from the speed of operation, or in some
cases a significant cost of implementation. An alternative to this approach is the implementation of the
physical layer using programmable logic devices. This enables the implementation of more complex
functionalities, and above all, provides flexibility without degrading the dynamic properties of the
solutions obtained. In general, programmable devices are closely related to CPS, as exemplified by
Petri nets [1–3]. This layer should be characterized by considerable flexibility of some properties [4]

Mathematics 2019, 7, 1171; doi:10.3390/math7121171 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-8256-7726
http://www.mdpi.com/2227-7390/7/12/1171?type=check_update&version=1
http://dx.doi.org/10.3390/math7121171
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 1171 2 of 17

including the implementation of some tasks in a software manner [5]. In some cases, solutions based
on programmable logic devices can only provide adequate flexibility.

Programmable logic devices can be divided into two groups: FPGA (field-programmable gate
array) and CPLD (complex programmable logic device).

CPLDs belong to an important group of programmable circuits. CPLDs are not as popular as
FPGAs but they have certain features that make them competitive with other circuits. CPLD devices
are a good alternative to FPGA when programmable logic is required, but the implemented circuit is
not very large. In this situation, CPLD-based solutions can be much cheaper. In addition, CPLD devices
significantly reduce power consumption compared to FPGA devices. Both of these features make CPS
(cyber physical systems) a natural space for using CPLD devices, in which separate control blocks
are implemented in individual CPLD devices. The authors in the article focus on the implementation
of the physical layer in CPLD devices. Therefore, we can talk about CPS synthesis [6,7] focused on
programmable systems. In the case of CPLD devices, such synthesis was shown in [8], but it only
applied to combination circuits without optimization elements. The main disadvantage of CPLDs
is the much smaller number of logic resources compared to FPGAs. Restrictions in this field make
all optimization algorithms that reduce the number of necessary logic blocks extremely valuable.
The above fact has become the motivation to deal with optimization which is the essence of the research
presented in the article. In terms of their architecture, CPLDs use the PIA (programmable interconnect
array) matrix to enable better control of dynamic features in implemented projects compared with
those of FPGAs.

The root of CPLDs is related to PAL-based (programmable array logic) logic cells, which perform
functions in the form of the sum of k-products. The structure of the CPLD is shown in Figure 1. It should
be mentioned that the first attempts to combine the best features of both circuits, FPGA and CPLD,
appeared in the second half of the 1990s, when the idea of hyper-FPGA circuits was proposed [9,10].
The structure of the circuits includes LUT (look-up table) logic blocks associated with FPGA and PAL
logic cells associated with CPLD. It turns out that the problem of logic synthesis dedicated to circuits
including PAL-based cells remains to this day (it is still possible to limit the number of necessary
resources in the implementation process) [11,12].

Mathematics 2019, 7, x FOR PEER REVIEW 2 of 17

considerable flexibility of some properties [4] including the implementation of some tasks in a

software manner [5]. In some cases, solutions based on programmable logic devices can only

provide adequate flexibility.

Programmable logic devices can be divided into two groups: FPGA (field-programmable gate

array) and CPLD (complex programmable logic device).

CPLDs belong to an important group of programmable circuits. CPLDs are not as popular as

FPGAs but they have certain features that make them competitive with other circuits. CPLD devices

are a good alternative to FPGA when programmable logic is required, but the implemented circuit is

not very large. In this situation, CPLD-based solutions can be much cheaper. In addition, CPLD

devices significantly reduce power consumption compared to FPGA devices. Both of these features

make CPS (cyber physical systems) a natural space for using CPLD devices, in which separate

control blocks are implemented in individual CPLD devices. The authors in the article focus on the

implementation of the physical layer in CPLD devices. Therefore, we can talk about CPS synthesis

[6,7] focused on programmable systems. In the case of CPLD devices, such synthesis was shown in

[8], but it only applied to combination circuits without optimization elements. The main

disadvantage of CPLDs is the much smaller number of logic resources compared to FPGAs.

Restrictions in this field make all optimization algorithms that reduce the number of necessary logic

blocks extremely valuable. The above fact has become the motivation to deal with optimization

which is the essence of the research presented in the article. In terms of their architecture, CPLDs use

the PIA (programmable interconnect array) matrix to enable better control of dynamic features in

implemented projects compared with those of FPGAs.

The root of CPLDs is related to PAL-based (programmable array logic) logic cells, which

perform functions in the form of the sum of k-products. The structure of the CPLD is shown in

Figure 1. It should be mentioned that the first attempts to combine the best features of both circuits,

FPGA and CPLD, appeared in the second half of the 1990s, when the idea of hyper-FPGA circuits

was proposed [9,10]. The structure of the circuits includes LUT (look-up table) logic blocks

associated with FPGA and PAL logic cells associated with CPLD. It turns out that the problem of

logic synthesis dedicated to circuits including PAL-based cells remains to this day (it is still possible

to limit the number of necessary resources in the implementation process) [11,12].

I/O

I/OI/O

I/O

I/O I/O
PAL

cell

PAL

cell

PAL

cell

PAL

cell

PAL

cell

PAL

cell

P
ro

g
ra

m
m

a
b

le

In
te

rc
o

n
n

e
c
t
A

re
a

PAL
k-

AND

k

k

Figure 1. Structure of complex programmable logic devices (CPLD) devices.

The synthesis process, which is implemented in well-known tools that support the process of

design of digital circuits in CPLDs, begins with two-level minimization. The next stage of the

synthesis process includes carrying out separate single output functions based on logic blocks that

appear in the structure. This approach is logically connected with the inner architecture of CPLDs

but introduces limitations into the process of multilevel circuit optimization. The reason for this

problem lies in the method of logic synthesis in which the logic resources of a CPLD structure are

not considered in the first stages. This synthesis strategy obviously has advantages such as easy

solution transfer. However, the main drawback is inefficient use of terms included in the CPLD.

Figure 1. Structure of complex programmable logic devices (CPLD) devices.

The synthesis process, which is implemented in well-known tools that support the process of
design of digital circuits in CPLDs, begins with two-level minimization. The next stage of the synthesis
process includes carrying out separate single output functions based on logic blocks that appear in the
structure. This approach is logically connected with the inner architecture of CPLDs but introduces
limitations into the process of multilevel circuit optimization. The reason for this problem lies in the
method of logic synthesis in which the logic resources of a CPLD structure are not considered in the

Mathematics 2019, 7, 1171 3 of 17

first stages. This synthesis strategy obviously has advantages such as easy solution transfer. However,
the main drawback is inefficient use of terms included in the CPLD. Thus, it is necessary to search for
synthesis methods that can enable effective implementation of a logic net in the form of the elements
available in a given family of CPLDs. Only this approach is able to ensure efficient use of the resources
in a programmable structure.

A series of valuable papers have presented various synthesis methods dedicated to optimization
of the area of PAL structures. However, these studies were not implemented in commercial tools that
support design of circuits and that mainly use the elements of multilevel optimization, synthesis of
multivalue circuits combined with coding inputs and outputs, and the strategies of an appropriate
partition of PAL matrixes based on decomposition [13–15]. The essence of the synthesis is based on
appropriate partition of the design and matching of separate extracts to the structure of logic blocks
included in the CPLD. A classic synthesis method dedicated to PAL-based CPLD begins with two-level
minimization, and it is usually a starting point in the process of technology-based optimization.
Academic algorithms for technology-dependent decomposition oriented to CPLD lead to very efficient
solutions [16,17], but it can be seen in these works that there is space to further improve the efficiency
of the solutions obtained. However, the problem is connected to its substantial calculating complexity.
The solution might be a logic function description in the form of BDD (binary decision diagram) [18],
or alternatively, the methods of multilevel optimization might improve the results.

The main goal of this paper is to present an original method for technology mapping of circuits in
CPLD structures using a new form of the graphs. The original elements of the work are: application of
optimization methods for output graphs described in [19] to optimize the new form of graphs (graph
of excitations and outputs) presented in the paper [8] and the results of experiments (synthesis in
commercial tools) showing the effectiveness of the implementation of the considered solutions in CPS.

The proposed logic synthesis method is dedicated to the most popular CPLDs, including PAL-based
cells. The proposed method is a generalization of previously developed synthesis algorithms focused
on CPLD devices [20,21]. In [20], a concept was proposed that described multioutput combination
circuits using an output graph. The theoretical basis for optimization of multilevel combinational
circuits is based on the realization of shared implicants associated with each node of the graph of
outputs with proof of the theorem on the selection of nodes of the graph of output and is shown in [21].
These issues are presented in a summary form in Section 2. After introducing the basic concepts,
a simple example presents the essence of the basic concept of combinational circuit optimization using
the graph of outputs.

Section 3 proposes a new method of optimization of a graph of outputs that reduces the resources
used. The essence of the proposed optimization lies in matching the number of implicants to the
number of terms contained in the PAL logic cells. This approach allows for better use of programmable
structure resources and thus minimization of area in the target circuit. The idea of a technology
mapping method for combinational circuits was extended to sequential circuits. Section 4 presents the
modification of a graph of outputs dedicated to synthesis of sequential circuits and is presented as
a new form of a graph of outputs, the so-called graph of excitations and outputs, that describes the
process of mapping of sequential circuits in CPLD. The proposed method of describing a multilevel
circuit using the graph of excitations and outputs is universal. This approach forms the basis of a
multilevel circuit optimization method in which its combination and sequential parts are optimized
at the same time. This type of approach creates the possibility of further minimizing the area of the
entire circuit.

The rest of the paper is organized as follows. Section 2 contains the description of graph of outputs
for combinational circuits. Section 3 contains the methods for optimizing this graph. Section 4 contains
the description of the graph of excitations and outputs for sequential circuits. Section 5 contains the
results of the experiments. Section 6 contains the conclusions.

