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1. Introduction and Preliminaries

The research on modulars and modular spaces was begun by Nakano [1] as generalizations of
normed spaces. Since the 1950s, many prominent mathematicians like Luxemburg, Mazur, Musielak,
and Orlicz [2–5] developed it extensively. Modulars and modular spaces have broad branches of
applications, e.g., interpolation theory and Orlicz spaces.

We start by considering some basic relevant notions.

Definition 1. ([1]) Let X be a vector space over a field K (R or C). A generalized function ρ : X → [0, ∞] is
called a modular if for any α, β ∈ K and x, y ∈ X,

(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x) for every α with |α| = 1,
(3) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and α, β ≥ 0.

If the condition (3) is replaced with

(4) ρ(αx + βy) ≤ αsρ(x) + βsρ(y) if αs + βs = 1 and α, β ≥ 0 with an s ∈ (0, 1],

then ρ is called an s-convex modular. We call 1-convex modulars as convex modulars.

A modular ρ on X generates a linear subspace Xρ of X naturally defined by

Xρ = {x ∈ X | lim
λ→0

ρ(λx) = 0}.

Xρ is called a modular space.
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Definition 2. Let Xρ be a modular space and {xn} be a sequence in Xρ.

(1) {xn} is ρ-convergent to a point x ∈ Xρ if ρ(xn − x)→ 0 as n→ ∞. The point x is called the ρ-limit of
the sequence {xn}.

(2) {xn} is called a ρ-Cauchy sequence if ρ(xn − xm)→ 0 as n, m→ ∞.
(3) Xρ is called ρ-complete if every ρ-Cauchy sequence in Xρ is ρ-convergent.

Remark 1. If ρ is a convex modular and 0 ≤ λ ≤ 1, we have ρ(λx) ≤ λρ(x) for all x ∈ Xρ. If ρ is a convex
modular, and λi ≥ 0, i = 1, 2, . . . n and λ1 +λ2 + . . .+λn ≤ 1, then ρ(λ1x1 +λ2x2 + . . .+λnxn) ≤ λ1ρ(x1)+

λ2ρ(x2) + . . . + λnρ(xn). If {xn} is ρ-convergent to x, then {αxn} is ρ-convergent to αx, where 0 ≤ α ≤ 1.
But the ρ-convergence of a sequence {xn} to x does not imply that {cxn} is ρ-convergent to cx for scalars c
with |c| > 1.

There are two notions that play important roles when we study modulars. A modular ρ is said to
have the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) for every sequence {xn} that is ρ-convergent to x. ρ is
said to satisfy the ∆2-condition if there exists a constant τ ≥ 0 such that ρ(2x) ≤ τρ(x) for all x ∈ Xρ.

Example 1. For a measure space (Ω, Σ, µ), let L0(µ) be the collection of all measurable functions on Ω. Let

Lφ(µ) = { f ∈ L0(µ) |
∫

Ω
φ(|λ f (x)|)dµ(x)→ 0 as λ→ 0},

where φ : [0, ∞)→ R is assumed to be a continuous, positive, convex and nondecreasing function increasing
to infinity with φ(0) = 0. We can take, e.g., φ(t) = et2 − 1. Lφ(µ) is called an Orlicz space. Define for
f ∈ Lφ(µ),

ρφ( f ) =
∫

Ω
φ(| f |)dµ.

Then ρφ is a complete modular.

The question of stability of a functional equation concerns the existence of an exact solution
near to the function satisfying the equation approximately. In 1940, Ulam [6] raised the first
stability problem. He proposed a question whether there exists an exact homomorphism near an
approximate homomorphism. Hyers [7] gave an answer in Banach spaces. Since then, many authors
have investigated the stability problems. We refer to [8–13] for more information on the stability of
functional equations.

The equality

‖z− x‖2 + ‖z− y‖2 =
1
2
‖x− y‖2 + 2

∥∥∥∥z− x + y
2

∥∥∥∥2
,

which is called the Apollonius identity, holds in inner product spaces. It motivated the following
quadratic functional equation,

Q(z− x) + Q(z− y) =
1
2

Q(x− y) + 2Q
(

z− x + y
2

)
. (1)

So, Equation (1) is called the quadratic functional equation of Apollonius type. Jun and Kim [14]
initiated the investigation of this functional equation.

Park and Rassias [15] introduced the following functional equation:

f (z− x) + f (z− y) = −1
2

f (x + y) + 2 f
(

z− x + y
4

)
, (2)

called the Apollonius type additive functional equation and investigated homomorphisms in C∗-ternary
algebras and JB∗-triples associated with (2). In addition, in [16], the authors studied Jordan mappings
in C∗-ternary algebras and JB∗-triples associated with (2).
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When studying the stability of functional equations, many authors work in normed spaces.
However, there exist a number of topological spaces that are not normable. The concept of modulars
is wider than that of norms, so modulars have less properties than norms have, but they make more
sense in many particular situations. Working in a modular space, many authors often assume that the
modular satisfies the Fatou property or ∆2-condition or both (see, e.g., [17,18]).

