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Abstract: The paper focuses on the methodology of designing a cyber physical systems (CPS) physical
layer using programmable devices. The CPS physical layer can be implemented in programmable
devices, which leads to a reduction in their costs and increases their versatility. One of the groups
of programmable devices are complex programmable logic devices (CPLDs), which are great for
energy-saving, low-cost implementations but requiring flexibility. It becomes necessary to develop
mathematical CPS design methods focused on CPLD. This paper presents an original technology
mapping method for digital circuits in programmable array logic (PAL)-based CPLDs. The idea is
associated with the process of multilevel optimization of circuits dedicated to minimization of the
area of a final solution. In the technology mapping process, the method of a multioutput function
was used in the graph of outputs form. This method is well known from previous papers and
proposes optimization of a basic form of the graph of outputs to enable better use of the resources of
a programmable structure. The possibilities for the graph of outputs were expanded in the form of
sequential circuits. This work presents a new form of a graph that describes the process of mapping
and is known as the graph of excitations and outputs. This graph enables effective technology
mapping of sequential circuits. The paper presents a series of experiments that prove the efficiency
of the proposed methods for technology mapping. Experiments were conducted for various sizes
of PAL-based logic blocks and commercially available CPLDs. The presented results indicate the
possibility of more effective implementation of the CPS physical layer.
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1. Introduction

The key implementation of cyber physical systems (CPS) is the proper implementation of the
physical layer. This layer is responsible for the implementation of key functions of CPS systems. In the
simplest case, this layer performs the functions of communication, measurement and usually provides
preliminary processing of obtained data (filtration, approximation, etc.). According to the authors,
the issue of designing the physical layer has not been sufficiently discussed in the work on cyber physical
systems. As a rule, this layer is implemented in embedded systems. This approach has significant
limitations such as: the architecture imposed by the manufacturer, which is not always adapted to the
requirements of cyber physical systems, limitations resulting from the speed of operation, or in some
cases a significant cost of implementation. An alternative to this approach is the implementation of the
physical layer using programmable logic devices. This enables the implementation of more complex
functionalities, and above all, provides flexibility without degrading the dynamic properties of the
solutions obtained. In general, programmable devices are closely related to CPS, as exemplified by
Petri nets [1–3]. This layer should be characterized by considerable flexibility of some properties [4]
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including the implementation of some tasks in a software manner [5]. In some cases, solutions based
on programmable logic devices can only provide adequate flexibility.

Programmable logic devices can be divided into two groups: FPGA (field-programmable gate
array) and CPLD (complex programmable logic device).

CPLDs belong to an important group of programmable circuits. CPLDs are not as popular as
FPGAs but they have certain features that make them competitive with other circuits. CPLD devices
are a good alternative to FPGA when programmable logic is required, but the implemented circuit is
not very large. In this situation, CPLD-based solutions can be much cheaper. In addition, CPLD devices
significantly reduce power consumption compared to FPGA devices. Both of these features make CPS
(cyber physical systems) a natural space for using CPLD devices, in which separate control blocks
are implemented in individual CPLD devices. The authors in the article focus on the implementation
of the physical layer in CPLD devices. Therefore, we can talk about CPS synthesis [6,7] focused on
programmable systems. In the case of CPLD devices, such synthesis was shown in [8], but it only
applied to combination circuits without optimization elements. The main disadvantage of CPLDs
is the much smaller number of logic resources compared to FPGAs. Restrictions in this field make
all optimization algorithms that reduce the number of necessary logic blocks extremely valuable.
The above fact has become the motivation to deal with optimization which is the essence of the research
presented in the article. In terms of their architecture, CPLDs use the PIA (programmable interconnect
array) matrix to enable better control of dynamic features in implemented projects compared with
those of FPGAs.

The root of CPLDs is related to PAL-based (programmable array logic) logic cells, which perform
functions in the form of the sum of k-products. The structure of the CPLD is shown in Figure 1. It should
be mentioned that the first attempts to combine the best features of both circuits, FPGA and CPLD,
appeared in the second half of the 1990s, when the idea of hyper-FPGA circuits was proposed [9,10].
The structure of the circuits includes LUT (look-up table) logic blocks associated with FPGA and PAL
logic cells associated with CPLD. It turns out that the problem of logic synthesis dedicated to circuits
including PAL-based cells remains to this day (it is still possible to limit the number of necessary
resources in the implementation process) [11,12].
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Figure 1. Structure of complex programmable logic devices (CPLD) devices. 
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The synthesis process, which is implemented in well-known tools that support the process of
design of digital circuits in CPLDs, begins with two-level minimization. The next stage of the synthesis
process includes carrying out separate single output functions based on logic blocks that appear in the
structure. This approach is logically connected with the inner architecture of CPLDs but introduces
limitations into the process of multilevel circuit optimization. The reason for this problem lies in the
method of logic synthesis in which the logic resources of a CPLD structure are not considered in the
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first stages. This synthesis strategy obviously has advantages such as easy solution transfer. However,
the main drawback is inefficient use of terms included in the CPLD. Thus, it is necessary to search for
synthesis methods that can enable effective implementation of a logic net in the form of the elements
available in a given family of CPLDs. Only this approach is able to ensure efficient use of the resources
in a programmable structure.