Mathematics 2019, 7, 1171 4 of 17

2. Graph of Outputs in the Process of Synthesis of Combinational Circuits

A characteristic feature of PAL-based cells is that they enable logic functions to be carried out in
the form of the sum of terms [22]. The number of terms included in the PAL-based block is limited and
is represented by the parameter k. The value of the parameter k is usually low. However, the CPLDs
contain mechanisms that are flexible in terms of the choice of terms attached to the OR gate (hardware
expanders). The process of carrying out a multioutput function in CPLDs consists of two stages.
The first stage carries out minimization of a multioutput function that results in the set of implicants
of separate functions belonging to a multioutput function. The second stage is based on mapping of
functions in PAL-based cells including a given number of terms. The problem of minimization of a
multioutput function is solved [23]. A series of algorithms offers the ability to obtain excellent synthesis
results. The problem of technology mapping is much more complicated. The original mapping methods
(in the literature, known as the classical approach) did not co-share PAL-based blocks between logic
structures associated with separate functions included in a multioutput function [22]. This solution is
inefficient with respect to the number of PAL-based blocks. Thus, it was necessary to create techniques
to use this co-sharing. One of the solutions known from literature is the use of the graph of outputs Go
< Y, U> for the mapping of combinational circuits [17,21].

The nodes of a graph of outputs correspond to separate values of an output vector y. The vector
represents values of separate functions belonging to a multioutput function. Parameter ∆y is ascribed
to each node and determines the number of implicants for which the same output vector y occurs.
Number 1 in the vector y is a row of a node associated with a given vector µ(∆y). For example, if ∆101,
then µ(∆y) = 2. The graph of outputs was arranged in a laminar way such that the nodes in a given
level are in the same row. Separate levels were arranged in an ascending order, which depends on
µ(∆y), such that the ‘lowest level’ corresponds to µ(∆y) = 1. Separate nodes placed on the next levels are
combined with edges. Two nodes, described as ∆ys and ∆yr, respectively, are combined with the edge if
the Hamming distance between ys and yr is 1. The nodes for which µ(∆y) = 1 are only associated with
a single i-function belonging to m–multioutput function, and thus, parameter ∆i

m might be ascribed to
them. The value of ∆i

m is the sum of parameters ∆y included in the nodes placed on paths that lead
from the analyzed node in the first row (µ(∆y) = 1) to the node placed on the highest row.

It should be mentioned that a graph of outputs might be reduced by removing the nodes for
which ∆y = 0. A multioutput function, the graph of outputs, and a reduced graph of outputs are shown
in Figure 2. Analysis of the graph of Figure 2c shows that, for example, ∆2

3 = ∆100 + ∆101 + ∆111 = 1 +

2 + 3 = 6. A formal description of the graph can be found in previous works [21].

Mathematics 2019, 7, x FOR PEER REVIEW 4 of 17

and is represented by the parameter k. The value of the parameter k is usually low. However, the

CPLDs contain mechanisms that are flexible in terms of the choice of terms attached to the OR gate

(hardware expanders). The process of carrying out a multioutput function in CPLDs consists of two

stages. The first stage carries out minimization of a multioutput function that results in the set of

implicants of separate functions belonging to a multioutput function. The second stage is based on

mapping of functions in PAL-based cells including a given number of terms. The problem of

minimization of a multioutput function is solved [23]. A series of algorithms offers the ability to

obtain excellent synthesis results. The problem of technology mapping is much more complicated.

The original mapping methods (in the literature, known as the classical approach) did not co-share

PAL-based blocks between logic structures associated with separate functions included in a

multioutput function [22]. This solution is inefficient with respect to the number of PAL-based

blocks. Thus, it was necessary to create techniques to use this co-sharing. One of the solutions known

from literature is the use of the graph of outputs Go < Y, U> for the mapping of combinational

circuits [17,21].

The nodes of a graph of outputs correspond to separate values of an output vector y. The vector

represents values of separate functions belonging to a multioutput function. Parameter y is ascribed

to each node and determines the number of implicants for which the same output vector y occurs.

Number 1 in the vector y is a row of a node associated with a given vector (y). For example, if 101,

then (y) = 2. The graph of outputs was arranged in a laminar way such that the nodes in a given

level are in the same row. Separate levels were arranged in an ascending order, which depends on

(y), such that the ‘lowest level’ corresponds to (y) = 1. Separate nodes placed on the next levels

are combined with edges. Two nodes, described as ys and yr, respectively, are combined with the

edge if the Hamming distance between ys and yr is 1. The nodes for which (y) = 1 are only

associated with a single i-function belonging to m–multioutput function, and thus, parameter im

might be ascribed to them. The value of im is the sum of parameters y included in the nodes placed

on paths that lead from the analyzed node in the first row ((y) = 1) to the node placed on the

highest row.

It should be mentioned that a graph of outputs might be reduced by removing the nodes for

which y = 0. A multioutput function, the graph of outputs, and a reduced graph of outputs are

shown in Figure 2. Analysis of the graph of Figure 2c shows that, for example, 23 = 100 + 101 + 111 =

1 + 2 + 3 = 6. A formal description of the graph can be found in previous works [21].

Δ011= 0Δ101= 2Δ110= 0

Δ100= 1 Δ010= 0 Δ001= 1

Δ111= 3

f1 f0f2

Δ101= 2

Δ100= 1 Δ001= 1

Δ111= 3

f1 f0f2

Δ2³= 6 Δ1³= 3 Δ0³= 6

.i 5

.o 3

.p 7

.ilb a b c d e

.ob f2 f1 f0

1100- 111

10100 111

00000 111

001-1 101

10101 101

11111 100

0111- 001

.e

a) b) c)

µ(Δy) = 1

µ(Δy) = 2

µ(Δy) = 3

Figure 2. (a) A multioutput function pla; (b) a graph of outputs; (c) and a reduced graph of outputs.

Based on the separate parameters im, the number of necessary PAL-based blocks (δf) needed to

carry out each function can be determined separately (1):














































m

i

m

i

m

i
f

k

k

k

k
H

1

1
11



(1)

where H(x) = 1 when x  0 and H(x) = 0 when x < 0.

Let us consider a diagram from Figure 2c. Assuming that k = 3, the number of necessary

PAL-based blocks needed to carry out a separate function is seven.

Figure 2. (a) A multioutput function pla; (b) a graph of outputs; (c) and a reduced graph of outputs.

Based on the separate parameters ∆i
m, the number of necessary PAL-based blocks (δf) needed to

carry out each function can be determined separately (1):

δ f =
m∑

i=1

(
H
(∆m

i − k

k− 1

) ⌈∆m
i − k

k− 1

⌉
+ 1

)
(1)

Mathematics 2019, 7, 1171 5 of 17

where H(x) = 1 when x ≥ 0 and H(x) = 0 when x < 0.
Let us consider a diagram from Figure 2c. Assuming that k = 3, the number of necessary PAL-based

blocks needed to carry out a separate function is seven.
Technology mapping of a multioutput function considers the sharing of PAL-based blocks between

separate logic structures associated with the functions included in a multioutput function. This process
is applied to the graphs of outputs by replacing chosen nodes with the nodes representing feedback [21].
The essence of this approach is explained in the following example.
Example:

Let us consider the function carried out on PAL-based blocks k = 3, as presented in Figure 2.
The analysis of the graph from Figure 3a starts from the node in the highest row for which ∆111 = 3.
Because the implicants associated with this node, correspond to all multioutput functions, they can be
carried out in a separate block shared for all three functions. This node is removed from the graph.
Whereas, the node that represents a feedback is added to the nodes to which were led the edges from
the removed node. The value of the cofactor ∆FB is 1 because the set of implicants from a shared
block is replaced with a single line that leads to the structure associated with the nodes in lower rows.
The ∆FB represents the use of one term in the PAL logic block that is necessary to feed the signal from
the CPLD output to the next PAL-type logic block. The multi-input implicant, used in one-bit feedback
from the output of one block to the input of another, can be used to create a multilevel network logic
block PAL.

The values of the cofactors ∆i
m are modified. As a result, the graph presented in Figure 3b is

created. In the subsequent stage, the node in the second row for y = 101 is analyzed, and it is shown in
Figure 3b. Carrying out the implicants associated with this node in a shared block for the functions f0
and f2 results in modification of the graph to the form shown in Figure 3c. Because this graph has
no nodes common for several functions, the structures associated with the functions f0 and f2 are
carried out separately. Finally, a logic structure that consists of 4 PAL-based blocks was obtained and is
presented in Figure 3d. It can be seen that technology mapping considers sharing of PAL-based blocks
using a graph of outputs. As a result, the obtained structure was reduced by three blocks compared
with the basic number of blocks (1).

Mathematics 2019, 7, x FOR PEER REVIEW 5 of 17

Technology mapping of a multioutput function considers the sharing of PAL-based blocks

between separate logic structures associated with the functions included in a multioutput function.

This process is applied to the graphs of outputs by replacing chosen nodes with the nodes

representing feedback [21]. The essence of this approach is explained in the following example.

Example:

Let us consider the function carried out on PAL-based blocks k = 3, as presented in Figure 2. The

analysis of the graph from Figure 3a starts from the node in the highest row for which 111 = 3.

Because the implicants associated with this node, correspond to all multioutput functions, they can

be carried out in a separate block shared for all three functions. This node is removed from the graph.

Whereas, the node that represents a feedback is added to the nodes to which were led the edges from

the removed node. The value of the cofactor FB is 1 because the set of implicants from a shared block

is replaced with a single line that leads to the structure associated with the nodes in lower rows. The

FB represents the use of one term in the PAL logic block that is necessary to feed the signal from the

CPLD output to the next PAL-type logic block. The multi-input implicant, used in one-bit feedback

from the output of one block to the input of another, can be used to create a multilevel network logic

block PAL.