Recently, many authors investigated the stability of various functional equations on
modular spaces. We refer the readers to [19–26].

This paper consists of six sections. In Section 2, we show the stability of the following functional
equation without any condition on the modular;

2 f (z− x) + 2 f (z− y) = − f (x + y) + 4 f
(

z− x + y
4

)
. (3)

In Section 3, we prove the stability of Apollonius type additive functional Equation (2) in modular
spaces under the condition that the modular fulfills the ∆2-condition but not necessarily Fatou property.

In Section 4, we obtain a similar result for β-homogeneous Banach spaces.
In Section 5, we show the fuzzy stability of the functional Equation (2) in fuzzy Banach spaces by

using a fixed point method.
In Section 6, we show the hyperstability of the functional Equation (2) associated with the Jordan

triple product in fuzzy Banach algebras.

2. Stability of (3) in Modular Spaces Without ∆2-Conditions

This section is concerned with the stability of the functional Equation (3). Dividing the functional
equation by 2, this equation is reduced to the Apollonius type additive functional equation (2).
Note that in the following theorem, the convex modular ρ is not assumed to satisfy any other condition.

Lemma 1. [15] Let V and X be linear spaces and f : V → X be a mapping such that

f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)
= 0

for all x, y, z ∈ V. Then f is additive.

Theorem 1. Let V be a linear space, ρ be a convex modular, and Xρ be a ρ-complete modular space. Let ϕ :
V3 → [0, ∞) be a function with

ϕ̂(x, y, z) :=
∞

∑
k=1

1
4k ϕ(4k−1x, 4k−1y, 4k−1z) < ∞ (4)

for all x, y, z ∈ V. Assume that f : V → Xρ is a mapping satisfying f (0) = 0 and

ρ

(
2 f (z− x) + 2 f (z− y) + f (x + y)− 4 f

(
z− x + y

4

))
≤ ϕ(x, y, z) (5)

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → Xρ such that

ρ
(

f (x)− T(x)
)
≤ ϕ̂(2x, 2x, 2x), x ∈ V. (6)

The mapping T is defined by T(x) = ρ− limit f (4nx)
4n , x ∈ V.

Proof. Replacing (x, y, z) with (2x, 2x, 2x) in (5) and letting ψ(x) = ϕ(2x, 2x, 2x), we have

ρ ( f (4x)− 4 f (x)) ≤ ϕ(2x, 2x, 2x) = ψ(x), x ∈ V, (7)
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hence,

ρ

(
1
4

f (4x)− f (x)
)
≤ 1

4
ψ(x). (8)

Then by induction, we write

ρ

(
f (4kx)

4k − f (x)

)
≤

k

∑
j=1

1
4j ψ(4j−1x) (9)

for all x ∈ V and all positive integer k. Indeed, the case k = 1 follows from (8). Assume that (9) holds
for k ∈ N. Then we have the following inequality:

ρ

(
f (4k+1x)

4k+1 − f (x)

)
= ρ

(
1
4

(
f (4k · 4x)

4k − f (4x)

)
+

1
4
( f (4x)− 4 f (x))

)

≤ 1
4

ρ

(
f (4k · 4x)

4k − f (4x)

)
+

1
4

ρ ( f (4x)− 4 f (x))

≤ 1
4

k

∑
j=1

1
4j ψ(4jx) +

1
4

ψ(x)

=
k

∑
j=1

1
4j+1 ψ(4jx) +

1
4

ψ(x)

=
k+1

∑
j=1

1
4j ψ(4j−1x).

Hence, (9) holds for every k ∈ N.
Let m and n be nonnegative integers with n > m. By (9), we have

ρ

(
f (4nx)

4n − f (4mx)
4m

)
= ρ

(
1

4m

(
f (4n−m · 4mx)

4n−m − f (4mx)
))

≤ 1
4m

n−m

∑
j=1

ψ(4j−1 · 4mx)
4j

=
n−m

∑
j=1

ψ(4m+j−1x)
4m+j

=
n

∑
k=m+1

ψ(4k−1x)
4k .