A series of valuable papers have presented various synthesis methods dedicated to optimization
of the area of PAL structures. However, these studies were not implemented in commercial tools that
support design of circuits and that mainly use the elements of multilevel optimization, synthesis of
multivalue circuits combined with coding inputs and outputs, and the strategies of an appropriate
partition of PAL matrixes based on decomposition [13–15]. The essence of the synthesis is based on
appropriate partition of the design and matching of separate extracts to the structure of logic blocks
included in the CPLD. A classic synthesis method dedicated to PAL-based CPLD begins with two-level
minimization, and it is usually a starting point in the process of technology-based optimization.
Academic algorithms for technology-dependent decomposition oriented to CPLD lead to very efficient
solutions [16,17], but it can be seen in these works that there is space to further improve the efficiency
of the solutions obtained. However, the problem is connected to its substantial calculating complexity.
The solution might be a logic function description in the form of BDD (binary decision diagram) [18],
or alternatively, the methods of multilevel optimization might improve the results.

The main goal of this paper is to present an original method for technology mapping of circuits in
CPLD structures using a new form of the graphs. The original elements of the work are: application of
optimization methods for output graphs described in [19] to optimize the new form of graphs (graph
of excitations and outputs) presented in the paper [8] and the results of experiments (synthesis in
commercial tools) showing the effectiveness of the implementation of the considered solutions in CPS.

The proposed logic synthesis method is dedicated to the most popular CPLDs, including PAL-based
cells. The proposed method is a generalization of previously developed synthesis algorithms focused
on CPLD devices [20,21]. In [20], a concept was proposed that described multioutput combination
circuits using an output graph. The theoretical basis for optimization of multilevel combinational
circuits is based on the realization of shared implicants associated with each node of the graph of
outputs with proof of the theorem on the selection of nodes of the graph of output and is shown in [21].
These issues are presented in a summary form in Section 2. After introducing the basic concepts,
a simple example presents the essence of the basic concept of combinational circuit optimization using
the graph of outputs.

Section 3 proposes a new method of optimization of a graph of outputs that reduces the resources
used. The essence of the proposed optimization lies in matching the number of implicants to the
number of terms contained in the PAL logic cells. This approach allows for better use of programmable
structure resources and thus minimization of area in the target circuit. The idea of a technology
mapping method for combinational circuits was extended to sequential circuits. Section 4 presents the
modification of a graph of outputs dedicated to synthesis of sequential circuits and is presented as
a new form of a graph of outputs, the so-called graph of excitations and outputs, that describes the
process of mapping of sequential circuits in CPLD. The proposed method of describing a multilevel
circuit using the graph of excitations and outputs is universal. This approach forms the basis of a
multilevel circuit optimization method in which its combination and sequential parts are optimized
at the same time. This type of approach creates the possibility of further minimizing the area of the
entire circuit.

The rest of the paper is organized as follows. Section 2 contains the description of graph of outputs
for combinational circuits. Section 3 contains the methods for optimizing this graph. Section 4 contains
the description of the graph of excitations and outputs for sequential circuits. Section 5 contains the
results of the experiments. Section 6 contains the conclusions.
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2. Graph of Outputs in the Process of Synthesis of Combinational Circuits

A characteristic feature of PAL-based cells is that they enable logic functions to be carried out in
the form of the sum of terms [22]. The number of terms included in the PAL-based block is limited and
is represented by the parameter k. The value of the parameter k is usually low. However, the CPLDs
contain mechanisms that are flexible in terms of the choice of terms attached to the OR gate (hardware
expanders). The process of carrying out a multioutput function in CPLDs consists of two stages.
The first stage carries out minimization of a multioutput function that results in the set of implicants
of separate functions belonging to a multioutput function. The second stage is based on mapping of
functions in PAL-based cells including a given number of terms. The problem of minimization of a
multioutput function is solved [23]. A series of algorithms offers the ability to obtain excellent synthesis
results. The problem of technology mapping is much more complicated. The original mapping methods
(in the literature, known as the classical approach) did not co-share PAL-based blocks between logic
structures associated with separate functions included in a multioutput function [22]. This solution is
inefficient with respect to the number of PAL-based blocks. Thus, it was necessary to create techniques
to use this co-sharing. One of the solutions known from literature is the use of the graph of outputs Go
< Y, U> for the mapping of combinational circuits [17,21].

