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Abstract: This paper presents a study for solving the modified Helmholtz equation in layered materials
using the multiple source meshfree approach (MSMA). The key idea of the MSMA starts with the
method of fundamental solutions (MFS) as well as the collocation Trefftz method (CTM). The multiple
source collocation scheme in the MSMA stems from the MFS and the basis functions are formulated
using the CTM. The solution of the modified Helmholtz equation is therefore approximated by the
superposition theorem using particular nonsingular functions by means of multiple sources located
within the domain. To deal with the two-dimensional modified Helmholtz equation in layered
materials, the domain decomposition method was adopted. Numerical examples were carried out
to validate the method. The results illustrate that the MSMA is relatively simple because it avoids
a complicated procedure for finding the appropriate position of the sources. Additionally, the MSMA
for solving the modified Helmholtz equation is advantageous because the source points can be
collocated on or within the domain boundary and the results are not sensitive to the location of source
points. Finally, compared with other methods, highly accurate solutions can be obtained using the
proposed method.

Keywords: the modified Helmholtz equation; meshfree; domain decomposition; layered materials;
source point

1. Introduction

The solution of the modified Helmholtz equation plays a crucial role in the science and engineering
fields, such as for boundary detection problems [1], water wave problems [2], Cauchy problems [3,4],
diffusion equations [5], topological sensitivity analyses [6], and boundary value problems [7]. Over the
past 10 years, conventional approaches have been widely adopted for solving the modified Helmholtz
equation [8–10]. In contrast to the conventional approaches, several boundary collocation meshfree
methods that have the basis functions satisfying the partial differential equation have also been
proposed, for instance, the boundary knot method (BKM) [11,12], the boundary node method [13,14],
the singular boundary method (SBM) [15–17], and the regularized meshless method [18,19]. In 2003,
Chen and Hon [12] adopted the BKM to solve Helmholtz, modified Helmholtz, and the combination
of diffusion and convection problems. The convergence of the BKM for the above equations was
also investigated. Later, Chen et al. [15] applied the SBM to solve the modified Helmholtz equation.
To examine the accuracy of the SBM, several wave numbers were considered in the numerical
model [15]. For the modeling of Helmholtz-type equations in composite layered materials, Bin-Mohsin
and Lesnic [20] adopted the method of fundamental solutions (MFS).
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The MFS [21,22] is categorized into the indirect boundary element method or the boundary
collocation meshfree approach, since only the boundary collocation points are used in the solution
process. To avoid the singularity of the fundamental solutions, the MFS must collocate the source
points outside the physical domain. Since it is a challenge to identify the location of source points,
several attempts regarding this issue have been studied [23,24]. In 2007, Young et al. [25] proposed the
modified MFS for finding the solution to the Laplace equation with an arbitrary domain. Later, Liu [26]
adopted the multiple-length MFS (MLMFS) to investigate the appropriate placement of the sources for
the Laplace equation. By using the MLMFS, the condition number can be reduced and the accuracy
of the MLMFS may be increased. In recent years, Shigeta et al. [27] presented the multilayer method
of fundamental solutions in conjunction with the weighted greedy QR decomposition (WGQRD) to
solve the Laplace equation. As for the WGQRD, it can be used to find the necessary source points and
unnecessary ones are removed in the numerical model.

Recently, Ku et al. [28] proposed a novel boundary-type meshfree method which is a hybrid of the
MFS as well as the collocation Trefftz method (CTM). It adopts the collocation scheme from the MFS
and the matrix form can be constructed in terms of superpositioning the nonsingular basis function
from the CTM. This approach was then used for solving the Laplace-type subsurface flow problem.
Xiao et al. [29] further applied the method to the problems of heat transfer in heterogeneous multilayer
materials in two dimensions. Since the hybrid boundary-type meshless methods are only found to
solve Laplace-type problems, it is especially interesting to explore this newly developed method for
solving other non-Laplace problems. To the authors’ knowledge, pioneering work using the new
boundary-type meshfree method to solve the modified Helmholtz equation in layered materials has
not yet been proposed. We therefore propose a new boundary-type meshfree method using the basis
functions based on the first-kind modified Bessel function capable of solving the two-dimensional
modified Helmholtz equation over arbitrary geometries with doubly and multiply connected domains.