(10)

Then (4) and (10) yield that
{

f (4nx)
4n

}
is a ρ-Cauchy sequence in Xρ. The ρ-completeness of Xρ

guarantees its ρ-convergence. Hence, there exists a mapping T : V → Xρ defined by

T(x) = ρ− limit
f (4nx)

4n , x ∈ V. (11)

We see that

ρ

(
T(4x)− 4T(x)

43

)
= ρ

(
1
43

(
T(4x)− f (4n+1x)

4n

)
+

1
4

(
1
4
· f (4n+1x)

4n+1 − 1
4

T(x)
))

≤ 1
43 ρ

(
T(4x)− f (4n+1x)

4n

)
+

1
16

ρ

(
f (4n+1x)

4n+1 − T(x)
) (12)
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for all x ∈ V. Then by (11), the right hand side of (12) tends to 0 as n→ ∞. Therefore, it follows that

T(4x) = 4T(x), x ∈ V. (13)

Next, we calculate ρ(T(x)− f (x)). Note that for every n ∈ N, by (13) we write

ρ (T(x)− f (x))

= ρ

(
n

∑
k=1

f (4kx)− 4 f (4k−1x)
4k +

(
T(x)− f (4nx)

4n

))

= ρ

(
n

∑
k=1

f (4kx)− 4 f (4k−1x)
4k +

1
4

(
T(4x)− f (4n−1 · 4x)

4n−1

))
.

(14)

Since ∑n
k=1

1
4k +

1
4 < 1, it follows from (7) and (14) that

ρ (T(x)− f (x))

≤
n

∑
k=1

1
4k ρ

(
f (4kx)− 4 f (4k−1x)

)
+

1
4

ρ

(
T(4x)−

f
(
4n−1 · 4x

)
4n−1

)

≤
n

∑
k=1

1
4k ψ(4k−1x) +

1
4

ρ

(
T(4x)−

f
(
4n−1 · 4x

)
4n−1

)

=
n

∑
k=1

1
4k ϕ

(
4k−1 · 2x, 4k−1 · 2x, 4k−1 · 2x

)
+

1
4

ρ

(
T(4x)−

f
(
4n−1 · 4x

)
4n−1

)
, x ∈ V.

(15)

Letting n→ ∞ in (15), we obtain

ρ(T(x)− f (x)) ≤ ϕ̂(2x, 2x, 2x), x ∈ V.

Therefore, we arrive at (6).
Now, we prove that T is additive. We note that

ρ

2 f (4j(z− x))
4j +

2 f (4j(z− y))
4j +

f (4j(x + y))
4j −

4 f
(

4j(z− x+y
4 )
)

4j


≤ 1

4j ρ

(
2 f (4j(z− x)) + 2 f (4j(z− y)) + f (4j(x + y))− 4 f

(
4j
(

z− x + y
4

)))
≤ 1

4j ϕ(4jx, 4jy, 4jz)→ 0 as j→ ∞

(16)

for all x, y, z ∈ V.
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Now, by (16) we have the following inequality

ρ

(
1

24

(
2T(z− x) + 2T(z− y) + T(x + y)− 4T

(
z− x + y

4

)))
≤ 1

12

[
ρ

(
T(z− x)− f (4j(z− x))

4j

)
+ ρ

(
T(z− y)− f (4j(z− y))

4j

)

+
1
2

ρ

(
T(x + y)− f (4j(x + y))

4j

)
+ 2ρ

T
(

z− x + y
4

)
−

f
(

4j(z− x+y
4 )
)

4j


+

1
24

ρ

2 f (4j(z− x))
4j +

2 f (4j(z− y))
4j +

f (4j(x + y))
4j −

4 f
(

4j(z− x+y
4 )
)

4j


→ 0 as j→ ∞.

Hence, we get

T(z− x) + T(z− y) +
1
2

T(x + y)− 2T
(

z− x + y
4

)
= 0

for all x, y, z ∈ V. Then by Lemma 1, it follows that T is an additive mapping.
Finally, to show the uniqueness of T, assume that T1 and T2 are additive mappings satisfying (6).

Then we write

ρ

(
T1(x)− T2(x)

2

)
= ρ

(
1
2

(
T1(4kx)

4k − f (4kx)
4k

)
+

1
2

(
f (4kx)

4k − T2(4kx)
4k

))

≤ 1
2

ρ

(
T1(4kx)

4k − f (4kx)
4k

)
+

1
2

ρ

(
f (4kx)

4k − T2(4kx)
4k

)

≤ 1
2
· 1

4k

{
ρ
(

T1(4kx)− f (4kx)
)
+ ρ

(
T2(4kx)− f (4kx)

)}
≤ 1

4k ϕ̂(4k · 2x, 4k · 2x, 4k · 2x)

=
∞

∑
l=k+1

1
4l ϕ

(
4l−1 · 2x, 4l−1 · 2x, 4l−1 · 2x

)
→ 0 as k→ ∞.

This implies that T1 = T2.

Now, we have the classical Ulam stability of (3) by putting ϕ ≡ ε > 0.