The values of the cofactors im are modified. As a result, the graph presented in Figure 3b is

created. In the subsequent stage, the node in the second row for y = 101 is analyzed, and it is shown

in Figure 3b. Carrying out the implicants associated with this node in a shared block for the

functions f0 and f2 results in modification of the graph to the form shown in Figure 3c. Because this

graph has no nodes common for several functions, the structures associated with the functions f0

and f2 are carried out separately. Finally, a logic structure that consists of 4 PAL-based blocks was

obtained and is presented in Figure 3d. It can be seen that technology mapping considers sharing of

PAL-based blocks using a graph of outputs. As a result, the obtained structure was reduced by three

blocks compared with the basic number of blocks (1).

Δ101= 2

Δ100= 1 Δ001= 1

Δ111= 3

f1 f0f2

Δ2³= 6 Δ1³= 3 Δ0³= 6

Δ101= 2

Δ100= 1 Δ001= 1

ΔFB= 1

f1 f0f2

Δ2³= 4 Δ1³= 0 Δ0³= 4

Δ100= 1 Δ001= 1

ΔFB= 1

f1 f0f2

Δ2³= 2 Δ1³= 0 Δ0³= 2

ΔFB= 1

a) b)

c) d)

PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

1100-

10100

00000

10101

001-1

11111

0111-

f1

f0

f2

Figure 3. Technology mapping considering the sharing of programmable array logic (PAL)-based

blocks: (a) a basic graph of outputs; (b, c) separate stages of graph modification; (d) the obtained

structure.

The most accurate description of an algorithm that carries out a multioutput function using a

graph of outputs and a mathematical description can be found in previous studies [17,21].

3. Optimization of the Mapping Process—Modification of a Graph of Outputs

It is possible to optimize the process of technology mapping of combinational circuits in CPLDs.

The essence of optimization is based on better usage of the available resources of PAL-based blocks

Figure 3. Technology mapping considering the sharing of programmable array logic (PAL)-based blocks:
(a) a basic graph of outputs; (b,c) separate stages of graph modification; (d) the obtained structure.

The most accurate description of an algorithm that carries out a multioutput function using a
graph of outputs and a mathematical description can be found in previous studies [17,21].

Mathematics 2019, 7, 1171 6 of 17

3. Optimization of the Mapping Process—Modification of a Graph of Outputs

It is possible to optimize the process of technology mapping of combinational circuits in CPLDs.
The essence of optimization is based on better usage of the available resources of PAL-based blocks that
are associated with separate nodes of the graph of outputs. The aim of optimization is development of
unused terms, which is possible by modifying the set of implicants associated with a given node of the
graph of outputs. Let us assume that the node of a graph of outputs is associated with four implicants
of the function y (∆y = 4). Let us also presume that it must be mapped in PAL-based blocks k = 3. Thus,
the structure shown in Figure 4 is obtained.

Mathematics 2019, 7, x FOR PEER REVIEW 6 of 17

that are associated with separate nodes of the graph of outputs. The aim of optimization is

development of unused terms, which is possible by modifying the set of implicants associated with a

given node of the graph of outputs. Let us assume that the node of a graph of outputs is associated

with four implicants of the function y (y = 4). Let us also presume that it must be mapped in

PAL-based blocks k = 3. Thus, the structure shown in Figure 4 is obtained.

Implicant 1 PAL

k=3

PAL

k=3

Implicant 2
Implicant 3

Implicant 4

Redundance

implicant
Unused

term

Figure 4. Technology mapping of the node y = 4 in PAL-based blocks k = 3.

For this case, shown in Figure 4, it is necessary to use two PAL-based blocks, but the terms of

one of them are not fully used. The structure contains a single unused term that can be developed by

modifying other implicants. A highly advantageous solution is to eliminate one of the implicants (y

= 3), which might result in reducing one block of this structure. An excess implicant is one whose

removal results in reducing the structure.

To conduct the process of optimization, it is necessary to describe separate nodes of a graph of

outputs using an additional set of parameters. Let y be the number of excessive node’s implicants

marked as ay and let Ly be the number of unused terms of a logic structure associated with this node.

In addition, the number of feedback items, which originate from the structures associated with the

nodes of higher rows, are marked as Ny. The process of optimization is passed on ‘carrying’

implicants between nodes in a manner designed to reduce the number of PAL-based blocks. Thus, it

is necessary to analyze an output vector of an implicant. Separate output vectors were placed next to

the appropriate nodes.

We can distinguish two basic techniques of relocating implicants in a graph of outputs that are

the effect of either merging or splitting an output vector.

A merging method is based on an OR function for bits of output vectors of the implicants that

underwent merging. As a result, we obtain the vector associated with the node in the higher row

compared with the rows of vectors that underwent merging. The implicants that underwent

merging are removed from the graphs. The implicant that is the result of merging is placed next to

an appropriate node in a graph of outputs. The process of merging might involve only those

implicants that have accurate input components, i.e., the same or accurate occurrences of the state ‘-’

at given positions. Merging leads to the relocation of implicants towards the nodes in higher rows.

The method of splitting is based on the partition of an output vector into several output vectors.

After the OR operation, we obtain a vector before the partition. The implicant that underwent

splitting is deleted from a graph of outputs. The implicants that are the result of splitting are placed

next to the appropriate nodes in the graph. The implicants obtained as the result of splitting have the

same output vector as the implicant that underwent splitting. The splitting operation leads to

relocation of implicants towards the nodes in lower rows.

The idea of modifying a graph of outputs using the techniques of splitting and merging is

presented in Figures 5–7. A multioutput function is described using a graph of outputs in the form

shown in Figure 5a (in addition, a description in the form of a pla file is placed). Technology

mapping creates the structure that uses eight PAL-based blocks k = 3 and is presented on Figure 5b.

The analysis of the graph from Figure 5a starts with the node in the highest (the third) row. It is

observed that cofactors describing the use of terms of a logic structure associated with this node are

equal to zero (a111 = 0, L111 = 0). Thus, the terms of a PAL-based block are fully used, and no excessive

implicants exist. In the subsequent stage, the nodes in the second row are analyzed. The node

Figure 4. Technology mapping of the node ∆y = 4 in PAL-based blocks k = 3.

For this case, shown in Figure 4, it is necessary to use two PAL-based blocks, but the terms of
one of them are not fully used. The structure contains a single unused term that can be developed
by modifying other implicants. A highly advantageous solution is to eliminate one of the implicants
(∆y = 3), which might result in reducing one block of this structure. An excess implicant is one whose
removal results in reducing the structure.

To conduct the process of optimization, it is necessary to describe separate nodes of a graph of
outputs using an additional set of parameters. Let y be the number of excessive node’s implicants
marked as ay and let Ly be the number of unused terms of a logic structure associated with this
node. In addition, the number of feedback items, which originate from the structures associated with
the nodes of higher rows, are marked as Ny. The process of optimization is passed on ‘carrying’
implicants between nodes in a manner designed to reduce the number of PAL-based blocks. Thus, it is
necessary to analyze an output vector of an implicant. Separate output vectors were placed next to the
appropriate nodes.

We can distinguish two basic techniques of relocating implicants in a graph of outputs that are the
effect of either merging or splitting an output vector.

A merging method is based on an OR function for bits of output vectors of the implicants that
underwent merging. As a result, we obtain the vector associated with the node in the higher row
compared with the rows of vectors that underwent merging. The implicants that underwent merging
are removed from the graphs. The implicant that is the result of merging is placed next to an appropriate
node in a graph of outputs. The process of merging might involve only those implicants that have
accurate input components, i.e., the same or accurate occurrences of the state ‘-’ at given positions.
Merging leads to the relocation of implicants towards the nodes in higher rows.

The method of splitting is based on the partition of an output vector into several output vectors.
After the OR operation, we obtain a vector before the partition. The implicant that underwent splitting
is deleted from a graph of outputs. The implicants that are the result of splitting are placed next to
the appropriate nodes in the graph. The implicants obtained as the result of splitting have the same
output vector as the implicant that underwent splitting. The splitting operation leads to relocation of
implicants towards the nodes in lower rows.

The idea of modifying a graph of outputs using the techniques of splitting and merging is
presented in Figures 5–7. A multioutput function is described using a graph of outputs in the form

Mathematics 2019, 7, 1171 7 of 17

shown in Figure 5a (in addition, a description in the form of a pla file is placed). Technology mapping
creates the structure that uses eight PAL-based blocks k = 3 and is presented on Figure 5b. The analysis
of the graph from Figure 5a starts with the node in the highest (the third) row. It is observed that
cofactors describing the use of terms of a logic structure associated with this node are equal to zero
(a111 = 0, L111 = 0). Thus, the terms of a PAL-based block are fully used, and no excessive implicants
exist. In the subsequent stage, the nodes in the second row are analyzed. The node associated with the
vector y = 011 is described as L011 = 1, meaning that that there is one unused term in the structure
associated with this node. Because the nodes in lower rows are attached to an analyzed node and
have the same input vector (1010), it is possible to carry out the process of merging. An excessive
redundant implicant (a010 = 1) exists for the node y = 010, and its removal might lead to reduction of
the structure associated with this node. The process of merging leads to a reduction in the number of
PAL-based blocks.

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 17

associated with the vector y = 011 is described as L011 = 1, meaning that that there is one unused term

in the structure associated with this node. Because the nodes in lower rows are attached to an

analyzed node and have the same input vector (1010), it is possible to carry out the process of

merging. An excessive redundant implicant (a010 = 1) exists for the node y = 010, and its removal

might lead to reduction of the structure associated with this node. The process of merging leads to a

reduction in the number of PAL-based blocks.