Starting from previous studies [28,29], we conducted pioneering work to solve the modified
Helmholtz equation in layered materials. Since it is necessary to derive particular nonsingular basis
functions for the two-dimensional modified Helmholtz equation, the specific method in this study
is named the multiple source meshfree approach (MSMA). The key idea of the MSMA starts with
the MFS and the CTM. The multiple source collocation scheme in the MSMA stems from the MFS,
and the basis functions are formulated from the CTM. The solution of the modified Helmholtz equation
is therefore approximated by the superposition theorem using particular nonsingular functions by
means of multiple sources located within the domain. To deal with the two-dimensional modified
Helmholtz equation in layered materials, the domain decomposition method (DDM) [30,31] was
adopted. Numerical examples were carried out to validate the method.

The article is organized as follows: A brief introduction of the two-dimensional modified
Helmholtz equation and the formulation of the MSMA considering the domain decomposition method
are given in Section 2. In Section 3, several numerical examples are included to evaluate the accuracy
of the proposed approach by comparing it with exact solutions. In Section 4, we discuss the research.
Findings are summarized in Section 5.

2. The Methodology

We consider a two-dimensional domain for the problem of interest in <2 and assume that Ω
is enclosed by a boundary ∂Ω = Γ. The two-dimensional modified Helmholtz equation and the
corresponding boundary conditions are stated as

(∇2
− λ2)u(x, y) = 0, (x, y) ∈ Ω. (1)

The Dirichlet and Neumann conditions are

u(x, y) = g(x, y) on ΓD (2)
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∂u(x, y)
∂n

= f (x, y) on Γ f (3)

in which <2 denotes the two-dimensional domain, ∇2 denotes the Laplacian, u may represent
temperature (or acoustic pressure), Ω represents the domain of the problem, λ is the wave number,
g and f are the Dirichlet and Neumann boundary data, ΓD and Γ f denote the boundaries where the
Dirichlet and Neumann conditions are given, and n represents the outward normal direction.

The idea of this study was originally motivated by the MFS and the CTM, in which the collocation
scheme is from the MFS and the basis functions are from the Trefftz formulation. To elaborate the
proposed MSMA, the collocation scheme is introduced first. Figure 1 demonstrates the collocation points
for the MFS, CTM, and MSMA bounded by simply and multiply connected domains. As illustrated
in Figure 1a, a source point is located within the physical boundary enclosed by a simply connected
domain in the CTM. Instead of using just a source point, the concept of the MFS is to approximate
the solutions via a fundamental solution by means of locating the sources away from the physical
boundary, as illustrated in Figure 1b. As for the MSMA, the solution is approximated through the linear
combination of the particular nonsingular functions in terms of multiple sources collocated within the
physical boundary, as illustrated in Figure 1c. For a multiply connected domain, which includes more
than one cavity, multiple sources are placed within the physical boundary. The collocation scheme of
the sources is demonstrated in Figure 1d–f for the CTM, MFS, and MSMA. From Figure 1, it is obvious
that the proposed MSMA is advantageous because we may place the source and boundary points at
the same position. Also, unlike the MFS, the source points can be placed at any position and are not
sensitive to the results.
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Figure 1. Illustration of the collocation points for the collocation Trefftz method (CTM), method of 

fundamental solutions (MFS), and multiple source meshfree approach (MSMA). 
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Figure 1. Illustration of the collocation points for the collocation Trefftz method (CTM), method of
fundamental solutions (MFS), and multiple source meshfree approach (MSMA).
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In the MSMA, the solution of the modified Helmholtz equation is approximated by the
superposition theorem using nonsingular general solutions by means of multiple sources. Numerical
solutions of the modified Helmholtz equation in two dimensions may be expressed as the combination
of nonsingular general solutions. We may rewrite the two-dimensional modified Helmholtz equation
in the polar coordinate as follows:

∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2
∂2u
∂θ2 − λ

2u = 0 (4)

where r represents the radial coordinate and θ is the angular coordinate. For Equation (4), particular
nonsingular functions can be derived using the separation of variables. Since the solutions are
expressed as the linear superposition of the nonsingular functions, we may obtain the numerical
solution of the two-dimensional modified Helmholtz equation represented by the linear superposition
of the nonsingular basis functions:

u(x) ≈
S∑

j=1

P∑
k=1

a j,kH j,k(x, y j) (5)

in which x ∈ Ω, y j is the source point, a j,k denotes a vector of unknown coefficients, S denotes
the source point number, and P represents the terms of the particular solutions. The particular
solutions [4], H j,k(x, y j), can be derived using the separation of variables for the two-dimensional
modified Helmholtz equation in a simply connected domain given by

H j,k(x, y j) = [ Ik(λρ j) sin(kθ j) Ik(λρ j) cos(kθ j) ]
T

(6)

where Ik is the modified Bessel function of order k for the first kind; ρ j denotes the distance between

the boundary collocation point and the source point, ρ j =
∣∣∣∣x− y j

∣∣∣∣; and θ j is the angle of the boundary
point and the source point. For the Dirichlet boundary condition, we have

u(xl) ≈
S∑

j=1

P∑
k=1

a j,kH j,k(xl, y j) = g(xl) (7)

in which l = 1, . . . , Q, Q represents the boundary point number, and g(xl) represents the Dirichlet
boundary data given on the boundary points. From Equation (3), the boundary of the Neumann
condition is rewritten as

∂u(xl)

∂n
= (

∂u(xl)

∂ρ

∂ρ

∂x
+
∂u(xl)

∂θ
∂θ
∂x

)nx + (
∂u(xl)

∂ρ

∂ρ

∂y
+
∂u(xl)

∂θ
∂θ
∂y

)ny (8)

where nx and ny at xl denote the outward normal direction vector. Using Equation (5), the derivatives
of ∂u/∂ρ and ∂u/∂θ are given by

∂u(xl)
∂ρ =

S∑
j=1

P∑
k=1

a j,k[ λI(k+1)(λρ j) + ( k
ρ j
)Ik(λρ j) sin(kθ j) λI(k+1)(λρ j) + ( k

ρ j
)Ik(λρ j) cos(kθ j) ]

T
(9)

∂u(xl)

∂θ
=

S∑
j=1

P∑
k=1

a j,k[ kIk(λρ j) cos(kθ j) −kIk(λρ j) sin(kθ j) ]
T

. (10)

Substituting Equations (9) and (10) into Equation (8), the following equation is listed below:

∂u(xl)

∂n
=

S∑
j=1

P∑
k=1

a j,k[ ∂(Ik(λρ j) sin(kθ j))/∂n ∂(Ik(λρ j) cos(kθ j))/∂n ]
T

(11)
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where

∂(Ik(λρ j) sin(kθ j))

∂n =
S∑

j=1

P∑
k=1

[λI(k+1)(λρ j) + ( k
ρ j
)Ik(λρ j) sin(kθ j) cosθ j − kIk(λρ j) cos(kθ j)(

sinθ j
ρ j

)]nx

+[λI(k+1)(λρ j) + ( k
ρ j
)Ik(λρ j) sin(kθ j) sinθ j + kIk(λρ j) cos(kθ j)(

cosθ j
ρ j

)]ny
, (12)

∂(Ik(λρ j) cos(kθ j))

∂n =
S∑

j=1

P∑
k=1

[λI(k+1)(λρ j) + ( k
ρ j
)Ik(λρ j) cos(kθ j) cosθ j + kIk(λρ j) sin(kθ j)(

sinθ j
ρ j

)]nx

+[λI(k+1)(λρ j) + ( k
ρ j
)Ik(λρ j) cos(kθ j) sinθ j − kIk(λρ j) sin(kθ j)(

cosθ j
ρ j

)]ny
, (13)