The nodes of a graph of outputs correspond to separate values of an output vector y. The vector
represents values of separate functions belonging to a multioutput function. Parameter ∆y is ascribed
to each node and determines the number of implicants for which the same output vector y occurs.
Number 1 in the vector y is a row of a node associated with a given vector µ(∆y). For example, if ∆101,
then µ(∆y) = 2. The graph of outputs was arranged in a laminar way such that the nodes in a given
level are in the same row. Separate levels were arranged in an ascending order, which depends on
µ(∆y), such that the ‘lowest level’ corresponds to µ(∆y) = 1. Separate nodes placed on the next levels are
combined with edges. Two nodes, described as ∆ys and ∆yr, respectively, are combined with the edge if
the Hamming distance between ys and yr is 1. The nodes for which µ(∆y) = 1 are only associated with
a single i-function belonging to m–multioutput function, and thus, parameter ∆i

m might be ascribed to
them. The value of ∆i

m is the sum of parameters ∆y included in the nodes placed on paths that lead
from the analyzed node in the first row (µ(∆y) = 1) to the node placed on the highest row.

It should be mentioned that a graph of outputs might be reduced by removing the nodes for
which ∆y = 0. A multioutput function, the graph of outputs, and a reduced graph of outputs are shown
in Figure 2. Analysis of the graph of Figure 2c shows that, for example, ∆2

3 = ∆100 + ∆101 + ∆111 = 1 +

2 + 3 = 6. A formal description of the graph can be found in previous works [21].
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where H(x) = 1 when x ≥ 0 and H(x) = 0 when x < 0.
Let us consider a diagram from Figure 2c. Assuming that k = 3, the number of necessary PAL-based

blocks needed to carry out a separate function is seven.
Technology mapping of a multioutput function considers the sharing of PAL-based blocks between

separate logic structures associated with the functions included in a multioutput function. This process
is applied to the graphs of outputs by replacing chosen nodes with the nodes representing feedback [21].
The essence of this approach is explained in the following example.
Example:

Let us consider the function carried out on PAL-based blocks k = 3, as presented in Figure 2.
The analysis of the graph from Figure 3a starts from the node in the highest row for which ∆111 = 3.
Because the implicants associated with this node, correspond to all multioutput functions, they can be
carried out in a separate block shared for all three functions. This node is removed from the graph.
Whereas, the node that represents a feedback is added to the nodes to which were led the edges from
the removed node. The value of the cofactor ∆FB is 1 because the set of implicants from a shared
block is replaced with a single line that leads to the structure associated with the nodes in lower rows.
The ∆FB represents the use of one term in the PAL logic block that is necessary to feed the signal from
the CPLD output to the next PAL-type logic block. The multi-input implicant, used in one-bit feedback
from the output of one block to the input of another, can be used to create a multilevel network logic
block PAL.

The values of the cofactors ∆i
m are modified. As a result, the graph presented in Figure 3b is

created. In the subsequent stage, the node in the second row for y = 101 is analyzed, and it is shown in
Figure 3b. Carrying out the implicants associated with this node in a shared block for the functions f0
and f2 results in modification of the graph to the form shown in Figure 3c. Because this graph has
no nodes common for several functions, the structures associated with the functions f0 and f2 are
carried out separately. Finally, a logic structure that consists of 4 PAL-based blocks was obtained and is
presented in Figure 3d. It can be seen that technology mapping considers sharing of PAL-based blocks
using a graph of outputs. As a result, the obtained structure was reduced by three blocks compared
with the basic number of blocks (1).
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The most accurate description of an algorithm that carries out a multioutput function using a
graph of outputs and a mathematical description can be found in previous studies [17,21].
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3. Optimization of the Mapping Process—Modification of a Graph of Outputs

It is possible to optimize the process of technology mapping of combinational circuits in CPLDs.
The essence of optimization is based on better usage of the available resources of PAL-based blocks that
are associated with separate nodes of the graph of outputs. The aim of optimization is development of
unused terms, which is possible by modifying the set of implicants associated with a given node of the
graph of outputs. Let us assume that the node of a graph of outputs is associated with four implicants
of the function y (∆y = 4). Let us also presume that it must be mapped in PAL-based blocks k = 3. Thus,
the structure shown in Figure 4 is obtained.
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Figure 4. Technology mapping of the node ∆y = 4 in PAL-based blocks k = 3.

For this case, shown in Figure 4, it is necessary to use two PAL-based blocks, but the terms of
one of them are not fully used. The structure contains a single unused term that can be developed
by modifying other implicants. A highly advantageous solution is to eliminate one of the implicants
(∆y = 3), which might result in reducing one block of this structure. An excess implicant is one whose
removal results in reducing the structure.