Δ011= 1Δ101= 3

Δ100= 1 Δ010= 3 Δ001= 1

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 1 L011= 1

L100= 1 L010= 1 L001= 0

a111= 0

a101= 1 a011= 2

a100= 2 a010= 1 a001= 0

1010 1010

1110

0101
0000

1111
0111
0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3

k
=

3

k
=

3 k
=

3

k
=

3

1111

0111

0011

1110

f1

k
=

3
k

=
3

1010

0101

0000

f01010

f2

0100
.i 4

.o 3

.p 12

1000 111

0010 111

0110 111

1111 101

0111 101

0011 101

1110 011

0100 100

1010 010

0000 010

0101 010

1010 001

.e

a) b)

Figure 5. A multioutput function before the process of merging: (a) description; (b) a logic structure.

The process of merging modifies the graph of outputs, the description of pla, and the obtained

logic structure, as shown in Figure 6. As presented in Figure 6b, the number of necessary PAL-based

blocks was reduced to seven. Based on analysis of the node in the second row (y = 101), it is

associated with an excessive implicant (a101 = 1). Figure 6a shows that the nodes in the first row ((y)

= 1), which are attached to the analyzed node (y = 100, y = 001), are also associated with logic

structures that have unused terms. Thus, it is possible to apply the process of splitting that leads to

reduction of a logic structure.

Δ011= 2Δ101= 3

Δ100= 1 Δ010= 2 Δ001= 0

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 1 L011= 0

L100= 1 L010= 0 L001= 1

a111= 0

a101= 1 a011= 0

a100= 2 a010= 0 a001= 2

1010
1110

0101
0000

1111
0111
0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3

k
=

3

k
=

3

k
=

3

1111

0111

0011

1110

f1

k
=

3
k
=

3

1010

0101

0000

f0

f2

0100.i 4

.o 3

.p 11

1000 111

0010 111

0110 111

1111 101

0111 101

0011 101

1110 011

1010 011

0100 100

0000 010

0101 010

.e

a) b)

Figure 6. A multioutput function before the process of splitting: (a) description; (b) logic structure.

The process of splitting leads to modification of the graph of outputs, the description of pla, and

the obtained logic structure, as shown in Figure 7.

Figure 5. A multioutput function before the process of merging: (a) description; (b) a logic structure.

The process of merging modifies the graph of outputs, the description of pla, and the obtained
logic structure, as shown in Figure 6. As presented in Figure 6b, the number of necessary PAL-based
blocks was reduced to seven. Based on analysis of the node in the second row (y = 101), it is associated
with an excessive implicant (a101 = 1). Figure 6a shows that the nodes in the first row (µ(∆y) = 1),
which are attached to the analyzed node (y = 100, y = 001), are also associated with logic structures that
have unused terms. Thus, it is possible to apply the process of splitting that leads to reduction of a
logic structure.

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 17

associated with the vector y = 011 is described as L011 = 1, meaning that that there is one unused term

in the structure associated with this node. Because the nodes in lower rows are attached to an

analyzed node and have the same input vector (1010), it is possible to carry out the process of

merging. An excessive redundant implicant (a010 = 1) exists for the node y = 010, and its removal

might lead to reduction of the structure associated with this node. The process of merging leads to a

reduction in the number of PAL-based blocks.

Δ011= 1Δ101= 3

Δ100= 1 Δ010= 3 Δ001= 1

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 1 L011= 1

L100= 1 L010= 1 L001= 0

a111= 0

a101= 1 a011= 2

a100= 2 a010= 1 a001= 0

1010 1010

1110

0101
0000

1111
0111
0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3

k
=

3

k
=

3 k
=

3

k
=

3

1111

0111

0011

1110

f1

k
=

3
k

=
3

1010

0101

0000

f01010

f2

0100
.i 4

.o 3

.p 12

1000 111

0010 111

0110 111

1111 101

0111 101

0011 101

1110 011

0100 100

1010 010

0000 010

0101 010

1010 001

.e

a) b)

Figure 5. A multioutput function before the process of merging: (a) description; (b) a logic structure.

The process of merging modifies the graph of outputs, the description of pla, and the obtained

logic structure, as shown in Figure 6. As presented in Figure 6b, the number of necessary PAL-based

blocks was reduced to seven. Based on analysis of the node in the second row (y = 101), it is

associated with an excessive implicant (a101 = 1). Figure 6a shows that the nodes in the first row ((y)

= 1), which are attached to the analyzed node (y = 100, y = 001), are also associated with logic

structures that have unused terms. Thus, it is possible to apply the process of splitting that leads to

reduction of a logic structure.

Δ011= 2Δ101= 3

Δ100= 1 Δ010= 2 Δ001= 0

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 1 L011= 0

L100= 1 L010= 0 L001= 1

a111= 0

a101= 1 a011= 0

a100= 2 a010= 0 a001= 2

1010
1110

0101
0000

1111
0111
0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3

k
=

3

k
=

3

k
=

3

1111

0111

0011

1110

f1

k
=

3
k
=

3

1010

0101

0000

f0

f2

0100.i 4

.o 3

.p 11

1000 111

0010 111

0110 111

1111 101

0111 101

0011 101

1110 011

1010 011

0100 100

0000 010

0101 010

.e

a) b)

Figure 6. A multioutput function before the process of splitting: (a) description; (b) logic structure.

The process of splitting leads to modification of the graph of outputs, the description of pla, and

the obtained logic structure, as shown in Figure 7.

Figure 6. A multioutput function before the process of splitting: (a) description; (b) logic structure.

Mathematics 2019, 7, 1171 8 of 17

The process of splitting leads to modification of the graph of outputs, the description of pla, and
the obtained logic structure, as shown in Figure 7.
Mathematics 2019, 7, x FOR PEER REVIEW 8 of 17

Δ011= 2Δ101= 2

Δ100= 2 Δ010= 2 Δ001= 1

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 0 L011= 0

L100= 0 L010= 0 L001= 0

a111= 0

a101= 0 a011= 0

a100= 0 a010= 0 a001= 0

1010
1110

0101
0000

1111
0111

0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3
k

=
3

k
=

3
1111

0111

0011

1110

f1

k
=

3
k

=
3

1010

0101

0000

f0

f2

0100
.i 4

.o 3

.p 12

1000 111

0010 111

0110 111

1111 101

0111 101

1110 011

1010 011

0100 100

0011 100

0000 010

0101 010

0011 001

.e

0011

0011

Min

a) b)

Figure 7. A multioutput function after optimization: (a) description; (b) logic structure.

The process of splitting reduced one block in the obtained structure. All nodes of the graph

presented in Figure 7a are marked with the parameters ay and Ly, for which the value is zero. In this

situation, the process of optimization should be completed. The optimization of mapping of three

exemplary multioutput functions reduced the number of PAL-based blocks from eight (Figure 5) to

six (Figure 7), a reduction of 25%. It is worth mentioning that for the node y = 011, the implicants

have such input vectors that might undergo merging. As a result of merging, two implicants 1110

and 1010, which have input vectors, can be replaced with a single implicant that has an input vector

1–10, and it influences the parameters associated with the analyzed node. Additional examples on

the modification of graphs of outputs leading to optimization of technology mapping can be found

in previous work [19].

4. Graph of Excitations-Outputs in a Synthesis Process of Sequential Circuits

The key element of an FSM automaton is a memory block (D-FF) associated with the inner

states of an automaton. In addition, FSM includes a combinational component that maps two

multioutput functions. The first function is known as an excitation function : BN+K  BK (where N is

the number of FSM inputs, K is the number of state bits, B = {0,1}), and it is responsible for the

process of changing states inside FSM. The second function is known as an output function : BN+K 

BM (where M is the number of FSM outputs), and it is responsible for creating an output FSM. It

turns out that both multioutput functions can be presented at the same time by creating a new

multioutput function +: BN+K  BK+M, as shown in Figure 8.

X

Y

S

S+

D

clk

δ

λ
K

M

N

X

Y

SS+

D

clk

K

M

N

δ
 +

 λ

Figure 8. A classic scheme of FSM.

To describe a multioutput function  + , a graph of outputs can be used that has been slightly

changed. It is necessary to introduce two types of nodes: combinational nodes (denoted by circles on

the graph) and sequential nodes (rectangles). Sequential nodes are placed in the paths associated

with the excitation functions of particular D flip-flops. This newly created form of a graph is known

as the graph of excitations and outputs [8]. The description of a multioutput function in the form of a

pla file and a graph of excitations and outputs is presented in Figure 9a (without the nodes y = 0).

Obviously, the description of a multioutput function  +  in this form requires new coding of the

inner states in FSM.

Figure 7. A multioutput function after optimization: (a) description; (b) logic structure.

The process of splitting reduced one block in the obtained structure. All nodes of the graph
presented in Figure 7a are marked with the parameters ay and Ly, for which the value is zero. In this
situation, the process of optimization should be completed. The optimization of mapping of three
exemplary multioutput functions reduced the number of PAL-based blocks from eight (Figure 5) to
six (Figure 7), a reduction of 25%. It is worth mentioning that for the node y = 011, the implicants
have such input vectors that might undergo merging. As a result of merging, two implicants 1110
and 1010, which have input vectors, can be replaced with a single implicant that has an input vector
1–10, and it influences the parameters associated with the analyzed node. Additional examples on the
modification of graphs of outputs leading to optimization of technology mapping can be found in
previous work [19].

4. Graph of Excitations-Outputs in a Synthesis Process of Sequential Circuits

The key element of an FSM automaton is a memory block (D-FF) associated with the inner states
of an automaton. In addition, FSM includes a combinational component that maps two multioutput
functions. The first function is known as an excitation function δ: BN+K

→ BK (where N is the number
of FSM inputs, K is the number of state bits, B = {0,1}), and it is responsible for the process of changing
states inside FSM. The second function is known as an output function λ: BN+K

→ BM (where M is
the number of FSM outputs), and it is responsible for creating an output FSM. It turns out that both
multioutput functions can be presented at the same time by creating a new multioutput function δ+λ:
BN+K

→ BK+M, as shown in Figure 8.