Neumann boundary data are also imposed on the domain boundary using Equation (8):

∂u(xl)

∂n
≈

S∑
j=1

P∑
k=1

a j,k[ ∂(Ik(λρ j) sin(kθ j))/∂n ∂(Ik(λρ j) cos(kθ j))/∂n ]
T
= f (xl) (14)

where l = 1, . . . , Q, and f (xl) represents the Neumann boundary data given on the boundary points.
Using Equations (7) and (14), the following equation can be obtained as

Aα = b (15)

where A =



I1(λρ1) sin(θ1) I1(λρ1) cos(θ1) · · · Ik(λρ1) sin(kθ1) Ik(λρ1) cos(kθ1)

I1(λρ2) sin(θ2) I1(λρ2) cos(θ2) · · · Ik(λρ2) sin(kθ2) Ik(λρ2) cos(kθ2)
...

...
. . .

...
...

I1(λρc) sin(θc) I1(λρc) cos(θc) · · · Ik(λρc) sin(kθc) Ik(λρc) cos(kθc)

NI
j,k=1 NII

j,k=1 · · · NI
j,k=P NII

j,k=P
NI

j,k=1 NII
j,k=1 · · · NI

j,k=P NII
j,k=P

...
...

. . .
...

...
NI

j,k=1 NII
j,k=1 · · · NI

j,k=P NII
j,k=P



,

α =
[

a1 a2 a3 . . . . . . am−2 am−1 am
]T

, b =
[

g1 g2 . . . gc f1 f2 . . . fd
]T

, (16)

and

NI
j,k =

S∑
j=1

P∑
k=1

[λI(k+1)(λρ j) + (k/ρ j)Ik(λρ j) sin(kθ j) cosθ j − kIk(λρ j) cos(kθ j)(sinθ j/ρ j)]nx

+[λI(k+1)(λρ j) + (k/ρ j)Ik(λρ j) sin(kθ j) sinθ j + kIk(λρ j) cos(kθ j)(cosθ j/ρ j)]ny
(17)

NII
j,k =

S∑
j=1

P∑
k=1

[λI(k+1)(λρ j) + (k/ρ j)Ik(λρ j
)
cos(kθ j) cosθ j + kIk(λρ j

)
sin(kθ j)(sinθ j/ρ j)]nx

+[λI(k+1)(λρ j) + (k/ρ j)Ik(λρ j) cos(kθ j) sinθ j − kIk(λρ j) sin(kθ j)(cosθ j/ρ j)]ny
. (18)

In the preceding equations, A is a Q× S matrix, S represents the source point number, α represents
a vector with the size of S× 1 for unknown coefficients, b denotes a vector with the size of Q× 1 for
boundary values, c and d represent the boundary point number for Dirichlet and Neumann boundary
data, respectively, a1, a2, . . . , am are unknown coefficients to be determined, and g1, g2, . . . , gc and
f1, f2, . . . , fd denote the Dirichlet and Neumann boundary data, respectively.

To deal with the two-dimensional modified Helmholtz equation in layered materials,
the DDM [30,31] was adopted. It should be noted that the DDM was also used to deal with the
problems bounded by doubly and multiply connected domains in this study because the proposed
MSMA approximates the solution of the two-dimensional modified Helmholtz equation as the
combination of only particular nonsingular basis functions.

Unlike the CTM or the MFS, the MSMA does not consider the negative basis functions or the
so-called singular basis functions in the proposed method. As a result, we are not able to tackle the
singular solution in the cavity by using only the nonsingular basis functions. It is therefore necessary
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to split the domain into several simply connected subregions, such that we may guarantee subregions
existing only in a nonsingular solution.

