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Abstract: This paper considers a topological transversality theorem for multivalued maps with
continuous, compact selections. Basically, this says, if we have two maps F and G with continuous
compact selections and F ∼= G, then one map being essential guarantees the essentiality of the
other map.

Keywords: essential maps; homotopy; selections

MSC: 47H10; 54H25

1. Introduction

In this paper, we consider multivalued maps F and G with continuous, compact selections and
F ∼= G in this setting. The topological transversality theorem will state that F is essential if and only
if G is essential (essential maps were introduced by Granas [1] and extended by Precup [2], Gabor,
Gorniewicz, and Slosarsk [3], and O’Regan [4,5]). For an approach to other classes of maps, we refer the
reader to O’Regan [6], where one sees that ∼= in the appropriate class can be challenging. However, the
topological transversality theorem for multivalued maps with continuous compact selections has not
been considered in detail. In this paper, we present a simple result that immediately yields a topological
transversality theorem in this setting. In particular, we show that, for two maps F and G with continuous
compact selections and F ∼= G, then one map being essential (or d–essential) guarantees that the other is
essential (or d–essential). We also discuss these maps in the weak topology setting.

2. Topological Transversality Theorem

We will consider a class A of maps. Let E be a completely regular space (i.e., a Tychonoff space)
and U an open subset of E.

Definition 1. We say f ∈ D(U, E) if f : U → E is a continuous, compact map; here, U denotes the closure of
U in E.

Definition 2. We say f ∈ D∂U(U, E) if f ∈ D(U, E) and x 6= f (x) for x ∈ ∂U; here, ∂U denotes the
boundary of U in E.

Definition 3. We say F ∈ A(U, E) if F : U → 2E with F ∈ A(U, E) and there exists a selection f ∈ D(U, E)
of F; here, 2E denotes the family of nonempty subsets of E.

Remark 1. Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and F a multifunction.
We say F ∈ PK(Z, W) if W is convex and there exists a map S : Z →W with Z = ∪ {int S−1(w) : w ∈W},
co (S(x)) ⊆ F(x) for x ∈ Z and S(x) 6= ∅ for each x ∈ Z; here, S−1(w) = {z : w ∈ S(z)}. Let E be
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a Hausdorff topological vector space (note topological vector spaces are completely regular), U an open subset
of E and U paracompact. In this case, we say F ∈ A(U, E) if F ∈ PK(U, E) is a compact map. Now, [7]
guarantees that there exists a continuous, compact selection f : U → E of F.

Definition 4. We say F ∈ A∂U(U, E) if F ∈ A(U, E) and x /∈ F(x) for x ∈ ∂U.

Definition 5. We say F ∈ A∂U(U, E) is essential in A∂U(U, E) if for any selection f ∈ D(U, E) of F and
any map g ∈ D∂U(U, E) with f |∂U = g|∂U there exists a x ∈ U with x = g(x).

Remark 2. If F ∈ A∂U(U, E) is essential in A∂U(U, E) and if f ∈ D(U, E) is any selection of F then there
exists a x ∈ U with x = f (x) (take g = f in Definition 5), so in particular there exists a x ∈ U with x ∈ F(x).

Definition 6. Let f , g ∈ D∂U(U, E). We say f ∼= g in D∂U(U, E) if there exists a continuous, compact map
h : U× [0, 1]→ E with x 6= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = f and h1 = g.

Remark 3. A standard argument guarantees that ∼= in D∂U(U, E) is an equivalence relation.

Definition 7. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if for any selection f ∈ D∂U(U, E)
(respectively, g ∈ D∂U(U, E)) of F (respectively, of G) we have f ∼= g in D∂U(U, E).

Theorem 1. Let E be a completely regular topological space, U an open subset of E, F ∈ A∂U(U, E) and
G ∈ A∂U(U, E) is essential in A∂U(U, E). In addition, suppose

for any selection f ∈ D∂U(U, E) (respectively, g ∈ D∂U(U, E))
of F (respectively, of G) and any map θ ∈ D∂U(U, E)
with θ|∂U = f |∂U we have g ∼= θ in D∂U(U, E).

(1)

Then, F is essential in A∂U(U, E).

Proof. Let f ∈ D∂U(U, E) be any selection of F and consider any map θ ∈ D∂U(U, E) with θ|∂U = f |∂U .
We must show that there exists a x ∈ U with x = θ(x). Let g ∈ D∂U(U, E) be any selection of G. Now,
(1) guarantees that there exists a continuous, compact map h : U × [0, 1]→ E with x 6= ht(x) for any
x ∈ ∂ U and t ∈ (0, 1) (here, ht(x) = h(x, t)), h0 = g and h1 = θ. Let

Ω =
{

x ∈ U : x = h(x, t) for some t ∈ [0, 1]
}

.