Mathematics 2019, 7, x FOR PEER REVIEW 8 of 17

Δ011= 2Δ101= 2

Δ100= 2 Δ010= 2 Δ001= 1

Δ111= 3

f1 f0f2

N011= 1N101= 1

N100= 1 N010= 1 N001= 2

N111= 0
L111= 0

L101= 0 L011= 0

L100= 0 L010= 0 L001= 0

a111= 0

a101= 0 a011= 0

a100= 0 a010= 0 a001= 0

1010
1110

0101
0000

1111
0111

0011

1000

0100

0010
0110

1000

0010

0110

k
=

3

k
=

3
k

=
3

k
=

3
1111

0111

0011

1110

f1

k
=

3
k

=
3

1010

0101

0000

f0

f2

0100
.i 4

.o 3

.p 12

1000 111

0010 111

0110 111

1111 101

0111 101

1110 011

1010 011

0100 100

0011 100

0000 010

0101 010

0011 001

.e

0011

0011

Min

a) b)

Figure 7. A multioutput function after optimization: (a) description; (b) logic structure.

The process of splitting reduced one block in the obtained structure. All nodes of the graph

presented in Figure 7a are marked with the parameters ay and Ly, for which the value is zero. In this

situation, the process of optimization should be completed. The optimization of mapping of three

exemplary multioutput functions reduced the number of PAL-based blocks from eight (Figure 5) to

six (Figure 7), a reduction of 25%. It is worth mentioning that for the node y = 011, the implicants

have such input vectors that might undergo merging. As a result of merging, two implicants 1110

and 1010, which have input vectors, can be replaced with a single implicant that has an input vector

1–10, and it influences the parameters associated with the analyzed node. Additional examples on

the modification of graphs of outputs leading to optimization of technology mapping can be found

in previous work [19].

4. Graph of Excitations-Outputs in a Synthesis Process of Sequential Circuits

The key element of an FSM automaton is a memory block (D-FF) associated with the inner

states of an automaton. In addition, FSM includes a combinational component that maps two

multioutput functions. The first function is known as an excitation function : BN+K  BK (where N is

the number of FSM inputs, K is the number of state bits, B = {0,1}), and it is responsible for the

process of changing states inside FSM. The second function is known as an output function : BN+K 

BM (where M is the number of FSM outputs), and it is responsible for creating an output FSM. It

turns out that both multioutput functions can be presented at the same time by creating a new

multioutput function +: BN+K  BK+M, as shown in Figure 8.

X

Y

S

S+

D

clk

δ

λ
K

M

N

X

Y

SS+

D

clk

K

M

N

δ
 +

 λ

Figure 8. A classic scheme of FSM.

To describe a multioutput function  + , a graph of outputs can be used that has been slightly

changed. It is necessary to introduce two types of nodes: combinational nodes (denoted by circles on

the graph) and sequential nodes (rectangles). Sequential nodes are placed in the paths associated

with the excitation functions of particular D flip-flops. This newly created form of a graph is known

as the graph of excitations and outputs [8]. The description of a multioutput function in the form of a

pla file and a graph of excitations and outputs is presented in Figure 9a (without the nodes y = 0).

Obviously, the description of a multioutput function  +  in this form requires new coding of the

inner states in FSM.

Figure 8. A classic scheme of FSM.

To describe a multioutput function δ + λ, a graph of outputs can be used that has been slightly
changed. It is necessary to introduce two types of nodes: combinational nodes (denoted by circles on
the graph) and sequential nodes (rectangles). Sequential nodes are placed in the paths associated with
the excitation functions of particular D flip-flops. This newly created form of a graph is known as the

Mathematics 2019, 7, 1171 9 of 17

graph of excitations and outputs [8]. The description of a multioutput function in the form of a pla file
and a graph of excitations and outputs is presented in Figure 9a (without the nodes ∆y = 0). Obviously,
the description of a multioutput function δ + λ in this form requires new coding of the inner states
in FSM.

A graph of excitations and outputs might undergo the process of optimization using the methods
described in Section 3. As shown in Figure 9, the original graph from Figure 9a underwent optimization
such that two nodes (y = 1111, y = 1010) were subjected to the process of splitting of an output vector.
This modification reduced the graph from Figure 9a and the logic structure from Figure 9b compared
with the structure from Figure 9a. In general, synthesis of FSM is widely analyzed in many scientific
papers [22,24–27]. It should be noted that the proposed optimization integrated with technology
mapping might be an essential extension of a series of coding methods of states in FSM and could lead
to limitations of the used logic resources of the given CPLDs or minimization of power consumption.

Mathematics 2019, 7, x FOR PEER REVIEW 9 of 17

A graph of excitations and outputs might undergo the process of optimization using the

methods described in Section 3. As shown in Figure 9, the original graph from Figure 9a underwent

optimization such that two nodes (y = 1111, y = 1010) were subjected to the process of splitting of an

output vector. This modification reduced the graph from Figure 9a and the logic structure from

Figure 9b compared with the structure from Figure 9a. In general, synthesis of FSM is widely

analyzed in many scientific papers [22,24–27]. It should be noted that the proposed optimization

integrated with technology mapping might be an essential extension of a series of coding methods of

states in FSM and could lead to limitations of the used logic resources of the given CPLDs or

minimization of power consumption.

Δ1000= 1 Δ0100= 2 Δ0010= 1

f1f0D0

.i 4

.o 4

.p 8

1111 1111

1000 1010

0010 0101

0000 1000

1010 0100

0101 0100

0011 0010

0111 0001

.e

Δ0001= 1

D1

Δ1010= 1 Δ0101= 1

Δ1111= 1

µ(Δy) = 1

µ(Δy) = 2

µ(Δy) = 3

µ(Δy) = 4

1000
0010

1111

011100111010
0101

0000

0000

1010

0101

0011

0111

D
 F

-F

f0

f1

1000

0010

1111

Δ1000= 3 Δ0100= 2 Δ0010= 3

f1f0D0

.i 4

.o 4

.p 11

0010 0101

1111 0101

0000 1000

1000 1000

1111 1000

1010 0100

0101 0100

0011 0010

1000 0010

1111 0010

0111 0001

.e

Δ0001= 1

D1

Δ0101= 2

µ(Δy) = 1

µ(Δy) = 2

1000

0010
1111

011100111010
0101

0000

0000

1010

0101

0011

0111

D
 F

-F

f0

f1

1000

0010

1111

1111
1000
1111

1111

1000

1111

a)

b)

k
=

3
k

=
3

k
=

3
k

=
3

k
=

3
k

=
3

k
=

3

k
=

3
k

=
3

k
=

3
k

=
3

k
=

3

Figure 9. A graph of excitations and outputs together with a corresponding logic structure: (a) before

optimization; (b) after optimization.

5. Experimental Results

A series of experiments were conducted to compare the efficiency of the method for technology

mapping of circuits in CPLDs. We focused on both combinational and sequential circuits. The

experiments were conducted on well-known benchmarks [28]. The results of the comparison are

illustrated in Tables 1–4.

An appropriate research flowchart showing the essence of conducting experiments is shown in

Figure 10. In addition, this figure presents an outline of the graph analysis algorithm. Depending on

the adopted strategy, the process of splitting or merging nodes may play a dominant role. This leads

to the appropriate modification of the graph together with the possibility of removing the

considered node. The last element of the algorithm is to create a description of the set of functions

that can be further synthesized on commercial tools.

Figure 9. A graph of excitations and outputs together with a corresponding logic structure: (a) before
optimization; (b) after optimization.

5. Experimental Results

A series of experiments were conducted to compare the efficiency of the method for technology
mapping of circuits in CPLDs. We focused on both combinational and sequential circuits.
The experiments were conducted on well-known benchmarks [28]. The results of the comparison are
illustrated in Tables 1–4.

An appropriate research flowchart showing the essence of conducting experiments is shown in
Figure 10. In addition, this figure presents an outline of the graph analysis algorithm. Depending on
the adopted strategy, the process of splitting or merging nodes may play a dominant role. This leads to
the appropriate modification of the graph together with the possibility of removing the considered
node. The last element of the algorithm is to create a description of the set of functions that can be
further synthesized on commercial tools.

Mathematics 2019, 7, 1171 10 of 17
Mathematics 2019, 7, x FOR PEER REVIEW 10 of 17

logical minimization,

state coding(FSM)

Benchmark

Proposed

methodology
Two-level

synthesis

Determination and

comparison

of expected results

Synthesis in

commercial

tools

Synthesis in

commercial

tools

Comparison

description of

multi-output

functions

description of

multi-output

functions

description of

multi-output

functions

Tab.1 Tab.2

Tab.3 Tab.4

Creating a graph based on

the description of the function

Removing unnecessary nodes

Analysis of nodes in

terms of optimization

graph transformation

All

nodes checked

?

Creating a description of

the obtained

multi-output function

Y

N

Figure 10. Research flowchart.

Table 1 includes the synthesis results of the chosen combinational circuits using two methods:

the method without multilevel optimization (two-level synthesis) and the method using a graph of

outputs in technology mapping (proposed approach). The table consists of three parts. The first part

includes the features of a benchmark, i.e., its name (NAME), the number of inputs (IN), the number

of outputs (OUT) and the number of product terms (p). The second part includes the results of logic

synthesis without multilevel optimization. This method is based on two-level optimization and is

described in a shortened form (two-level synthesis). The third part of the table includes the results of

synthesis using the proposed method. Technology mapping is characterized by three parameters:

the number of used PAL-based blocks, which includes five terms (Block), the number of logic levels

in the longest path (Level), and the synthesis time (Time).

Table 1. A direct comparison of technology mapping methods for combinational benchmarks in

PAL-based logic blocks (k = 5).