In the DDM, the physical boundary is split into several simply connected subregions which are
connected at the interface between two consecutive subregions, as depicted in Figure 2. At the interface,
the overspecified boundary data need to be satisfied. A doubly connected domain, Ω, is split into two
subregions, Ω1 and Ω2. For the subregions, we have Γ1, Γ2, . . . , and Γ8 sub-boundaries, in which Ω1

is composed of Γ1, Γ2, Γ3, and Γ4 and Ω2 is composed of Γ5, Γ6, Γ7, and Γ8. To connect Ω1 and Ω2,
we may use both the Dirichlet and Neumann boundary conditions to satisfy the continuity condition
on the interface. The form of the continuity equations is described as follows:

u|Γ1 = u|Γ5 ,
∂u
∂n

∣∣∣∣∣
Γ1

=
∂u
∂n

∣∣∣∣∣
Γ5

, u|Γ3 = u|Γ7 ,
∂u
∂n

∣∣∣∣∣
Γ3

=
∂u
∂n

∣∣∣∣∣
Γ7

. (19)
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Using the DDM, we can obtain the matrix form, which is expressed as follows:

ADαD = bD (20)

AD =


AΩ1 0Ω2

AI|Γ1,Γ3
AI|Γ5,Γ7

0Ω1 AΩ2

, αD =

[
αΩ1

αΩ2

]
, bD =


bΩ1

bI

bΩ2

 (21)

where AΩ1 and AΩ2 are the matrix with the size of m1 × n1 and m2 × n2 for Ω1 and Ω2; m1 and m2

are the boundary collocation points for Ω1 and Ω2, respectively; and n1 and n2 are the terms of the
particular solutions for Ω1 and Ω2, respectively. At the interface, AI|Γ1,Γ3

has the size of mI × n1 for the
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boundary Γ1 and Γ3, and AI|Γ5,Γ7
has the size of mI × n2 for the boundary Γ5 and Γ7. mI represents the

boundary point number at the interface. 0Ω1 and 0Ω2 are vectors for which all values are zero with the
size of m2 × n1 and m1 × n2, respectively. αΩ1 denotes a n1 × 1 vector of unknown coefficients of Ω1,
αΩ2 denotes a n2 × 1 vector of unknown coefficients of Ω2. bI is the vector with the size of mI × 1 at the
interface, bI = [0g 0f ]T, and 0g and 0f are vectors for which all values are zero. Solving the matrix
form expressed in Equation (20), unknown coefficients bΩ1 and bΩ2 for subdomains Ω1 and Ω2 can
then be determined.

3. Numerical Examples

To validate the MSMA for solving the modified Helmholtz equation, six examples were conducted
to verify the proposed meshfree approach. The absolute error and relative root-mean-square error
were used to evaluate the accuracy of the numerical solution as follows:

Absolute error =
∣∣∣uana(xi) − unu(xi)

∣∣∣, (22)

Relative root−mean− square error =

√√√
1
nt

nt∑
i=1

(unu(xi) − uana(xi))
2/

√√√
1
nt

nt∑
i=1

uana2(xi) (23)

where nt is the number of inner points in the domain, and unu(xi) and unu(xi) are the analytical and
numerical solutions at xi, respectively.

3.1. Modeling of Modified Helmholtz Equation Bounded by a Simply Connected Region

This example is the modeling of the modified Helmholtz equation bounded by a simply connected
region with a gear-shaped domain, as depicted in Figure 3. The shape parameter of the physical
boundary is given by

∂Ω =
{
(x, y)

∣∣∣x = ρ(θ) cos(σ(θ)), y = ρ(θ) sin(σ(θ))
}
, (24)

where ρ(θ) = 0.2(2 + 0.5 sin(7θ)), σ(θ) = θ+ 0.5 sin(7θ), and 0 ≤ θ ≤ 2π.
We consider the following exact solution:

u = eλ/
√

2(x+y). (25)

In this case, the Dirichlet and Neumann boundary data are imposed using the exact solution.
The wave number λ is set as

√
2. Figure 3 illustrates the maximum absolute error (MAE) versus the

terms of the particular solutions, k. The MSMA can obtain highly accurate results in the order of
10−11 while k = 15. Figure 4 demonstrates the relationship of the MAE with the source point number.
When the source points number is more than 100, the proposed MSMA can obtain accurate results with
the order of 10−10. As shown in Figure 5, we found that the accuracy of the results decreased with the
increase of the wave number λ. To obtain the MAE, 1211 inner points were uniformly located within
the domain. Figure 6 shows the comparison of the numerical and analytical solutions. The results
demonstrate that the solutions of the MSMA agree very well with the exact solution.
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3.2. Accuracy Comparison of the Proposed Method