Now, Ω 6= ∅ (note G is essential in A∂U(U, E)) and Ω is closed (note h is continuous) and so Ω is
compact (note h is a compact map). In addition, note Ω ∩ ∂U = ∅ since x 6= ht(x) for any x ∈ ∂ U and
t ∈ [0, 1]. Then, since E is Tychonoff, there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0
and µ(Ω) = 1. Define the map r by r(x) = h(x, µ(x)) = h ◦ g(x), where g : U → U × [0, 1] is given
by g(x) = (x, µ(x)). Note that r ∈ D∂U(U, E) (i.e., r is a continuous compact map) with r|∂U = g|∂U
(note if x ∈ ∂U then r(x) = h(x, 0) = g(x)) so since G is essential in A∂U(U, E) there exists a x ∈ U
with x = r(x) (i.e., x = hµ(x)(x)). Thus, x ∈ Ω so µ(x) = 1 and thus x = h1(x) = θ(x).

Let E be a topological vector space. Before we prove the topological transversality theorem,
we note the following:

(a) If f , g ∈ D∂U(U, E) with f |∂U = g|∂U , then f ∼= g in D∂U(U, E). To see this, let h(x, t) =

(1− t) f (x) + t g(x) and note h : U × [0, 1]→ E is a continuous, compact map with x 6= ht(x) for
any x ∈ ∂ U and t ∈ (0, 1) (note f |∂U = g|∂U).

Theorem 2. Let E be a topological vector space and U an open subset of E. Suppose that F and G are two
maps in A∂U(U, E) with F ∼= G in A∂U(U, E). Now, F is essential in A∂U(U, E) if and only if G is essential
in A∂U(U, E).
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Proof. Assume G is essential in A∂U(U, E). We will use Theorem 1 to show F is essential in A∂U(U, E).
Let f ∈ D∂U(U, E) be any selection of F, g ∈ D∂U(U, E) be any selection of G and consider any map
θ ∈ D∂U(U, E) with θ|∂U = f |∂U . Now, (a) above guarantees that f ∼= θ in D∂U(U, E) and this together
with F ∼= G in A∂U(U, E) (so f ∼= g in D∂U(U, E)) and Remark 3 guarantees that g ∼= θ in D∂U(U, E).
Thus, (1) holds so Theorem 1 guarantees that F is essential in A∂U(U, E). A similar argument shows
that, if F is essential in A∂U(U, E), then G is essential in A∂U(U, E).

Theorem 3. Let E be a Hausdorff locally convex topological vector space, U an open subset of E and 0 ∈ U.
Assume the zero map is in A(U, E). Then, the zero map is essential in A∂U(U, E).

Proof. Note F(x) = {0} for x ∈ U (i.e., F is the zero map) and let f ∈ D∂U(U, E) be any selection of F.
Note f (x) = 0 for x ∈ U. Consider any map g ∈ D∂U(U, E) with g|∂U = f |∂U = {0}. We must show
there exists a x ∈ U with x = g(x). Let

r(x) =

{
g(x), x ∈ U,
0, x ∈ E\U.

Note r : E → E is a continuous, compact map so [8] guarantees that there exists a x ∈ E with
x = r(x). If x ∈ E \U, then r(x) = 0, a contradiction since 0 ∈ U. Thus, x ∈ U and so x = g(x).

Now, we consider the above in the weak topology setting. Let X be a Hausdorff locally convex
topological vector space and U a weakly open subset of C where C is a closed convex subset of X.
Again, we consider a class A of maps.

Definition 8. We say f ∈WD(Uw, C) if f : Uw → C is a weakly continuous, weakly compact map; here, Uw

denotes the weak closure of U in C.

Definition 9. We say f ∈WD∂U(Uw, C) if f ∈WD(Uw, C) and x 6= f (x) for x ∈ ∂U; here, ∂U denotes
the weak boundary of U in C.

Definition 10. We say F ∈ WA(Uw, C) if F : Uw → 2C with F ∈ A(Uw, C) and there exists a selection
f ∈WD(Uw, C) of F.

Definition 11. We say F ∈WA∂U(Uw, C) if F ∈WA(Uw, C) and x /∈ F(x) for x ∈ ∂U.

Definition 12. We say F ∈WA∂U(Uw, C) is essential in WA∂U(Uw, C) if for any selection f ∈WD(Uw, C)
of F and any map g ∈WD∂U(Uw, C) with f |∂U = g|∂U there exists a x ∈ U with x = g(x).

Definition 13. Let f , g ∈ WD∂U(Uw, C). We say f ∼= g in WD∂U(Uw, C) if there exists a weakly
continuous, weakly compact map h : Uw × [0, 1] → C with x 6= ht(x) for any x ∈ ∂ U and t ∈ (0, 1)
(here ht(x) = h(x, t)), h0 = f and h1 = g.