Corollary 1. Let V be a linear space, ρ be a convex modular and Xρ be a ρ-complete modular space. Assume f :
V → Xρ is a mapping such that f (0) = 0 and

ρ

(
2 f (z− x) + 2 f (z− y) + f (x + y)− 4 f

(
z− x + y

4

))
≤ ε

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → Xρ such that

ρ
(

f (x)− T(x)
)
≤ ε

3
, x ∈ V.
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Corollary 2. Let V be a normed linear space, ρ be a convex modular and Xρ be a ρ-complete modular space.
Let θ > 0 and 0 < p < 1 be real numbers. Assume that f : V → Xρ is a mapping satisfying

ρ

(
2 f (z− x) + 2 f (z− y) + f (x + y)− 4 f

(
z− x + y

4

))
≤ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → Xρ such that

ρ
(

f (x)− T(x)
)
≤ 3 · 2pθ

4− 4p ‖x‖
p, x ∈ V.

3. Stability of (2) in Modular Spaces with ∆2-Conditions

We show the generalized Hyers-Ulam stability of Apollonius type additive functional equation
from linear spaces to modular spaces.

Theorem 2. Let V be a linear space, ρ be a convex modular satisfying the ∆2-condition with τ and Xρ be
a ρ-complete modular space. Let ϕ : V3 → [0, ∞) be a function with

ϕ̂(x, y, z) :=
∞

∑
k=1

1
4k ϕ(4k−1x, 4k−1y, 4k−1z) < ∞

for all x, y, z ∈ V. Assume that f : V → Xρ is a mapping satisfying f (0) = 0 and

ρ

(
f (z− x) + f (z− y) +

1
2

f (x + y)− 2 f
(

z− x + y
4

))
≤ ϕ(x, y, z) (17)

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → Xρ such that

ρ
(

f (x)− T(x)
)
≤ τϕ̂(2x, 2x, 2x), x ∈ V.

Proof. Since ρ satisfies the ∆2-condition with τ, (17) implies

ρ

(
2 f (z− x) + 2 f (z− y) + f (x + y)− 4 f

(
z− x + y

4

))
≤ τ · ϕ(x, y, z)

for all x, y, z ∈ V. Then the conclusion is a direct consequence of Theorem 1.

Putting ϕ ≡ ε > 0 in Theorem 2, we have the following result on classical Ulam stability of the
Apollonius type additive functional equation.

Corollary 3. Let V be a linear space, ρ be a convex modular satisfying the ∆2-condition with τ and Xρ be
a ρ-complete modular space. Assume f : V → Xρ is a mapping satisfying f (0) = 0 and

ρ

(
f (z− x) + f (z− y) +

1
2

f (x + y)− 2 f
(

z− x + y
4

))
≤ ε

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → Xρ such that

ρ
(

f (x)− T(x)
)
≤ τ · ε

3
, x ∈ V.

4. Stability of (2) in β-homogeneous Spaces

Definition 3. Let X be a linear space over C. An F-norm is a function ‖ · ‖ : X → [0, ∞] such that

(1) ‖x‖ = 0 if and only if x = 0,
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(2) ‖λx‖ = ‖x‖ for every x ∈ X and every λ with |λ| = 1,
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,
(4) ‖λnx‖ → 0 provided λn → 0,
(5) ‖λxn‖ → 0 provided xn → 0.

(X, d) is a metric space by letting d(x, y) = ‖x− y‖. It is called an F-space if d is complete.

If, in addition, ‖tx‖ = |t|β‖x‖ for all x ∈ X and t ∈ C, then ‖ · ‖ is called β-homogeneous (β > 0).
A β-homogeneous F-space is called a β-homogeneous complex Banach space.

Remark 2. For an s-convex modular ρ, if we define

‖x‖ρ = inf
{

αs > 0
∣∣∣ ρ
( x

α

)
≤ 1

}
, x ∈ Xρ

then ‖ · ‖ρ is an F-norm on Xρ such that ‖λx‖ρ = |λ|s‖x‖ρ. Hence, ‖ · ‖ρ is s-homogeneous. For s = 1,
this norm is called the Luxemburg norm.

Considering Remark 2, we prove the generalized Hyers-Ulam stability of (2) from linear spaces to
β-homogeneous Banach spaces.

Theorem 3. Let V be a linear space, X be a β-homogeneous complex Banach space (0 < β ≤ 1), and ϕ : V3 →
[0, ∞) be a function with

ϕ̂(x, y, z) :=
1
2β

∞

∑
j=1

1
4(j−1)β

ϕ(4j−1x, 4j−1y, 4j−1z) < ∞ (18)

for all x, y, z ∈ V. Assume that f : V → X is a mapping satisfying f (0) = 0 and∥∥∥∥ f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)∥∥∥∥ ≤ ϕ(x, y, z) (19)

for all x, y, z ∈ V. Then there exists a unique additive mapping T : V → X such that

‖ f (x)− T(x)‖ ≤ ϕ̂(2x, 2x, 2x), x ∈ V. (20)