The second case is the modeling of the modified Helmholtz equation bounded by
an amoeba-shaped boundary, as illustrated in Figure 7. In this example, the results computed
by MSMA were compared with those from the SBM [15]. The shape parameter of the irregular physical
boundary is described by
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∂Ω =
{
(x, y)

∣∣∣x = ρ(θ) cos(θ), y = ρ(θ) sin(θ)
}
, (26)

in which ρ = e(sinθ sin 2θ)2
+ e(cosθ cos 2θ)2

, and 0 ≤ θ ≤ 2π.
Three different exact solutions can be found as follows:

u = eλx, (27)

u = e(
√

2λ/2)(x−y), (28)

u = e(λ/2)(x+
√

3y). (29)

In the numerical implementation, the terms of the particular solutions, k, was 15. The Dirichlet
boundary data were imposed on the domain boundary using three different analytical solutions,
as depicted in Equations (27)–(29). The wave number λ was set as π. The computed results using the
MSMA were compared with the SBM [15]. We obtained highly accurate numerical solutions while the
boundary and source point number was greater than 100, as shown in Figure 8a. Compared with the
results using the SBM [15] as shown in Figure 8b, we found that the accuracy of the MSMA was much
more accurate than the SBM. Figure 9a shows the accuracy for the relative root-mean-square error
versus the wave number. It was found that the accuracy of the increased wave number may decrease
the accuracy of the computed results. Figure 9b shows the relative root-mean-square error versus the
wave number computed by the SBM [15]. Figure 9 shows that the accuracy of the MSMA is better than
that from the SBM.
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3.3. Investigation of the Wave Number

The third case is the modeling of the modified Helmholtz equation bounded by a peanut-shaped
boundary, as depicted in Figure 10. To examine the effect of the wave number for the numerical results,
different values of the wave number were considered in the example. The shape parameter of the
irregular physical boundary is described by

∂Ω =
{
(x, y)

∣∣∣x = ρ(θ) cos(θ), y = ρ(θ) sin(θ)
}
, (30)
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where ρ = 0.1
√

cos(2θ) +
√

1.1− sin2(2θ), and 0 ≤ θ ≤ 2π.
To solve the modified Helmholtz equation, the exact solution can be found as

u = e(
√

2λ/2)(x−y). (31)

The Dirichlet boundary values were imposed on the domain boundary using the exact solution.
We investigated the accuracy of the proposed method by using different values of the wave number
ranging from 1 to 50. Figure 10 shows the accuracy for the MAE versus the wave number using the
proposed meshfree approach. As illustrated in Figure 10, the accuracy can be found in the order of
10−9 while λ = 50. The numerical solutions revealed that the MSMA may yield highly accurate results
even when the high wave number is considered.
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3.4. Solution of the Modified Helmholtz Equation Bounded by a Doubly Connected Region

The fourth case is the modeling of the modified Helmholtz equation bounded by a doubly
connected region, as depicted in Figure 11. The shape parameter of the concentric circles is described by

∂Ω1 =
{
(x, y)

∣∣∣x = ρ1 cosθ1, y = ρ1 sinθ1
}
, ρ1 = 1, (32)

∂Ω2 =
{
(x, y)

∣∣∣x = ρ2 cosθ2, y = ρ2 sinθ2
}
, ρ2 = 0.5. (33)

The exact solution of this example can be found as follows:

u = I3(kρ) cos(3θ)+K3(kρ) cos(3θ) (34)

where I3 is the modified Bessel function of the third order for the first kind, and K3 is the modified
Bessel function of the third order for the second kind. In this example, the terms of the particular
solutions were set to be 15. The wave number was set as