To conduct the process of optimization, it is necessary to describe separate nodes of a graph of
outputs using an additional set of parameters. Let y be the number of excessive node’s implicants
marked as ay and let Ly be the number of unused terms of a logic structure associated with this
node. In addition, the number of feedback items, which originate from the structures associated with
the nodes of higher rows, are marked as Ny. The process of optimization is passed on ‘carrying’
implicants between nodes in a manner designed to reduce the number of PAL-based blocks. Thus, it is
necessary to analyze an output vector of an implicant. Separate output vectors were placed next to the
appropriate nodes.

We can distinguish two basic techniques of relocating implicants in a graph of outputs that are the
effect of either merging or splitting an output vector.

A merging method is based on an OR function for bits of output vectors of the implicants that
underwent merging. As a result, we obtain the vector associated with the node in the higher row
compared with the rows of vectors that underwent merging. The implicants that underwent merging
are removed from the graphs. The implicant that is the result of merging is placed next to an appropriate
node in a graph of outputs. The process of merging might involve only those implicants that have
accurate input components, i.e., the same or accurate occurrences of the state ‘-’ at given positions.
Merging leads to the relocation of implicants towards the nodes in higher rows.

The method of splitting is based on the partition of an output vector into several output vectors.
After the OR operation, we obtain a vector before the partition. The implicant that underwent splitting
is deleted from a graph of outputs. The implicants that are the result of splitting are placed next to
the appropriate nodes in the graph. The implicants obtained as the result of splitting have the same
output vector as the implicant that underwent splitting. The splitting operation leads to relocation of
implicants towards the nodes in lower rows.

The idea of modifying a graph of outputs using the techniques of splitting and merging is
presented in Figures 5–7. A multioutput function is described using a graph of outputs in the form
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shown in Figure 5a (in addition, a description in the form of a pla file is placed). Technology mapping
creates the structure that uses eight PAL-based blocks k = 3 and is presented on Figure 5b. The analysis
of the graph from Figure 5a starts with the node in the highest (the third) row. It is observed that
cofactors describing the use of terms of a logic structure associated with this node are equal to zero
(a111 = 0, L111 = 0). Thus, the terms of a PAL-based block are fully used, and no excessive implicants
exist. In the subsequent stage, the nodes in the second row are analyzed. The node associated with the
vector y = 011 is described as L011 = 1, meaning that that there is one unused term in the structure
associated with this node. Because the nodes in lower rows are attached to an analyzed node and
have the same input vector (1010), it is possible to carry out the process of merging. An excessive
redundant implicant (a010 = 1) exists for the node y = 010, and its removal might lead to reduction of
the structure associated with this node. The process of merging leads to a reduction in the number of
PAL-based blocks.
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The process of merging modifies the graph of outputs, the description of pla, and the obtained
logic structure, as shown in Figure 6. As presented in Figure 6b, the number of necessary PAL-based
blocks was reduced to seven. Based on analysis of the node in the second row (y = 101), it is associated
with an excessive implicant (a101 = 1). Figure 6a shows that the nodes in the first row (µ(∆y) = 1),
which are attached to the analyzed node (y = 100, y = 001), are also associated with logic structures that
have unused terms. Thus, it is possible to apply the process of splitting that leads to reduction of a
logic structure.
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The process of splitting leads to modification of the graph of outputs, the description of pla, and
the obtained logic structure, as shown in Figure 7.
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The process of splitting reduced one block in the obtained structure. All nodes of the graph
presented in Figure 7a are marked with the parameters ay and Ly, for which the value is zero. In this
situation, the process of optimization should be completed. The optimization of mapping of three
exemplary multioutput functions reduced the number of PAL-based blocks from eight (Figure 5) to
six (Figure 7), a reduction of 25%. It is worth mentioning that for the node y = 011, the implicants
have such input vectors that might undergo merging. As a result of merging, two implicants 1110
and 1010, which have input vectors, can be replaced with a single implicant that has an input vector
1–10, and it influences the parameters associated with the analyzed node. Additional examples on the
modification of graphs of outputs leading to optimization of technology mapping can be found in
previous work [19].

4. Graph of Excitations-Outputs in a Synthesis Process of Sequential Circuits

The key element of an FSM automaton is a memory block (D-FF) associated with the inner states
of an automaton. In addition, FSM includes a combinational component that maps two multioutput
functions. The first function is known as an excitation function δ: BN+K

→ BK (where N is the number
of FSM inputs, K is the number of state bits, B = {0,1}), and it is responsible for the process of changing
states inside FSM. The second function is known as an output function λ: BN+K

→ BM (where M is
the number of FSM outputs), and it is responsible for creating an output FSM. It turns out that both
multioutput functions can be presented at the same time by creating a new multioutput function δ+λ:
BN+K

→ BK+M, as shown in Figure 8.
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Figure 8. A classic scheme of FSM.