Technology Mapping Oriented to PAL-Based

Logic Block (k = 5)

Two-Level Synthesis Proposed Approach

NAME
Number of

inputs (IN)

Number of

outputs (OUT)

Number of

product terms (p)
Block Level

Time

[ms]
Block Level

Time

[ms]

5xp1 7 10 65 22 2 90 23 3 120

alu2 10 8 79 20 2 90 20 2 340

alu4 14 8 1028 159 4 620 148 6 730

b9 41 21 308 26 2 420 25 2 200

b12 15 9 431 14 2 60 16 3 100

Clip 9 5 167 38 3 160 36 4 160

duke2 22 29 86 60 2 270 66 3 570

rd73 7 3 127 36 3 140 32 4 130

rd84 8 4 255 72 4 270 67 6 520

Seq 41 35 1459 355 3 1690 165 7 1290

table3 14 14 175 139 3 610 96 6 640

table5 17 15 158 141 3 910 87 6 850

1082 33 5330 781 52 5650

Figure 10. Research flowchart.

Table 1 includes the synthesis results of the chosen combinational circuits using two methods:
the method without multilevel optimization (two-level synthesis) and the method using a graph of
outputs in technology mapping (proposed approach). The table consists of three parts. The first part
includes the features of a benchmark, i.e., its name (NAME), the number of inputs (IN), the number
of outputs (OUT) and the number of product terms (p). The second part includes the results of logic
synthesis without multilevel optimization. This method is based on two-level optimization and is
described in a shortened form (two-level synthesis). The third part of the table includes the results of
synthesis using the proposed method. Technology mapping is characterized by three parameters: the
number of used PAL-based blocks, which includes five terms (Block), the number of logic levels in the
longest path (Level), and the synthesis time (Time).

Table 1. A direct comparison of technology mapping methods for combinational benchmarks in
PAL-based logic blocks (k = 5).

Technology Mapping Oriented to PAL-Based Logic Block (k = 5)
Two-Level Synthesis Proposed Approach

NAME Number of
Inputs (IN)

Number of
Outputs
(OUT)

Number of
Product

Terms (p)
Block Level Time [ms] Block Level Time [ms]

5xp1 7 10 65 22 2 90 23 3 120
alu2 10 8 79 20 2 90 20 2 340
alu4 14 8 1028 159 4 620 148 6 730
b9 41 21 308 26 2 420 25 2 200
b12 15 9 431 14 2 60 16 3 100
Clip 9 5 167 38 3 160 36 4 160

duke2 22 29 86 60 2 270 66 3 570
rd73 7 3 127 36 3 140 32 4 130
rd84 8 4 255 72 4 270 67 6 520
Seq 41 35 1459 355 3 1690 165 7 1290

table3 14 14 175 139 3 610 96 6 640
table5 17 15 158 141 3 910 87 6 850

1082 33 5330 781 52 5650

Mathematics 2019, 7, 1171 11 of 17

Analysis of the experimental results clearly indicates that the effect of multilevel optimization is
minimization of the number of blocks required to process the benchmarks. In the set of 12 benchmarks,
in eight cases (67%), the solution was obtained using a lower number of PAL-based blocks. In three
cases (5xp1, b12, duke2), use of a graph of outputs in the process of technology mapping did not lead
to a decrease in the number of used blocks. The total number of blocks, given in the last row in Table 1,
indicates that use of the proposed method reduced the number of blocks required to process all the
benchmarks at 28% (((1082 − 781)/1082) × 100%)).

The expansion of the number of logic levels is an unfavorable effect of reducing the number of logic
blocks. Unfortunately, multilevel optimization prolongs critical paths, which was observed in ten cases
(83%). In the other two cases (alu2, b9), the same number of logic levels was obtained. Considering
the total number of logic levels obtained for all analyzed benchmarks, the number is 56% higher
(((52 − 33)/33) × 100%) in multilevel optimization than in the method based on two-level synthesis.

It is worth emphasizing that multilevel optimization does not prolong synthesis time. The total
synthesis time for all analyzed benchmarks slightly differs at approximately 5%. It should also be
mentioned that in the largest circuits, the method of multilevel optimization limited the number of
logic blocks and was performed in a substantially shorter time than that using a classic attitude with
two-level minimization.

A similar comparison was conducted for sequential circuits. A combinational FSM approach,
including both a description of a transition block and an output block, underwent synthesis [8].
An estimated method of coding inner states was assumed, and in cases where this was not possible,
a natural binary code was used. In the process of multilevel optimization, a graph of excitations and
outputs was used. The first portion of Table 2 shows the column ‘s’ that includes the number of states
of a sequential automaton. The remainder of Table 2 is the same as Table 1. The columns named
‘Block’ include the total numbers of PAL-based blocks needed to carry out an appropriate FSM without
distinguishing between use of flip-flops or without them.

Table 2. A direct comparison of technology mapping methods for FSMs in PAL-based logic blocks
(k = 5).

Technology Mapping Oriented to PAL-Based Logic
Block (k = 5)

Two-Level Synthesis Proposed Approach

NAME IN OUT p s Block Level Time
[ms] Block Level Time

[ms]
dk16 2 3 108 27 45 3 200 39 4 240
dk17 2 3 32 8 14 2 60 16 2 120
ex2 2 2 72 19 18 2 70 21 4 130
ex3 2 2 36 10 9 2 50 10 2 80
ex4 6 9 21 14 16 2 70 18 2 150

Keyb 7 2 170 19 26 2 110 22 4 140
lion9 2 1 11 4 7 2 90 7 2 50
Mc 3 5 10 4 7 1 40 9 2 80
s8 4 1 20 5 8 2 50 7 3 60

s820 18 19 250 48 63 3 270 42 4 280
s832 18 19 245 25 49 3 210 42 4 230
s1488 8 19 251 48 117 4 470 78 6 610

412 34 1880 347 46 2420

In the set of analyzed FSMs, we found six cases (50%) for which technology mapping uses a lower
number of blocks. In five cases (dk17, ex2, ex3, ex4, mc), the use of the graphs of excitations and
outputs in technology mapping increased the number of used blocks. The total numbers of blocks
indicate that use of the proposed technology mapping method reduced the number of blocks needed
to carry out all the automatons at 16%.

Mathematics 2019, 7, 1171 12 of 17

As in the case of combinational circuits, the expansion of the number of logic levels is a side effect
of multilevel optimization. Thus, it is necessary to decrease the maximum clock frequency in FSM.
Multilevel optimization means that FSM works slowly in eight cases (67%). In other cases, the same
number of logic levels was obtained.

In the case of FSMs, multilevel optimization prolongs the synthesis time. In the case of the largest
automatons (s822, s830), the synthesis time was slightly prolonged and was 4% and 10%, respectively.

Similar experiments were conducted using Quartus and ISE tools. This time, synthesis was
conducted using two methods. In the first case, synthesis was conducted in an appropriate system that
supports a synthesis process and uses a description of a circuit in the form of VHDL. In the second case,
a description of a structure in VHDL underwent synthesis using a commercial tool. VHDL was created
in a prototype programmable tool that performs the multilevel optimization process presented in this
paper. The process of optimization was carried out for PAL-based blocks, including five terms as
basic logic blocks in commercial circuits that have the same number of terms. In addition, the CPLDs
include various types of expanders that offer the possibility of further solutions in commercial tools.
The experiments were conducted using the same set of benchmarks for three families of CPLDs: the
MAX3000 [29] family, Altera company, and circuits from families 9500Xl [30] and CoolRunner II [31]
by Xilinx.

Table 3 includes the synthesis results of combinational circuits. Apart from the characteristic
features of benchmarks, we present the numbers of macrocells used to construct the circuits (MC).
The circuit from the Max300 family was given a usage percentage of MAX 3512 (%). The circuits by
Xilinx were given the number of terms used to carry out separate benchmarks (Pt). The parameters
included in Table 3 were read out from the results of the reports after synthesis in Quartus and ISE.

Table 3. Comparison of synthesis of combinational circuits in commercial tools (a description in a text).

Altera-Max3000 (3512) Xilinx-9500XL Xilinx–CoolRunner II

Quartus (VHDL)
Proposed
Approach

(k = 5)
ISE (VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)

NAME IN OUT P Macrocells
(MCs) % MC % MC Terms

(Pt) MC Pt MC Pt MC Pt

5xp1 7 10 65 17 3 17 3 19 50 11 46 13 47 13 51
alu2 10 8 79 15 3 15 3 11 41 12 37 9 49 9 42
alu4 14 8 1028 175 34 133 26 41 184 37 172 81 636 45 511
b9 41 21 308 24 5 24 5 23 52 26 50 21 56 21 56

b12 15 9 431 10 2 10 2 11 30 9 32 9 29 9 29
Clip 9 5 167 23 4 8 2 20 78 16 73 12 53 10 53

duke2 22 29 86 55 11 54 11 46 164 36 166 38 148 34 141
rd73 7 3 127 22 4 29 6 8 33 9 31 7 39 9 60
rd84 8 4 255 139 27 38 7 21 80 19 79 6 43 15 122
Seq 41 35 1459 267 52 224 44 147 663 105 400 184 1119 76 384

table3 14 14 175 152 30 102 20 64 371 65 373 64 446 37 307
table5 17 15 158 127 25 65 13 71 269 70 301 58 413 34 273

1026 719 482 2015 415 1760 502 3078 312 2029

While carrying out synthesis in Quartus, it was observed that an appropriate description of a
circuit, which is the effect of a multilevel optimization, made the results better. Considering the use
of macrocells, the result was better in seven cases (58%) compared with solutions in which synthesis
was performed by an original description of a circuit in VHDL. In one case (rd73), initial multilevel
optimization did not reduce the number of macrocells.

In the case of Xilinx devices, for the circuits from the 9500XL family, the proposed optimization
method limited the number of macrocells in eight cases (67%), and the others (33%) showed a slight
increase in the number of blocks. For CoolRunner II circuits, the initial multilevel optimization turned
out to be advantageous in six cases (50%). In other cases, either the number of blocks was the same
(3.3%) or it was increased (17%).

The same experiments were carried out for FSMs, and the results are illustrated in Table 4.