√
2. For this example, the physical boundary,

enclosed by a doubly connected region, was split into two simply connected subregions using the
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DDM [30,31], as depicted in Figure 11. Four hundred boundary and source points were interactively
arranged on the physical boundary. Figure 12 shows that the sub-boundaries at the interface contained
four sub-boundaries: Γ1, Γ3, Γ5, and Γ7. The overspecified boundary conditions enforced on the
boundary and source points at the interface are described by

u|Γ1 = u|Γ5 ,
∂u
∂n

∣∣∣∣∣
Γ1

=
∂u
∂n

∣∣∣∣∣
Γ5

, u|Γ3 = u|Γ7 ,
∂u
∂n

∣∣∣∣∣
Γ3

=
∂u
∂n

∣∣∣∣∣
Γ7

. (35)

To examine the accuracy, 2415 inner points were placed within the domain to obtain the numerical
results. We also compared the numerical solutions with the above exact solution, as illustrated in
Figure 13. It seems that the numerical solutions perfectly agree with the exact solution. Furthermore,
the MAE of the MSMA can be obtained in the order of 10−6.
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3.5. Solution of Modified Helmholtz Equation Bounded by a Multiply Connected Region

The fifth case is the modified Helmholtz equation bounded by a multiply connected region,
as depicted in Figure 14. For the multiply connected domain including more than one cavity, we must
place multiple source points within the physical boundary. Because the proposed MSMA does not
consider the negative basis functions or the so-called singular basis functions, we cannot tackle the
singular solution in the cavity by using only the nonsingular basis functions. Accordingly, to deal with
problems bounded by multiply connected domains, the DDM was adopted, which split the domain
into several simply connected subregions, such that we may guarantee subregions existing only in
a nonsingular solution. The shape parameter of the physical boundary is given by

∂Ω1 =
{
(x, y)

∣∣∣x = ρ1 cosθ1, y = ρ1 sinθ1
}
, ρ1 = (cos(3θ1) +

√
2− (sin(3θ1))

2)
1/3

,
0 ≤ θ1 ≤ 2π,

(36)

∂Ω2 =
{
(x, y)

∣∣∣x = ρ2 cosθ2, y = ρ2 sinθ2
}
, ρ2 = e(sinθ2 sin 2θ2)

2
+ e(cosθ2 cos 2θ2)

2
, 0 ≤ θ2 ≤ 2π, (37)

∂Ω3 =
{
(x, y)

∣∣∣x = ρ3 cosθ3, y = ρ3 sinθ3
}
, ρ3 =

√
cos(2θ3) +

√
1.1− (sin(2θ3))

2,

0 ≤ θ3 ≤ 2π.
(38)

The exact solution can be found as follows:

u = I1(kρ) cosθ+ K1(kρ) cosθ, (39)

where I1 is the modified Bessel function of the first order for the first kind, and K1 is the modified Bessel
function of the first order for the second kind. In this example, the term of the particular solutions was
15. The wave number was set as

√
2. For this example, the physical boundary, enclosed by a doubly

connected region, was split into two simply connected subregions using the DDM [30,31], as depicted
in Figure 14. Four hundred boundary and source points were interactively arranged on the physical
boundary. Figure 15 shows that the sub-boundaries at the interface contained six sub-boundaries: Γ2,
Γ4, Γ6, Γ8, Γ10, and Γ12. The overspecified boundary conditions enforced on the boundary and source
points at the interface are described by

u|Γ2 = u|Γ8 ,
∂u
∂n

∣∣∣∣∣
Γ2

=
∂u
∂n

∣∣∣∣∣
Γ8

, u|Γ4 = u|Γ10 ,
∂u
∂n

∣∣∣∣∣
Γ4

=
∂u
∂n

∣∣∣∣∣
Γ10

, u|Γ6 = u|Γ12 ,
∂u
∂n

∣∣∣∣∣
Γ6

=
∂u
∂n

∣∣∣∣∣
Γ12

. (40)

To examine the accuracy, 2737 inner points were placed within the domain to obtain the
numerical results. We also compared the numerical solutions with the exact solution, as illustrated in
Figure 16. The results demonstrate that the numerical solutions perfectly agree with the exact solution.
Furthermore, the MAE of the MSMA can be obtained in the order of 10−6.
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3.6. Solution of Modified Helmholtz Equation in Two Layered Materials