To describe a multioutput function δ + λ, a graph of outputs can be used that has been slightly
changed. It is necessary to introduce two types of nodes: combinational nodes (denoted by circles on
the graph) and sequential nodes (rectangles). Sequential nodes are placed in the paths associated with
the excitation functions of particular D flip-flops. This newly created form of a graph is known as the
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graph of excitations and outputs [8]. The description of a multioutput function in the form of a pla file
and a graph of excitations and outputs is presented in Figure 9a (without the nodes ∆y = 0). Obviously,
the description of a multioutput function δ + λ in this form requires new coding of the inner states
in FSM.

A graph of excitations and outputs might undergo the process of optimization using the methods
described in Section 3. As shown in Figure 9, the original graph from Figure 9a underwent optimization
such that two nodes (y = 1111, y = 1010) were subjected to the process of splitting of an output vector.
This modification reduced the graph from Figure 9a and the logic structure from Figure 9b compared
with the structure from Figure 9a. In general, synthesis of FSM is widely analyzed in many scientific
papers [22,24–27]. It should be noted that the proposed optimization integrated with technology
mapping might be an essential extension of a series of coding methods of states in FSM and could lead
to limitations of the used logic resources of the given CPLDs or minimization of power consumption.
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optimization; (b) after optimization.

5. Experimental Results

A series of experiments were conducted to compare the efficiency of the method for technology
mapping of circuits in CPLDs. We focused on both combinational and sequential circuits.
The experiments were conducted on well-known benchmarks [28]. The results of the comparison are
illustrated in Tables 1–4.

An appropriate research flowchart showing the essence of conducting experiments is shown in
Figure 10. In addition, this figure presents an outline of the graph analysis algorithm. Depending on
the adopted strategy, the process of splitting or merging nodes may play a dominant role. This leads to
the appropriate modification of the graph together with the possibility of removing the considered
node. The last element of the algorithm is to create a description of the set of functions that can be
further synthesized on commercial tools.
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Table 1 includes the synthesis results of the chosen combinational circuits using two methods:
the method without multilevel optimization (two-level synthesis) and the method using a graph of
outputs in technology mapping (proposed approach). The table consists of three parts. The first part
includes the features of a benchmark, i.e., its name (NAME), the number of inputs (IN), the number
of outputs (OUT) and the number of product terms (p). The second part includes the results of logic
synthesis without multilevel optimization. This method is based on two-level optimization and is
described in a shortened form (two-level synthesis). The third part of the table includes the results of
synthesis using the proposed method. Technology mapping is characterized by three parameters: the
number of used PAL-based blocks, which includes five terms (Block), the number of logic levels in the
longest path (Level), and the synthesis time (Time).

Table 1. A direct comparison of technology mapping methods for combinational benchmarks in
PAL-based logic blocks (k = 5).

Technology Mapping Oriented to PAL-Based Logic Block (k = 5)
Two-Level Synthesis Proposed Approach

NAME Number of
Inputs (IN)

Number of
Outputs
(OUT)

Number of
Product

Terms (p)
Block Level Time [ms] Block Level Time [ms]

5xp1 7 10 65 22 2 90 23 3 120
alu2 10 8 79 20 2 90 20 2 340
alu4 14 8 1028 159 4 620 148 6 730
b9 41 21 308 26 2 420 25 2 200
b12 15 9 431 14 2 60 16 3 100
Clip 9 5 167 38 3 160 36 4 160

duke2 22 29 86 60 2 270 66 3 570
rd73 7 3 127 36 3 140 32 4 130
rd84 8 4 255 72 4 270 67 6 520
Seq 41 35 1459 355 3 1690 165 7 1290

table3 14 14 175 139 3 610 96 6 640
table5 17 15 158 141 3 910 87 6 850

1082 33 5330 781 52 5650
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Analysis of the experimental results clearly indicates that the effect of multilevel optimization is
minimization of the number of blocks required to process the benchmarks. In the set of 12 benchmarks,
in eight cases (67%), the solution was obtained using a lower number of PAL-based blocks. In three
cases (5xp1, b12, duke2), use of a graph of outputs in the process of technology mapping did not lead
to a decrease in the number of used blocks. The total number of blocks, given in the last row in Table 1,
indicates that use of the proposed method reduced the number of blocks required to process all the
benchmarks at 28% (((1082 − 781)/1082) × 100%)).