Proof. Replacing (x, y, z) with (2x, 2x, 2x) in (19), we get∥∥∥∥1
2

f (4x)− 2 f (x)
∥∥∥∥ ≤ ϕ(2x, 2x, 2x), x ∈ V. (21)

By induction on k ∈ N, using (21) and putting ψ(x) = ϕ(2x, 2x, 2x), it is easy to see that∥∥∥∥∥ f (4kx)
4k − f (x)

∥∥∥∥∥ ≤ 1
2β

k

∑
j=1

1
4(j−1)β

ψ(4j−1x), x ∈ V (22)
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for all k ∈ N. Let m and n be nonnegative integers with n > m. Then, by (22), we have∥∥∥∥ f (4nx)
4n − f (4mx)

4m

∥∥∥∥ =

∥∥∥∥ 1
4m

(
f (4nx)
4n−m − f (4mx)

)∥∥∥∥
≤ 1

4mβ
· 1

2β

n−m

∑
j=1

1
4(j−1)β

ψ(4j+m−1x)

≤ 1
2β

n−m

∑
j=1

1
4(j+m−1)β

ψ(4j+m−1x)

=
1

2β

n

∑
l=m+1

1
4(l−1)β

ψ(4l−1x), x ∈ V.

(23)

Since the last expression of (23) goes to 0 by (18), it follows that, for every x ∈ V, the sequence{
f (4nx)

4n

}
is a Cauchy sequence in X. Since X is complete, we know that the sequence is convergent.

Hence, there exists a mapping T : V → X defined by

T(x) = lim
n→∞

f (4nx)
4n , x ∈ V.

Letting m = 0 and passing the limit n→ ∞ in (23), we obtain the estimate (20).
In order to show that T is additive, we write∥∥∥∥T(z− x) + T(z− y) +

1
2

T(x + y)− 2T
(

z− x + y
4

)∥∥∥∥
≤
∥∥∥∥T(z− x)− f (4j(z− x))

4j

∥∥∥∥+ ∥∥∥∥T(z− y)− f (4j(z− y))
4j

∥∥∥∥
+

1
2β

∥∥∥∥T(x + y)− f (4j(x + y))
4j

∥∥∥∥+ 2β

∥∥∥∥∥∥T
(

z− x + y
4

)
−

f
(

4j(z− x+y
4 )
)

4j

∥∥∥∥∥∥
+

∥∥∥∥∥∥ f (4j(z− x))
4j +

f (4j(z− y))
4j +

f (4j(x + y))
2 · 4j −

2 f
(

4j(z− x+y
4 )
)

4j

∥∥∥∥∥∥
→ 0 as j→ ∞.

Hence, we get

T(z− x) + T(z− y) +
1
2

T(x + y)− 2T
(

z− x + y
4

)
= 0

for all x, y, z ∈ V. Then by Lemma 1, it follows that T is an additive mapping.
Next, assume that S : V → X is another additive mapping satisfying (20). Then we have

‖T(x)− S(x)‖

≤
∥∥∥∥∥T(4kx)− f (4kx)

4k

∥∥∥∥∥+
∥∥∥∥∥S(4kx)− f (4kx)

4k

∥∥∥∥∥
≤ 2

4kβ

1
2β

∞

∑
j=1

1
4(j−1)β

ϕ
(

2 · 4k+j−1x, 2 · 4k+j−1x, 2 · 4k+j−1x
)

= 21−β
∞

∑
l=k+1

1
4(l−1)β

ϕ
(

2 · 4l−1x, 2 · 4l−1x, 2 · 4l−1x
)

→ 0 as k→ ∞
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for all x ∈ V, from which it follows that T = S.

Letting ϕ ≡ ε > 0 in Theorem 3, we obtain a result on classical Ulam stability of the Apollonius
type additive functional equation.

Corollary 4. Let V be a linear space, and X be a β-homogeneous complex Banach space with 0 < β ≤ 1.
If f : V → X is a mapping satisfying f (0) = 0 and∥∥∥∥ f (z− x) + f (z− y) +

1
2

f (x + y)− 2 f
(

z− x + y
4

)∥∥∥∥ ≤ ε

for all x, y, z ∈ V, then there exists a unique additive mapping T : V → X such that

‖ f (x)− T(x)‖ ≤ 2βε

4β − 1
, x ∈ V.

5. Fuzzy Stability of (2) in Fuzzy Banach Spaces

In this section we consider the stability of the Apollonius type additive functional Equation (2).
The following theorem is a fundamental result in fixed point theory.

Theorem 4. [27,28] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

1. d(Jnx, Jn+1x) < ∞, for all n ≥ n0;
2. the sequence {Jnx} converges to a fixed point y∗ of J;
3. y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0 x, y) < ∞};
4. d(y, y∗) ≤ 1

1−L d(y, Jy) for all y ∈ Y.

We use the definition of fuzzy normed spaces given in [29–31].