Mathematics 2019, 7, 1171 13 of 17

In the case of FSMs, we observed smaller differences in CPLDs. For Quartus, in most cases,
the number of blocks, i.e., as the effect of initial multilevel optimization, was not limited. In two
cases (ex2, s1488), we observed a slight reduction in the number of macrocells. In the case of the ISE
system, the differences were unnoticeable. In most cases, we observed the use of the same number of
macrocells. The group of the analyzed FSM contains cases in which the number of macrocells was
limited or increased.

Table 4. Comparison of synthesis of FSMs in commercial tools (a description in a text).

Altera-Max3000 (3512) Xilinx-9500XL Xilinx–CoolRunner II

Quartus
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)
NAME IN OUT P S MC % MC % MC Pt MC Pt MC Pi MC Pt

dk16 2 3 108 27 24 5 23 4 11 90 8 92 9 113 10 106
dk17 2 3 32 8 14 3 14 3 15 37 13 34 12 37 12 38
ex2 2 2 72 19 16 3 14 3 7 50 8 47 7 46 7 43
ex3 2 2 36 10 9 2 9 2 6 26 6 29 6 23 6 23
ex4 6 9 21 14 16 3 16 3 13 33 13 32 14 35 13 34

Keyb 7 2 170 19 23 4 23 4 12 67 13 74 12 73 11 73
lion9 2 1 11 4 7 1 7 1 5 22 5 22 5 18 5 18
Mc 3 5 10 4 7 1 7 1 7 11 7 12 7 9 7 9
s8 4 1 20 5 7 1 7 1 5 20 5 21 5 26 5 26

s820 18 19 250 48 38 7 38 7 24 125 24 121 27 95 27 98
s832 18 19 245 25 38 7 38 7 24 125 24 121 29 106 27 98

s1488 8 19 251 48 61 12 59 12 26 270 26 273 30 232 31 231
260 255 155 876 152 878 163 813 161 797

Figure 11 presents a comparison of synthesis experiments carried out using commercial tools.
It was assumed that the results obtained in synthesis using commercial tools without an initial

multilevel optimization act as a reference point, i.e., they correspond to the value 100% on the graph.

Mathematics 2019, 7, x FOR PEER REVIEW 13 of 17

turned out to be advantageous in six cases (50%). In other cases, either the number of blocks was the
same (3.3%) or it was increased (17%).

The same experiments were carried out for FSMs, and the results are illustrated in Table 4.
In the case of FSMs, we observed smaller differences in CPLDs. For Quartus, in most cases, the

number of blocks, i.e., as the effect of initial multilevel optimization, was not limited. In two cases
(ex2, s1488), we observed a slight reduction in the number of macrocells. In the case of the ISE
system, the differences were unnoticeable. In most cases, we observed the use of the same number of
macrocells. The group of the analyzed FSM contains cases in which the number of macrocells was
limited or increased.

Table 4. Comparison of synthesis of FSMs in commercial tools (a description in a text).

Altera-Max3000
(3512) Xilinx-9500XL Xilinx–CoolRunner II

Quartus
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)
NAME IN OUT P S MC % MC % MC Pt MC Pt MC Pi MC Pt

dk16 2 3 108 27 24 5 23 4 11 90 8 92 9 113 10 106
dk17 2 3 32 8 14 3 14 3 15 37 13 34 12 37 12 38
ex2 2 2 72 19 16 3 14 3 7 50 8 47 7 46 7 43
ex3 2 2 36 10 9 2 9 2 6 26 6 29 6 23 6 23
ex4 6 9 21 14 16 3 16 3 13 33 13 32 14 35 13 34

Keyb 7 2 170 19 23 4 23 4 12 67 13 74 12 73 11 73
lion9 2 1 11 4 7 1 7 1 5 22 5 22 5 18 5 18
Mc 3 5 10 4 7 1 7 1 7 11 7 12 7 9 7 9
s8 4 1 20 5 7 1 7 1 5 20 5 21 5 26 5 26

s820 18 19 250 48 38 7 38 7 24 125 24 121 27 95 27 98
s832 18 19 245 25 38 7 38 7 24 125 24 121 29 106 27 98
s1488 8 19 251 48 61 12 59 12 26 270 26 273 30 232 31 231

 260 255 155 876 152 878 163 813 161 797

Figure 11 presents a comparison of synthesis experiments carried out using commercial tools.
It was assumed that the results obtained in synthesis using commercial tools without an initial

multilevel optimization act as a reference point, i.e., they correspond to the value 100% on the graph.

(Combinational circuits) (FSM)

Figure 11. A synthetic comparison of the experimental results carried out using commercial tools.

Analysis of the data presented in Figure 11 indicates that initial multilevel optimization
improved the synthesis results. The situation is the same for both combinational circuits and FSMs. It
should be mentioned that the advantages for FSMs are rather limited (2%). However, it should also
be emphasized that the methods of multilevel optimization could be more advantageous if the
process of technology mapping was integrated with a commercial tool. Multilevel optimization
carried out without a commercial tool is not able to fully use the potential of developed methods.

0%

20%

40%

60%

80%

100%

MAX3000 9500XL CoolRunner

Firmware synthesis

0%

20%

40%

60%

80%

100%

MAX3000 9500XL CoolRunner

Firmware synthesis Proposed approach

Figure 11. A synthetic comparison of the experimental results carried out using commercial tools.

Analysis of the data presented in Figure 11 indicates that initial multilevel optimization improved
the synthesis results. The situation is the same for both combinational circuits and FSMs. It should
be mentioned that the advantages for FSMs are rather limited (2%). However, it should also be
emphasized that the methods of multilevel optimization could be more advantageous if the process
of technology mapping was integrated with a commercial tool. Multilevel optimization carried out
without a commercial tool is not able to fully use the potential of developed methods. The results
included in Tables 1 and 2 best illustrate this situation. The proposed method of multilevel optimization
reduced a higher number of blocks in combinational circuits (28%) than in the case of sequential circuits
(16%). It is clearly observed that in the case of synthesis in FSMs, their potential is more limited than in
the case of technology mapping using commercial tools. In the second case, the number of macrocells
was reduced at 2%.

Mathematics 2019, 7, 1171 14 of 17

6. Discussions

The paper discusses a method of multilevel optimization that enables representation of a circuit in
a multilevel form of the set of PAL-based blocks. In the case of combinational circuits, the set includes
the blocks that have k-terms attached to the sum. In the case of sequential circuits, an output of the OR
gate is additionally attached to the DFF.

The relatively low number of terms included in PAL-based logic blocks makes their use a key
synthesis problem. The paper presents multilevel optimization that is based on an original multioutput
representation and offers the possibility of limiting the number of PAL-based logic blocks. This result is
possible because this process simultaneously addresses implicants that are common resources of several
functions. Creation of the sets of PAL-based logic blocks is carried out in the process of transforming
either a graph of outputs or a graph of excitations and outputs.

The main advantage of the proposed method of circuit synthesis using a graph of excitations and
outputs is the possibility of full use of logic resources of PAL blocks. In the first stage of the synthesis
process, the logical functions implemented are mapped in the form of a PAL block network. This type
of approach is an original way of including the specificity of the structure in the initial synthesis process.
Immediately at the beginning, we assume that we will use a device that contains strictly defined logical
resources characterized by a suitable PAL logic block containing a characteristic number of terms. As a
result of the initial mapping of logic functions in the form of a PAL block network, it turns out that the
blocks used contain unused terms. This type of situation is typical for most known synthesis methods,
which due to their universality are not able to effectively use the resources of programmable devices.
The optimization proposed in the article goes further because its goal is even more economical use
of resources. The analysis of the block network described by the graph of excitations and outputs
creates a chance to modify the obtained form of logical expressions, the purpose of which is to match
it with the free resources of the pre-obtained PAL block network. The strategies for splitting and
merging the nodes are focused on the use of free terms in individual blocks. The consequence of
using free terms is to minimize the blocks that form the resulting logical network. The experiments
presented in the previous section carried out on simple circuits show the effectiveness of the proposed
approach. Analysis of the results of the experiments showed that it is particularly important that
you can propose a description of the circuit that is the result of the proposed method in the hardware
description languages, and then perform the final effects of technology mapping in company tools
to obtain better results. This makes it possible to use the developed methods in engineering practice
related to the construction of very effective in terms of area computing and control systems used in
cyber physical systems.

7. Future Work

The experimental results clearly indicate that the proposed method of technology mapping is
efficient in the way that it uses the area of a programmable structure. A side effect is the expansion of
the number of logic levels, which might have a disadvantageous influence on the dynamic features
of the solutions. Based on the presented results, situations exist in which the method of technology
mapping produces worse results than two-level synthesis. However, no barrier exists to choosing a
better solution after carrying out the synthesis using two methods. It is also worth considering that the
calculation complexity of the proposed algorithms is comparable to that of the method of technology
mapping based on two-level minimization.

The above conclusions encourage further work, but also show the weaknesses of our method.
Unfortunately, it does not always lead to better solutions, which would require synthesis by various
methods, and after analyzing the result, choosing a better solution. This type of approach is sometimes
used, but for the synthesis of complex circuits it is quite tedious. Another disadvantage of the proposed
circuit implementation is the higher number of logic levels, which often leads to a slight deterioration
of the dynamic properties of the solutions obtained in comparison to alternative methods. The above
disadvantages and limitations of the proposed method indicate the direction of further work.

Mathematics 2019, 7, 1171 15 of 17

First, we intend to develop a criterion that will allow you to decide on the method of technology
mapping of the analyzed functions at the initial stage of the synthesis. It seems that this is possible,
because knowing the result of two-level minimization can predict which of the technology mapping
methods will lead to more efficient mapping.