The expansion of the number of logic levels is an unfavorable effect of reducing the number of logic
blocks. Unfortunately, multilevel optimization prolongs critical paths, which was observed in ten cases
(83%). In the other two cases (alu2, b9), the same number of logic levels was obtained. Considering
the total number of logic levels obtained for all analyzed benchmarks, the number is 56% higher
(((52 − 33)/33) × 100%) in multilevel optimization than in the method based on two-level synthesis.

It is worth emphasizing that multilevel optimization does not prolong synthesis time. The total
synthesis time for all analyzed benchmarks slightly differs at approximately 5%. It should also be
mentioned that in the largest circuits, the method of multilevel optimization limited the number of
logic blocks and was performed in a substantially shorter time than that using a classic attitude with
two-level minimization.

A similar comparison was conducted for sequential circuits. A combinational FSM approach,
including both a description of a transition block and an output block, underwent synthesis [8].
An estimated method of coding inner states was assumed, and in cases where this was not possible,
a natural binary code was used. In the process of multilevel optimization, a graph of excitations and
outputs was used. The first portion of Table 2 shows the column ‘s’ that includes the number of states
of a sequential automaton. The remainder of Table 2 is the same as Table 1. The columns named
‘Block’ include the total numbers of PAL-based blocks needed to carry out an appropriate FSM without
distinguishing between use of flip-flops or without them.

Table 2. A direct comparison of technology mapping methods for FSMs in PAL-based logic blocks
(k = 5).

Technology Mapping Oriented to PAL-Based Logic
Block (k = 5)

Two-Level Synthesis Proposed Approach

NAME IN OUT p s Block Level Time
[ms] Block Level Time

[ms]
dk16 2 3 108 27 45 3 200 39 4 240
dk17 2 3 32 8 14 2 60 16 2 120
ex2 2 2 72 19 18 2 70 21 4 130
ex3 2 2 36 10 9 2 50 10 2 80
ex4 6 9 21 14 16 2 70 18 2 150

Keyb 7 2 170 19 26 2 110 22 4 140
lion9 2 1 11 4 7 2 90 7 2 50
Mc 3 5 10 4 7 1 40 9 2 80
s8 4 1 20 5 8 2 50 7 3 60

s820 18 19 250 48 63 3 270 42 4 280
s832 18 19 245 25 49 3 210 42 4 230
s1488 8 19 251 48 117 4 470 78 6 610

412 34 1880 347 46 2420

In the set of analyzed FSMs, we found six cases (50%) for which technology mapping uses a lower
number of blocks. In five cases (dk17, ex2, ex3, ex4, mc), the use of the graphs of excitations and
outputs in technology mapping increased the number of used blocks. The total numbers of blocks
indicate that use of the proposed technology mapping method reduced the number of blocks needed
to carry out all the automatons at 16%.
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As in the case of combinational circuits, the expansion of the number of logic levels is a side effect
of multilevel optimization. Thus, it is necessary to decrease the maximum clock frequency in FSM.
Multilevel optimization means that FSM works slowly in eight cases (67%). In other cases, the same
number of logic levels was obtained.

In the case of FSMs, multilevel optimization prolongs the synthesis time. In the case of the largest
automatons (s822, s830), the synthesis time was slightly prolonged and was 4% and 10%, respectively.

Similar experiments were conducted using Quartus and ISE tools. This time, synthesis was
conducted using two methods. In the first case, synthesis was conducted in an appropriate system that
supports a synthesis process and uses a description of a circuit in the form of VHDL. In the second case,
a description of a structure in VHDL underwent synthesis using a commercial tool. VHDL was created
in a prototype programmable tool that performs the multilevel optimization process presented in this
paper. The process of optimization was carried out for PAL-based blocks, including five terms as
basic logic blocks in commercial circuits that have the same number of terms. In addition, the CPLDs
include various types of expanders that offer the possibility of further solutions in commercial tools.
The experiments were conducted using the same set of benchmarks for three families of CPLDs: the
MAX3000 [29] family, Altera company, and circuits from families 9500Xl [30] and CoolRunner II [31]
by Xilinx.

Table 3 includes the synthesis results of combinational circuits. Apart from the characteristic
features of benchmarks, we present the numbers of macrocells used to construct the circuits (MC).
The circuit from the Max300 family was given a usage percentage of MAX 3512 (%). The circuits by
Xilinx were given the number of terms used to carry out separate benchmarks (Pt). The parameters
included in Table 3 were read out from the results of the reports after synthesis in Quartus and ISE.

Table 3. Comparison of synthesis of combinational circuits in commercial tools (a description in a text).