Definition 4. [29–31] Let X be a real vector space. A function N : X×R→ [0, 1] is called a fuzzy norm on
X if for all x, y ∈ X and all s, t ∈ R,

(1) N(x, t) = 0 for t ≤ 0;
(2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(3) N(cx, t) = N(x, t

|c| ) if c 6= 0;
(4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(5) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = 1;
(6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.

Example 2. Let (X, ‖ · ‖) be a normed linear space. Then

N(x, t) =

 t
t+‖x‖ , x ∈ X, t > 0;

0, x ∈ X, t ≤ 0

is a fuzzy norm on X.

Definition 5. [29–31] Let (X, N) be a fuzzy normed vector space. A sequence {xn} in X is said to be convergent
to x ∈ X if limn→∞ N(xn − x, t) = 1 for all t > 0 and we denote it by N-limn→∞ xn = x.
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Definition 6. [29–31] Let (X, N) be a fuzzy normed vector space. A sequence {xn} in X is called a Cauchy
sequence if limn,m→∞ N(xn − xm, t) = 1 for all t > 0.

If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete, and the fuzzy
normed vector space is called a fuzzy Banach space.

Definition 7. [32] Let X be an algebra and (X, N) a fuzzy Banach space. Then the space (X, N) is said to be
a fuzzy Banach algebra if

N(xy, ab) ≥ N(x, a) ◦ N(y, b), x, y ∈ X, a, b ∈ R, (24)

where ◦ is a continuous t-norm.

Example 3. Let X be an algebra and (X, N) be a fuzzy Banach space, where N(x, t) is given as in Example 2.
Then

N(xy, ab) ≥ N(x, a) · N(y, b), x, y ∈ X, a, b ∈ R.

Hence, (X, N) is a fuzzy Banach algebra with ◦ = ·, the product, (see [32]).

Let (X, N) be a fuzzy Banach algebra and xn → x and yn → y be convergent sequences in (X, N).
It is easy to show that N-lim xnyn = xy (see [32]).

Now, we show the generalized Hyers-Ulam stability of (2) in fuzzy normed vector spaces via
a fixed point method.

Theorem 5. Let X be a real vector space, (Y, N) a fuzzy Banach space. Let ϕ : X3 → [0, ∞) be a function such
that ϕ(0, 0, 0) = 0 and there exists an 0 < L < 1 satisfying

ϕ(4x, 4y, 4z) ≤ 4Lϕ(x, y, z) (25)

for all x, y, z ∈ X. Let f : X → Y be a mapping that satisfies

N
(

f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)
, t
)
≥ t

t + ϕ(x, y, z)
(26)

for all x, y, z ∈ X, t > 0. Then there exists a unique additive mapping F : X → Y such that

N
(

f (x)− F(x), t
)
≥ 4(1− L)t

4(1− L)t + 2ϕ(2x, 2x, 2x)
, x ∈ X, t > 0. (27)

The mapping F is defined by F(x) = N − limn→∞
1

4n f (4nx), x ∈ X.

Proof. Replacing (x, y, z) with (0, 0, 0) in (26), we get

N
(1

2
f (0), t

)
≥ t

t + ϕ(0, 0, 0)
= 1, t > 0,

so that f (0) = 0.
Replacing (x, y, z) with (2x, 2x, 2x), we see

N
(1

2
f (4x)− 2 f (x), t

)
≥ t

t + ϕ(2x, 2x, 2x)
.

Then, putting

M(x, t) :=
t

t + 2ϕ(2x, 2x, 2x)
, x ∈ X, t > 0,
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we have
N
(

f (4x)− 4 f (x), 2t
)
= N

(1
2

f (4x)− 2 f (x), t
)
≥ t

t + ϕ(2x, 2x, 2x)
,

hence,

N( f (4x)− 4 f (x), t) ≥ t
t + 2ϕ(2x, 2x, 2x)

= M(x, t), x ∈ X, t > 0. (28)

By the definition of M(x, t) and (25), we note that for every n ∈ N,

M (4nx, 4nLnt)) ≥ M(x, t), x ∈ X, t > 0.

Consider the set
S = {p | p : X → Y}

and introduce the generalized metric on S by

d(p, q) = inf
{

µ ∈ R+ | N (p(x)− q(x), µt) ≥ M(x, t), x ∈ X, t > 0
}

.

Then (S, d) is a complete generalized metric space (see [33], Lemma 2.1). Now, we consider the
map J : S→ S given by

Jp(x) =
1
4

p(4x), x ∈ X.

Then by a standard argument, we know that J is a contractive mapping.

Since N
(

f (4x)− 4 f (x), t
)
≥ M(x, t) by (28), we have

N
(

1
4

f (4x)− f (x),
1
4

t
)
≥ M(x, t), x ∈ X, t > 0.

Hence, it follows that

d(J f , f ) ≤ 1
4

.