The second direction of work will be the search for technology mappings in which minimizing
the area goes hand in hand with minimizing the number of logical levels. One idea that could lead
to further optimization is the idea of using three-state output buffers in the process of technology
mapping. Such buffers are commonly found in the output cells of programmable devices and are
very often unused. The concept of using three-state buffers has proven itself in the implementation
of combinational circuits implemented in older programmable devices families. It is difficult to say
whether it will work out what needs to be checked, also analyzing the issues of power consumption of
the solutions obtained.

All planned works are related to the optimization of CPS computing and control systems
implemented in programmable devices. They concern the lowest layer of CPS, i.e., the physical layer.
In addition, we are considering focusing our research on specific CPS applications that could be
effectively implemented in programmable devices.

These conclusions show that an extremely important element of CPS synthesis is appropriate
technological mapping focused on the system implementing the function of the CPS physical layer.

Author Contributions: Conceptualization, M.K. and D.K.; methodology, M.K. and D.K.; software, M.K. and D.K.;
validation, M.K. and D.K.; formal analysis, M.K. and D.K.; investigation, M.K. and D.K.; resources, M.K. and D.K.;
data curation, M.K. and D.K.; writing—original draft preparation, M.K. and D.K.; writing—review and editing,
M.K. and D.K.; visualization, M.K. and D.K.; supervision, M.K. and D.K.; project administration, M.K. and D.K.;
funding acquisition, M.K. and D.K.

Funding: The study was partially supported by the Polish Ministry of Science and Higher Education.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wiśniewski, R.; Wiśniewska, M.; Jarnut, M. C-exact Hypergraphs in Concurrency and Sequentiality Analyses
of Cyber-Physical Systems Specified by Safe Petri Nets. IEEE Access 2019, 7, 13510–13522.

2. Wisniewski, R.; Bazydło, G.; Szcześniak, P.; Grobelna, I.; Wojnakowski, M. Design and Verification of
Cyber-Physical Systems Specified by Petri Nets—A Case Study of a Direct Matrix Converter. Mathematics
2019, 7, 812. [CrossRef]

3. Wisniewski, R.; Bazydlo, G.; Szczesniak, P.; Wojnakowski, M. Petri Net-Based Specification of Cyber-Physical
Systems Oriented to Control Direct Matrix Converters with Space Vector Modulation. IEEE Access 2019, 7,
23407–23420. [CrossRef]

4. Ziebinski, A.; Bregulla, M.; Fojcik, M.; Klak, S. Monitoring and Controlling Speed for an Autonomous
Mobile Platform Based on the Hall Sensor. In Proceedings of the 9th International Computational
Collective Intelligence Conference ICCCI 2017, Nicosia, Cyprus, 27–29 September 2017; Nguyen, N.T.,
Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G., Eds.; Springer International Publishing:
Cham, Switzerland, 2017. Part II. pp. 249–259.

5. Ziebinski, A.; Swierc, S. Soft Core Processor Generated Based on the Machine Code of the Application.
J. Circuitssystems Comput. 2016, 25. [CrossRef]

6. Jozwiak, L. Embedded Computing Technology for Highly-demanding Cyber-physical Systems.
IFAC-PapersOnLine 2015, 48, 19–30. [CrossRef]

7. Opara, A.; Kubica, M.; Kania, D. Methods of Improving Time Efficiency of Decomposition Dedicated at FPGA
Structures and Using BDD in the Process of Cyber-Physical Synthesis. IEEE Access 2019, 7, 20619–20631.
[CrossRef]

8. Kania, D.; Kulisz, J. A Technology Mapping of FSMs Based on a Graph of Excitations and Outputs. IEEE
Access 2017, 7, 16123–16131.

http://dx.doi.org/10.3390/math7090812
http://dx.doi.org/10.1109/ACCESS.2019.2899316
http://dx.doi.org/10.1142/S0218126616500298
http://dx.doi.org/10.1016/j.ifacol.2015.07.002
http://dx.doi.org/10.1109/ACCESS.2019.2898230

Mathematics 2019, 7, 1171 16 of 17

9. Kaviani, A.; Brown, S. Hybrid FPGA architecture. In Proceedings of the 1996 ACM Fourth International
Symposium on Field-Programmable Gate Arrays, ser.FPGA’96, Monterey, CA, USA, 11–13 February 1996;
ACM: New York, NY, USA, 1996; pp. 3–9.

10. Nadjarbashi, M.; Fakhraie, S.M.; Kaviani, A. On routing structure for the hybrid field programmable
architecture. ICM 2000. In Proceedings of the 12th International Conference on Microelectronics (IEEE Cat.
No.00EX453), Tehran, Iran, 31 October–2 November 2000; pp. 259–264.

11. Mielcarek, K.; Barkalov, A.; Titarenko, L. Designing HFPGA-based Mealy FSMs with transformation of
output functions. In Proceedings of the 2017 MIXDES—24th International Conference "Mixed Design of
Integrated Circuits and Systems 2017, Bydgoszcz, Poland, 22–24 June 2017; pp. 250–253.

12. Barkalov, A.; Titarenko, L.; Bieganowski, J. Designing HFPGA-based FSMs with counters. In Proceedings of
the 2017 MIXDES—24th International Conference "Mixed Design of Integrated Circuits and Systems 2017,
Bydgoszcz, Poland, 22–24 June 2017; pp. 254–257.

13. Chen, S.-L.; Hwang, T.; Liu, C. A technology mapping algorithm for CPLD architectures. In Proceedings of
the 2002 IEEE International Conference on Field-Programmable Technology 2002 (FPT), Proceedings FPT-02
2003, Hong Kong, China, 16–18 December 2001; pp. 204–210.

14. Ciesielski, M.J.; Yang, S. PLADE: A two-stage PLA decomposition. IEEE Trans. Comput. -Aided Des. 1992, 11,
943–954. [CrossRef]

15. Yan, K. Practical logic synthesis for CPLDs and FPGAs with PLA-style logic blocks. In Proceedings of the
2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, Glyfada, Greece, 28–30 November
2001; pp. 231–234.

16. Anderson, J.H.; Brown, S.D. Technology mapping for large complex PLDs. In Proceedings of the Design
Automation Conference, DAC'98, Moscone Center, San Francisco, CA, USA, 15–19 January 1998; pp. 698–703.

17. Kania, D.; Kulisz, J. Logic synthesis for PAL-based CPLD-s based on two-stage decomposition. J. Syst. Softw.
2007, 80, 1129–1141. [CrossRef]

18. Opara, A.; Kania, D. Decomposition-based logic synthesis for PAL-based CPLDs. Int. J. Appl. Math. Comput.
Sci. 2010, 20, 367–384. [CrossRef]

19. Kania, D.; Kubica, M. Technology mapping based on modified graph of outputs. In Proceedings of the AIP
Conference, Athens, Greece, 20–23 March 2015; Volume 1702.

20. Kania, D. A New Approach to Logic Synthesis of Multi-Output Boolean Functions on PAL-based CPLDs.
In Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI'07, Stresa, Lago Maggiore, Italy,
11–13 March 2007; pp. 152–155.

21. Kania, D. Design of Digital Systems and Devices, Chapter 6. In Efficient Technology Mapping Method for
PAL-Based Devices; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 79, pp. 145–164.

22. Czerwiński, R.; Kania, D. Finite State Machine Logic Synthesis for CPLDs; Lecture Notes in Electrical Engineering;
Springer: Berlin/Heidelberg, Germany, 2013; Volume 231, 172p.

23. Sasao, T. FPGA Design by Generalized Functional Decomposition in Logic Synthesis and Optimization; Kluwer
Academic Publishers: Berlin, Germany, 1993.

24. Baccheta, P.; Daldoss, L.; Sciuto, D.; Silvano, C. Lower-Power State Assignment Techniques for Finite
State Machines. In Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva,
Switzerland, 28–31 May 2000; Volume 2, pp. 641–644.

25. Kajstura, K.; Kania, D. Low Power Synthesis of Finite State Machines State Assignment Decomposition
Algorithm. J. Circuits Syst. Comput. 2018, 27. [CrossRef]

26. Barkalov, A.; Titarenko, L.; Mielcarek, K. Hardware Reduction for Lut–Based Mealy FSMs. Int. J. Appl. Math.
Comput. Sci. 2018, 28, 595–607. [CrossRef]

27. Venkataraman, G.; Reddy, S.M.; Pomeranz, I. GALLOP: Genetic Algorithm Based Low Power FSM Synthesis
by Simultaneous Partitioning and State Assignment. In Proceedings of the 16th International Conference on
VLSI Design, New Delhi, India, 4–8 January 2003; pp. 533–538.

28. Sentovich, E.M.; Singh, K.L.; Lavagno, L.; Moon, R.; Murgai, A.; Saldanha, A.; Savoj, H.; Stephan, P.R.;
Brayton, R.K.; Sangiovanni-Vincentelli, A.L. SIS: A System for Sequential Circuit Synthesis; Technical Report
UCB/ERL M92/41; University of California: Berkeley, CA, USA, 1992.

29. Intel. MAX 3000A Programmable Logic Device Family Data Sheet; Intel: Santa Clara, CA, USA, 2006.

http://dx.doi.org/10.1109/43.149766
http://dx.doi.org/10.1016/j.jss.2006.10.013
http://dx.doi.org/10.2478/v10006-010-0027-1
http://dx.doi.org/10.1142/S021812661850041X
http://dx.doi.org/10.2478/amcs-2018-0046

Mathematics 2019, 7, 1171 17 of 17

30. Xilinx. XC9500XL High-Performance CPLD Family Data Sheet; Xilinx: San Jose, CA, USA, 2009.
31. Xilinx. CoolRunner-II CPLD Family; Xilinx: San Jose, CA, USA, 2008.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Graph of Outputs in the Process of Synthesis of Combinational Circuits
	Optimization of the Mapping Process—Modification of a Graph of Outputs
	Graph of Excitations-Outputs in a Synthesis Process of Sequential Circuits
	Experimental Results
	Discussions
	Future Work
	References