Altera-Max3000 (3512) Xilinx-9500XL Xilinx–CoolRunner II

Quartus (VHDL)
Proposed
Approach

(k = 5)
ISE (VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)

NAME IN OUT P Macrocells
(MCs) % MC % MC Terms

(Pt) MC Pt MC Pt MC Pt

5xp1 7 10 65 17 3 17 3 19 50 11 46 13 47 13 51
alu2 10 8 79 15 3 15 3 11 41 12 37 9 49 9 42
alu4 14 8 1028 175 34 133 26 41 184 37 172 81 636 45 511
b9 41 21 308 24 5 24 5 23 52 26 50 21 56 21 56

b12 15 9 431 10 2 10 2 11 30 9 32 9 29 9 29
Clip 9 5 167 23 4 8 2 20 78 16 73 12 53 10 53

duke2 22 29 86 55 11 54 11 46 164 36 166 38 148 34 141
rd73 7 3 127 22 4 29 6 8 33 9 31 7 39 9 60
rd84 8 4 255 139 27 38 7 21 80 19 79 6 43 15 122
Seq 41 35 1459 267 52 224 44 147 663 105 400 184 1119 76 384

table3 14 14 175 152 30 102 20 64 371 65 373 64 446 37 307
table5 17 15 158 127 25 65 13 71 269 70 301 58 413 34 273

1026 719 482 2015 415 1760 502 3078 312 2029

While carrying out synthesis in Quartus, it was observed that an appropriate description of a
circuit, which is the effect of a multilevel optimization, made the results better. Considering the use
of macrocells, the result was better in seven cases (58%) compared with solutions in which synthesis
was performed by an original description of a circuit in VHDL. In one case (rd73), initial multilevel
optimization did not reduce the number of macrocells.

In the case of Xilinx devices, for the circuits from the 9500XL family, the proposed optimization
method limited the number of macrocells in eight cases (67%), and the others (33%) showed a slight
increase in the number of blocks. For CoolRunner II circuits, the initial multilevel optimization turned
out to be advantageous in six cases (50%). In other cases, either the number of blocks was the same
(3.3%) or it was increased (17%).

The same experiments were carried out for FSMs, and the results are illustrated in Table 4.
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In the case of FSMs, we observed smaller differences in CPLDs. For Quartus, in most cases,
the number of blocks, i.e., as the effect of initial multilevel optimization, was not limited. In two
cases (ex2, s1488), we observed a slight reduction in the number of macrocells. In the case of the ISE
system, the differences were unnoticeable. In most cases, we observed the use of the same number of
macrocells. The group of the analyzed FSM contains cases in which the number of macrocells was
limited or increased.

Table 4. Comparison of synthesis of FSMs in commercial tools (a description in a text).

Altera-Max3000 (3512) Xilinx-9500XL Xilinx–CoolRunner II

Quartus
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)

ISE
(VHDL)

Proposed
Approach

(k = 5)
NAME IN OUT P S MC % MC % MC Pt MC Pt MC Pi MC Pt

dk16 2 3 108 27 24 5 23 4 11 90 8 92 9 113 10 106
dk17 2 3 32 8 14 3 14 3 15 37 13 34 12 37 12 38
ex2 2 2 72 19 16 3 14 3 7 50 8 47 7 46 7 43
ex3 2 2 36 10 9 2 9 2 6 26 6 29 6 23 6 23
ex4 6 9 21 14 16 3 16 3 13 33 13 32 14 35 13 34

Keyb 7 2 170 19 23 4 23 4 12 67 13 74 12 73 11 73
lion9 2 1 11 4 7 1 7 1 5 22 5 22 5 18 5 18
Mc 3 5 10 4 7 1 7 1 7 11 7 12 7 9 7 9
s8 4 1 20 5 7 1 7 1 5 20 5 21 5 26 5 26

s820 18 19 250 48 38 7 38 7 24 125 24 121 27 95 27 98
s832 18 19 245 25 38 7 38 7 24 125 24 121 29 106 27 98

s1488 8 19 251 48 61 12 59 12 26 270 26 273 30 232 31 231
260 255 155 876 152 878 163 813 161 797

Figure 11 presents a comparison of synthesis experiments carried out using commercial tools.
It was assumed that the results obtained in synthesis using commercial tools without an initial

multilevel optimization act as a reference point, i.e., they correspond to the value 100% on the graph.
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Figure 11. A synthetic comparison of the experimental results carried out using commercial tools.