The last example is the modeling of the modified Helmholtz equation in two layered materials,
as depicted in Figure 17. The wave number in two subdomains were set to be λ1 and λ2, in which
λ1 =

√
2 and λ2 = 1, respectively. The shape parameter of the boundary is described by

∂Ω1 =
{
(x1, y1)

∣∣∣0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 0.5
}
, (41)

∂Ω2 =
{
(x2, y2)

∣∣∣0 ≤ x2 ≤ 1, 0 ≤ y2 ≤ −0.5
}
. (42)

The exact solutions are as follows:
u1 = ex+y, (43)

u2 = ex(1 + y). (44)

In this example, the terms of the particular solutions were 10. For modeling the modified Helmholtz
equation in two layered materials, the physical boundary was split into two simply connected subregions
using the DDM [30,31], as illustrated in Figure 17. For each subregion, 600 boundary and source points
were interactively arranged on the physical boundary. Figure 17 also shows that the sub-boundaries
at the interface contained two sub-boundaries: Γ1 and Γ5. The overspecified boundary conditions
enforced on the boundary and source points at the interface are described by

u|Γ1 = u|Γ5 ,
∂u
∂n

∣∣∣∣∣
Γ1

=
∂u
∂n

∣∣∣∣∣
Γ5

. (45)

To evaluate the accuracy of the problem, 900 inner points were arranged within the domain
to obtain the numerical results. We also compared the numerical solutions with the exact solution,
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as depicted in Figure 18. The results demonstrate that our results agree well with the above exact
solution. Furthermore, we found that the MAE of the MSMA can be obtained in the order of 10−7,
as depicted in Figure 19.
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4. Discussion

In this paper, we proposed a multiple source meshfree approach for solving a two-dimensional
modified Helmholtz equation in layered materials. The novel conception of the proposed MSMA
started with the MFS and the CTM. The advantages of the proposed method are as follows.

The proposed method for solving the modified Helmholtz equation avoids a complicated procedure
for finding the location of the sources. By adopting the nonsingular functions, the source points can
be collocated on or within the domain boundary. Compared with other methods, highly accurate
solutions can be obtained regardless of the location of source points. We also demonstrated that the
proposed method incorporated with the DDM can be used to solve the modified Helmholtz equation
in layered materials as well as the domain bounded by simply and multiply connected regions.

We investigated the accuracy of the proposed method by using different values of the wave
number ranging from 1 to 50 for the modified Helmholtz equation. The accuracy of the MSMA was
found in the order of 10−9, while the wave number was 50. The computed results revealed that the
MSMA may yield highly accurate results even when a high wave number is considered. The proposed
method is, however, limited for solving linear governing equations due to the approximation of the
solution using the addition theorem.

5. Conclusions

In this study, we presented a meshfree approach for solving the modified Helmholtz equation
bounded by simply, doubly, and multiply connected regions using the MSMA in two dimensions.
The modified Helmholtz equation in two layered materials was also considered. The method was
verified and numerical examples were also performed. We may point out the two major achievements
of the paper:
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1. The key idea of the MSMA stems from the indirect boundary element method, which adopts
multiple source points. Because of the adoption of nonsingular functions, the sources can be
collocated on or within the domain boundary without using a complicated searching algorithm
to find the appropriate location of the source points.

2. To the best of our knowledge, the MSMA using nonsingular basis functions is newly developed.
A pioneering work for solving the modified Helmholtz equation bounded by a multiply connected
region was conducted using the MSMA in this study. Furthermore, the MAE of the proposed
approach for the modified Helmholtz equation in two layered materials can reach up to the
order of 10−7. From the computed results, we conclude that the MSMA is relatively simple
because it avoids a complicated procedure for finding the appropriate location of the source
points. Moreover, the MSMA has advantages of highly accurate and boundary collocation only
for solving problems with complex geometry.
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