Definition 14. Let F, G ∈ WA∂U(Uw, C). We say F ∼= G in WA∂U(Uw, C) if for any selection f ∈
WD∂U(Uw, C) (respectively, g ∈WD∂U(Uw, C)) of F (respectively, of G) we have f ∼= g in WD∂U(Uw, C).

Theorem 4. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of C,
where C is a closed convex subset of X. Suppose F ∈ WA∂U(Uw, C) and G ∈ WA∂U(Uw, C) is essential in
WA∂U(Uw, C) and

for any selection f ∈WD∂U(Uw, C) (respectively, g ∈WD∂U(Uw, C))
of F (respectively, of G) and any map θ ∈WD∂U(Uw, C)
with θ|∂U = f |∂U we have g ∼= θ in WD∂U(Uw, C).

(2)
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Then, F is essential in WA∂U(Uw, C).

Proof. Let f ∈ WD∂U(Uw, C) be any selection of F and consider any map θ ∈ WD∂U(Uw, C) with
θ|∂U = f |∂U . Let g ∈ WD∂U(Uw, C) be any selection of G. Now, (2) guarantees that there exists
a weakly continuous, weakly compact map h : Uw × [0, 1] → C with x 6= ht(x) for any x ∈ ∂ U and
t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g and h1 = θ. Let

Ω =
{

x ∈ Uw : x = h(x, t) for some t ∈ [0, 1]
}

.

Recall that X = (X, w), the space X endowed with the weak topology, is completely regular.
Now, Ω 6= ∅ is weakly closed and is in fact weakly compact with Ω ∩ ∂U = ∅. Thus, there exists
a weakly continuous map µ : Uw → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define the map r by
r(x) = h(x, µ(x)) and note r ∈WD∂U(Uw, C) with r|∂U = g|∂U . Since G is essential in WA∂U(Uw, C),
there exists a x ∈ U with x = r(x). Thus, x ∈ Ω so x = h1(x) = θ(x).

An obvious modification of the argument in Theorem 2 immediately yields the following result.

Theorem 5. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of
C, where C is a closed convex subset of X. Suppose F and G are two maps in WA∂U(U, C) with F ∼= G in
WA∂U(U, C). Now, F is essential in WA∂U(U, C) if and only if G is essential in WA∂U(U, C).

Now, we consider a generalization of essential maps, namely the d–essential maps [2]. Let E be
a completely regular topological space and U an open subset of E. For any map f ∈ D(U, E), let
f ? = I × f : U → U × E, with I : U → U given by I(x) = x, and let

d :
{
( f ?)−1 (B)

}
∪ {∅} → K (3)

be any map with values in the nonempty set K; here, B =
{
(x, x) : x ∈ U

}
.

Definition 15. Let F ∈ A∂U(U, E) with F? = I × F. We say F? : U → 2U×E is d–essential if, for any
selection f ∈ D(U, E) of F and any map g ∈ D∂U(U, E) with f |∂U = g|∂U , we have that d

(
( f ?)−1 (B)

)
=

d
(
(g?)−1 (B)

)
6= d(∅); here, f ? = I × f and g? = I × g.

Remark 4. If F? is d–essential, then, for any selection f ∈ D(U, E) of F (with f ? = I × f ), we have

∅ 6= ( f ?)−1 (B) = {x ∈ U : (x, f (x)) ∈ B},

so there exists a x ∈ U with x = f (x) (so, in particular, x ∈ F(x)).

Theorem 6. Let E be a completely regular topological space, U an open subset of E, B =
{
(x, x) : x ∈ U

}
,

d is defined in(3), F ∈ A∂U(U, E), G ∈ A∂U(U, E) with F? = I × F and G? = I × G. Suppose G? is
d–essential and

for any selection f ∈ D∂U(U, E) (respectively, g ∈ D∂U(U, E))
of F (respectively, of G) and any map θ ∈ D∂U(U, E)
with θ|∂U = f |∂U we have g ∼= θ in D∂U(U, E) and
d
(
( f ?)−1 (B)

)
= d

(
(g?)−1 (B)

)
; here f ? = I × f and g? = I × g.

(4)

Then, F? is d–essential.
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Proof. Let f ∈ D∂U(U, E) be any selection of F and consider any map θ ∈ D∂U(U, E) with θ|∂U =

f |∂U . We must show d
(
( f ?)−1 (B)

)
= d

(
(θ?)−1 (B)

)
6= d(∅); here, f ? = I × f and θ? = I × θ.

Let g ∈ D∂U(U, E) be any selection of G. Now, (4) guarantees that there exists a continuous, compact
map h : U × [0, 1] → E with x 6= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g,
h1 = θ and d

(
( f ?)−1 (B)

)
= d

(
(g?)−1 (B)

)
; here, g? = I × g. Let h? : U × [0, 1]→ U × E be given

by h?(x, t) = (x, h(x, t)) and let

Ω =
{

x ∈ U : h?(x, t) ∈ B for some t ∈ [0, 1]
}

.