Then by the fixed point alternative, i.e., Theorem 4, there exists a mapping F : X → Y such that

1. F is a fixed point of J, i.e.,
F(4x) = 4F(x), x ∈ X.

2. d (Jn f , F)→ 0, i.e.,

N − lim
n→∞

1
4n f (4nx) = F(x), x ∈ X.

3. d( f , F) ≤ 1
1−L d( f , J f ), i.e.,

d( f , F) ≤ 1
4(1− L)

.

This implies

N
(

f (x)− F(x), t
)
≥ M (x, 4(1− L)t) , x ∈ X, t > 0. (29)

Note that (29) shows the inequality (27).
Now, we show that F is an additive mapping.
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Replacing (x, y, z) with (4nx, 4ny, 4nz) in (26), we get

N
(

1
4n f (4n(z− x)) +

1
4n f (4n(z− y)) +

1
2 · 4n f (4n(x + y))− 2 · 1

4n f
(

4nz− 1
4
(4n(x + y))

)
, t
)

≥ 4nt
4nt + ϕ(4nx, 4ny, 4nz)

≥ t
t + Ln ϕ(x, y, z)

.

Hence, it follows that

F(z− x) + F(z− y) +
1
2

F(x + y)− 2F
(

z− x + y
4

)
= 0

for all x, y, z ∈ X.
Then by Lemma 1, it follows that F is additive.
Finally, assume that F1 and F2 are two additive mappings that satisfy (27). Then

N
(

f (x)− Fi(x), t
)
≥ M(x, 4(1− L)t), x ∈ X, t > 0, i = 1, 2.

Then, by (29), we have

N
(

F2(x)− F1(x), 2t
)
= N

(
1
4n (F2(4nx)− F1(4nx)), 2t

)
≥ min

{
N
(

1
4n ( f (4nx)− F1(4nx)) , t

)
, N
(

1
4n ( f (4nx)− F2(4nx)) , t

)}
≥ M

(
4nx, (1− L)4n+1t

)
≥ (1− L)4n+1t

(1− L)4n+1t + 2 · (4L)n ϕ(2x, 2x, 2x)

→ 1 as n→ ∞.

This yields that F1 = F2, as desired.

Corollary 5. Let X be a real normed linear space, and (Y, N) be a fuzzy Banach space. Let θ > 0 and 0 < r < 1
be real numbers. Let f : X → Y be a mapping satisfying

N
(

f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)
, t
)
≥ t

t + θ(‖x‖r + ‖y‖r + ‖z‖r)

for x, y, z ∈ X and t > 0. Then there exists a unique additive mapping F : X → Y such that

N
(

f (x)− F(x), t
)
≥

(
1− 4r−1) t

(1− 4r−1) t + 3 · 2r−1θ‖x‖r

for x ∈ X, t > 0.

Proof. Taking ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) from Theorem 5, we can choose L = 4r−1 to get the
result.

6. Hyperstability of (2) in Fuzzy Banach Algebras

In this section, we consider the Apollonius type additive functional equation on fuzzy
Banach algebras. Let X be a real algebra. An additive mapping D : X → X is called a derivation if

D(xy) = D(x)y + xD(y), x, y ∈ X.
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An additive mapping D : X → X is called a Jordan derivation if

D(x2) = D(x)x + xD(x), x ∈ X.

In addition, an additive mapping D : X → X is called a Jordan triple derivation in the sense
from [34] if

D(xyx) = D(x)yx + xD(y)x + xyD(x), x, y ∈ X.

It is well-known that every derivation is a Jordan derivation and every Jordan derivation is
a Jordan triple derivation. However, the converse implications do not hold in general.

Theorem 6. Let (X, N) be a fuzzy Banach algebra. Let ϕ : X3 → [0, ∞) be a function such that ϕ(0, 0, 0) = 0
and there exists an 0 < L < 1 satisfying

ϕ(4x, 4y, 4z) ≤ 4Lϕ(x, y, z) (30)

for all x, y, z ∈ X. Assume f : X → X is a mapping that satisfies

(a) N
(

f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)
, t
)
≥ t

t + ϕ(x, y, z)
,

(b) N ( f (xyx)− f (x)yx− x f (y)x− xy f (x), t) ≥ t
t + ϕ(x, y, 0)

(31)

for all x, y, z ∈ X, t > 0. Then there exists a unique Jordan triple derivation F : X → X such that

N
(

f (x)− F(x), t
)
≥ 4(1− L)t

4(1− L)t + 2ϕ(2x, 2x, 2x)
, x ∈ X, t > 0.

The mapping F is defined by F(x) = N − limn→∞
1

4n f (4nx), x ∈ X.