Analysis of the data presented in Figure 11 indicates that initial multilevel optimization improved
the synthesis results. The situation is the same for both combinational circuits and FSMs. It should
be mentioned that the advantages for FSMs are rather limited (2%). However, it should also be
emphasized that the methods of multilevel optimization could be more advantageous if the process
of technology mapping was integrated with a commercial tool. Multilevel optimization carried out
without a commercial tool is not able to fully use the potential of developed methods. The results
included in Tables 1 and 2 best illustrate this situation. The proposed method of multilevel optimization
reduced a higher number of blocks in combinational circuits (28%) than in the case of sequential circuits
(16%). It is clearly observed that in the case of synthesis in FSMs, their potential is more limited than in
the case of technology mapping using commercial tools. In the second case, the number of macrocells
was reduced at 2%.
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6. Discussions

The paper discusses a method of multilevel optimization that enables representation of a circuit in
a multilevel form of the set of PAL-based blocks. In the case of combinational circuits, the set includes
the blocks that have k-terms attached to the sum. In the case of sequential circuits, an output of the OR
gate is additionally attached to the DFF.

The relatively low number of terms included in PAL-based logic blocks makes their use a key
synthesis problem. The paper presents multilevel optimization that is based on an original multioutput
representation and offers the possibility of limiting the number of PAL-based logic blocks. This result is
possible because this process simultaneously addresses implicants that are common resources of several
functions. Creation of the sets of PAL-based logic blocks is carried out in the process of transforming
either a graph of outputs or a graph of excitations and outputs.

The main advantage of the proposed method of circuit synthesis using a graph of excitations and
outputs is the possibility of full use of logic resources of PAL blocks. In the first stage of the synthesis
process, the logical functions implemented are mapped in the form of a PAL block network. This type
of approach is an original way of including the specificity of the structure in the initial synthesis process.
Immediately at the beginning, we assume that we will use a device that contains strictly defined logical
resources characterized by a suitable PAL logic block containing a characteristic number of terms. As a
result of the initial mapping of logic functions in the form of a PAL block network, it turns out that the
blocks used contain unused terms. This type of situation is typical for most known synthesis methods,
which due to their universality are not able to effectively use the resources of programmable devices.
The optimization proposed in the article goes further because its goal is even more economical use
of resources. The analysis of the block network described by the graph of excitations and outputs
creates a chance to modify the obtained form of logical expressions, the purpose of which is to match
it with the free resources of the pre-obtained PAL block network. The strategies for splitting and
merging the nodes are focused on the use of free terms in individual blocks. The consequence of
using free terms is to minimize the blocks that form the resulting logical network. The experiments
presented in the previous section carried out on simple circuits show the effectiveness of the proposed
approach. Analysis of the results of the experiments showed that it is particularly important that
you can propose a description of the circuit that is the result of the proposed method in the hardware
description languages, and then perform the final effects of technology mapping in company tools
to obtain better results. This makes it possible to use the developed methods in engineering practice
related to the construction of very effective in terms of area computing and control systems used in
cyber physical systems.

7. Future Work

The experimental results clearly indicate that the proposed method of technology mapping is
efficient in the way that it uses the area of a programmable structure. A side effect is the expansion of
the number of logic levels, which might have a disadvantageous influence on the dynamic features
of the solutions. Based on the presented results, situations exist in which the method of technology
mapping produces worse results than two-level synthesis. However, no barrier exists to choosing a
better solution after carrying out the synthesis using two methods. It is also worth considering that the
calculation complexity of the proposed algorithms is comparable to that of the method of technology
mapping based on two-level minimization.

The above conclusions encourage further work, but also show the weaknesses of our method.
Unfortunately, it does not always lead to better solutions, which would require synthesis by various
methods, and after analyzing the result, choosing a better solution. This type of approach is sometimes
used, but for the synthesis of complex circuits it is quite tedious. Another disadvantage of the proposed
circuit implementation is the higher number of logic levels, which often leads to a slight deterioration
of the dynamic properties of the solutions obtained in comparison to alternative methods. The above
disadvantages and limitations of the proposed method indicate the direction of further work.
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First, we intend to develop a criterion that will allow you to decide on the method of technology
mapping of the analyzed functions at the initial stage of the synthesis. It seems that this is possible,
because knowing the result of two-level minimization can predict which of the technology mapping
methods will lead to more efficient mapping.

The second direction of work will be the search for technology mappings in which minimizing
the area goes hand in hand with minimizing the number of logical levels. One idea that could lead
to further optimization is the idea of using three-state output buffers in the process of technology
mapping. Such buffers are commonly found in the output cells of programmable devices and are
very often unused. The concept of using three-state buffers has proven itself in the implementation
of combinational circuits implemented in older programmable devices families. It is difficult to say
whether it will work out what needs to be checked, also analyzing the issues of power consumption of
the solutions obtained.

All planned works are related to the optimization of CPS computing and control systems
implemented in programmable devices. They concern the lowest layer of CPS, i.e., the physical layer.
In addition, we are considering focusing our research on specific CPS applications that could be
effectively implemented in programmable devices.

These conclusions show that an extremely important element of CPS synthesis is appropriate
technological mapping focused on the system implementing the function of the CPS physical layer.
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