Now, Ω 6= ∅ is closed, compact and Ω ∩ ∂U = ∅ so there exists a continuous map µ : U → [0, 1]
with µ(∂U) = 0 and µ(Ω) = 1. Define the map r by r(x) = h(x, µ(x)) and r? = I × r. Now,
r ∈ D∂U(U, E) with r|∂U = g|∂U . Since G? is d–essential, then

d
(
(g?)−1 (B)

)
= d

(
(r?)−1 (B)

)
6= d(∅). (5)

Now, since µ(Ω) = 1, we have

(r?)−1 (B) =
{

x ∈ U : (x, h(x, µ(x))) ∈ B
}
=
{

x ∈ U : (x, h(x, 1)) ∈ B
}

= (θ?)−1 (B),

so, from the above and Equation (5), we have d
(
( f ?)−1 (B)

)
= d

(
(θ?)−1 (B)

)
6= d(∅).

Theorem 7. Let E be a completely regular topological space, U an open subset of E, B =
{
(x, x) : x ∈ U

}
and d is defined in (3). Suppose F and G are two maps in A∂U(U, E) with F? = I × F, G? = I × G and
F ∼= G in A∂U(U, E). Then, F? is d–essential if and only if G? is d–essential.

Proof. Assume G? is d–essential. Let f ∈ D∂U(U, E) be any selection of F, g ∈ D∂U(U, E) be any
selection of G and consider any map θ ∈ D∂U(U, E) with θ|∂U = f |∂U . If we show (4), then F? is
d–essential from Theorem 6. Now, f ∼= θ in D∂U(U, E) together with F ∼= G in A∂U(U, E) (so f ∼= g in
D∂U(U, E)) guarantees that g ∼= θ in D∂U(U, E). To complete (4), we need to show d

(
( f ?)−1 (B)

)
=

d
(
(g?)−1 (B)

)
; here, f ? = I × f and g? = I × g. We will show this by following the argument in

Theorem 6. Note G ∼= F in A∂U(U, E) and let h : U × [0, 1] → E be a continuous, compact map
with x 6= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g and h1 = f . Let
h? : U × [0, 1]→ U × E be given by h?(x, t) = (x, h(x, t)) and let

Ω =
{

x ∈ U : h?(x, t) ∈ B for some t ∈ [0, 1]
}

.

Now, Ω 6= ∅ and there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1.
Define the map r by r(x) = h(x, µ(x)) and r? = I × r. Now, r ∈ D∂U(U, E) with r|∂U = g|∂U so, since
G? is d–essential, then d

(
(g?)−1 (B)

)
= d

(
(r?)−1 (B)

)
6= d(∅). Now, since µ(Ω) = 1, we have (see

the argument in Theorem 6) (r?)−1 (B) = ( f ?)−1 (B) and, as a result, we have d
(
( f ?)−1 (B)

)
=

d
(
(g?)−1 (B)

)
.

Remark 5. It is also easy to extend the above ideas to other natural situations. Let E be a (Hausdorff) topological
vector space (so automatically completely regular), Y a topological vector space, and U an open subset of
E. In addition, let L : dom L ⊆ E → Y be a linear (not necessarily continuous) single valued map; here,
dom L is a vector subspace of E. Finally, T : E → Y will be a linear, continuous single valued map with
L + T : dom L → Y an isomorphism (i.e., a linear homeomorphism); for convenience we say T ∈ HL(E, Y).
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We say F ∈ A(U, Y; L, T) if (L + T)−1 (F + T) ∈ A(U, E) and we could discuss essential and d–essential in
this situation.

Now, we present an example to illustrate our theory.

Example 1. Let E be a Hausdorff locally convex topological vector space, U an open subset of E , 0 ∈ U
and U paracompact. In this case, we say that F ∈ A(U, E) if F ∈ PK(U, E) (see Remark 1) is a compact
map. Let F ∈ A∂U(U, E) and assume x /∈ λF (x) for x ∈ ∂U and λ ∈ (0, 1). Then, F ∼= 0 in A∂U(U, E).
To see this, let f ∈ D∂U(U, E) be any selection of F and let h : U × [0, 1] be given by h(x, t) = t f (x). Note
that h0 = 0, h1 = f and x /∈ ht(x) for x ∈ ∂U and λ ∈ (0, 1) so f ∼= 0 in D∂U(U, E). Now, Theorems 2 and 3
guarantee that F is essential in A∂U(U, E).

3. Conclusions

In this paper, we prove that, for two set-valued maps F and G with continuous compact selections
and F ∼= G, then one being essential (or d–essential) guarantees that the other is essential (or d–essential).
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