Proof. By Theorem 5, the mapping F is additive. Replacing (x, y) with (4nx, 4ny) in (31), we have
by (30)

N
(

1
43n f (43nxyx)− 1

43n 42n f (4nx)yx− 1
43n 42nx f (4ny)x− 1

43n 42nxy f (4nx), t
)

= N
(

f (43nxyx)− 42n f (4nx)yx− 42nx f (4ny)x− 42nxy f (4nx), 43nt
)

≥ 43nt
43nt + ϕ(4nx, 4ny, 0)

≥ 43nt
43nt + (4L)n ϕ(x, y, 0)

=
t

t + ( L
16 )

n ϕ(x, y, 0)
,

from which we infer that

F(xyx) = F(x)yx + xF(y)x + xyF(x), x, y ∈ X. (32)

Therefore, F is a Jordan triple derivation.

An algebra A is called semiprime if whenever aAa = {0} for a ∈ A, then a = 0. B(X) for Banach
spaces X and all C∗-algebras are examples of semiprime algebras. A ring R is said to be 2-torsion free
if 2r = 0 implies r = 0 for r ∈ R.
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In the following theorem, we show that the mapping f in Theorem 6 is a derivation if the algebra
is semiprime.

Theorem 7. Let (X, N) be a unital 2-torsion free semiprime fuzzy Banach algebra. Let ϕ : X3 → [0, ∞) be
a function such that ϕ(0, 0, 0) = 0 and there exists an 0 < L < 1 satisfying, for all x, y, z ∈ X,

(a) ϕ(4x, 4y, 4z) ≤ 4Lϕ(x, y, z),

(b)
{

1
4n ϕ

(
x,

y
4n , 0

)∣∣∣∣ n ∈ N
}

is bounded.
(33)

Assume f : X → X is a mapping such that, for all x, y, z ∈ X and t > 0,

(c) N
(

f (z− x) + f (z− y) +
1
2

f (x + y)− 2 f
(

z− x + y
4

)
, t
)
≥ t

t + ϕ(x, y, z)
,

(d) N ( f (xyx)− f (x)yx− x f (y)x− xy f (x), t) ≥ t
t + ϕ(x, y, 0)

.
(34)

Then f is an additive derivation.

Proof. Recall that the mapping F defined by F(x) = N − limn→∞
1

4n f (4nx), x ∈ X from Theorem 6 is
an additive Jordan triple derivation. Replacing (x, y) with (4nx, y) in (34), we have by (33)

N
(

1
42n f (42nxyx)− 1

42n 4n f (4nx)yx− 1
42n 42nx f (y)x− 1

42n 4nxy f (4nx), t
)

= N
(

f (42nxyx)− 4n f (4nx)yx− 42nx f (y)x− 4nxy f (4nx), 42nt
)

≥ 42nt
42nt + ϕ(4nx, y, 0)

≥ 42nt
42nt + (4L)n ϕ(x, y

4n , 0)

=
t

t + ( L
4 )

n ϕ(x, y
4n , 0)

,

from which we get
F(xyx) = F(x)yx + x f (y)x + xyF(x) (35)

for all x, y ∈ X. Comparing (35) with (32), it follows that

xF(y)x = x f (y)x

for all x, y ∈ X. Letting x = 1, we conclude that F = f . Therefore, f is a Jordan triple derivation.
By [34], (Theorem 4.3), every Jordan triple derivation on a 2-torsion free semiprime ring is a derivation.
Hence, we conclude that f is an additive derivation.

Now, we have an application of Theorem 7 to simple C∗-algebras.

Corollary 6. Let X be a unital simple C∗-algebra, θ > 0 and 0 < r < 1 be real numbers. Assume that
f : X → X is a mapping such that∥∥∥∥ f (z− x) + f (z− y) +

1
2

f (x + y)− 2 f
(

z− x + y
4

)∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r),

‖ f (xyx)− f (x)yx− x f (y)x− xy f (x)‖ ≤ θ(‖x‖r + ‖y‖r)
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for all x, y, z ∈ X. Then there exists an element a ∈ X such that

f (x) = ax− xa, x ∈ X.

Proof. Letting L = 4r−1, N(x, t) be as in Example 2 and ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r), we have
that f is a derivation by Theorem 7. It is well-known that every derivation on simple C∗-algebras
is inner. Hence, we get the result.

7. Conclusions

Using the direct method, we have proved the Hyers-Ulam stability of Apollonius type additive
functional equation from linear spaces to modular spaces with or without the ∆2-conditions.
Since spaces with s-convex modulars are s-homogeneous Banach spaces, we also have investigated
the same problem for β-homogeneous Banach spaces. The obtained results can be applied to normed
spaces as well. We also have shown the fuzzy stability of the functional equation in fuzzy Banach
spaces by using a fixed point method. Finally, we have shown the hyperstability of the functional
Equation (2) associated with the Jordan triple product in fuzzy Banach algebras. Removing the
∆2-condition in Theorem 2 will be a challenging problem.
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