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Abstract: This paper considers a topological transversality theorem for multivalued maps with
continuous, compact selections. Basically, this says, if we have two maps F and G with continuous
compact selections and F = G, then one map being essential guarantees the essentiality of the
other map.
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1. Introduction

In this paper, we consider multivalued maps F and G with continuous, compact selections and
F = G in this setting. The topological transversality theorem will state that F is essential if and only
if G is essential (essential maps were introduced by Granas [1] and extended by Precup [2], Gabor,
Gorniewicz, and Slosarsk [3], and O’Regan [4,5]). For an approach to other classes of maps, we refer the
reader to O'Regan [6], where one sees that = in the appropriate class can be challenging. However, the
topological transversality theorem for multivalued maps with continuous compact selections has not
been considered in detail. In this paper, we present a simple result that immediately yields a topological
transversality theorem in this setting. In particular, we show that, for two maps F and G with continuous
compact selections and F = G, then one map being essential (or d-essential) guarantees that the other is
essential (or d—essential). We also discuss these maps in the weak topology setting.

2. Topological Transversality Theorem
We will consider a class A of maps. Let E be a completely regular space (i.e., a Tychonoff space)

and U an open subset of E.

Definition 1. We say f € D(U, E) if f : U — E is a continuous, compact map; here, U denotes the closure of
Uin E.

Definition 2. We say f € Dyy (U, E) if f € D(U,E) and x # f(x) for x € oU; here, 0U denotes the
boundary of U in E.

Definition 3. Wesay F € A(U,E) if F: U — 2F with F € A(U, E) and there exists a selection f € D(U, E)
of F; here, 2F denotes the family of nonempty subsets of E.

Remark 1. Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y, and F a multifunction.

We say F € PK(Z, W) if W is convex and there exists amap S : Z — W with Z = U {int S~ (w) : w € W},
co (S(x)) C F(x) for x € Z and S(x) # @ for each x € Z; here, S~ (w) = {z : w € S(z)}. Let E be
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a Hausdorff topological vector space (note topological vector spaces are completely regular), U an open subset
of E and U paracompact. In this case, we say F € A(U,E) if F € PK(U,E) is a compact map. Now, [7]
guarantees that there exists a continuous, compact selection f : U — E of F.

Definition 4. Wesay F € Ay (U, E) if F € A(U,E) and x ¢ F(x) for x € oU.

Definition 5. We say F € Ay (U, E) is essential in Ay (U, E) if for any selection f € D(U, E) of F and
any map g € Dy (U, E) with flau = glau there exists a x € U with x = g(x).

Remark 2. If F € Ay (U

,E) is essential in Ay (U, E) and if f € D(U, E) is any selection of F then there
existsa x € U with x = f(x)

(take ¢ = f in Definition 5), so in particular there exists a x € U with x € F(x).

Definition 6. Let f, ¢ € Dy (U, E). Wesay f = g in Dy (U, E) if there exists a continuous, compact map
h:Ux[0,1] — Ewith x # h(x) forany x € dU and t € (0,1) (here hy(x) = h(x,t)), ho = fand hy = g.

Remark 3. A standard arqument guarantees that = in Dy (U, E) is an equivalence relation.

Definition 7. Let F, G € Ayy(U,E). Wesay F = G in Ayy (U, E) if for any selection f € Dy (U, E)
(respectively, g € Dy (U, E)) of F (respectively, of G) we have f = g in Dy (U, E).

Theorem 1. Let E be a completely regular topological space, U an open subset of E, F € Ayy(U,E) and
G € Ayu(U, E) is essential in Ayy (U, E). In addition, suppose

for any selection f € Dy (U, E) (respectively, ¢ € Dy;(U, E))
of F (respectively, of G)and any map 0 € Dy (U, E) (1)
with 0|3y = flou wehave ¢ =0 in Dyy(U,E).

Then, F is essential in Ay (U, E).

Proof. Let f € Dy;(U, E) be any selection of F and consider any map 6 € Dyy; (U, E) with 0|3y = flau-
We must show that there exists a x € U with x = 6(x). Let ¢ € Dy;(U, E) be any selection of G. Now,
(1) guarantees that there exists a continuous, compact map 1 : U x [0,1] — E with x # h(x) for any
xe€odlUandt e (0,1) (here, ht(x) = h(x,t)), hp = gand h; = 6. Let

QO={xelU: x=h(x,t) forsome te[0,1]}.

Now, Q) # @ (note G is essential in Ay (U, E)) and Q is closed (note £ is continuous) and so () is
compact (note / is a compact map). In addition, note O N oU = @ since x # h;(x) for any x € 0 U and
t € [0,1]. Then, since E is Tychonoff, there exists a continuous map y : U — [0,1] with u(dU) =0
and u(Q) = 1. Define the map r by r(x) = h(x, u(x)) = ho g(x), where ¢ : U — U x [0,1] is given
by g(x) = (x,u(x)). Note that r € Dy;(U, E) (i.e., r is a continuous compact map) with 7| = ¢lau
(note if x € 9U then r(x) = h(x,0) = g(x)) so since G is essential in Ay;;(U, E) there exists a x € U
with x = r(x) (i.e, x = hy(y)(x)). Thus, x € Qso p(x) = 1 and thus x = hy(x) = 0(x). O

Let E be a topological vector space. Before we prove the topological transversality theorem,
we note the following:

(@ If f,¢ € Dyy(U,E) with flyy = glou, then f = g in Dy (U, E). To see this, let h(x,t) =
(1—1t)f(x)+tg(x)andnote h: U x [0,1] — E is a continuous, compact map with x # h;(x) for
any x € dU and t € (0,1) (note flyy = glau)-

Theorem 2. Let E be a topological vector space and U an open subset of E. Suppose that F and G are two
maps in Ay (U, E) with F = G in Ay (U, E). Now, F is essential in Ay (U, E) if and only if G is essential
in Aau (U, E)
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Proof. Assume G is essential in Ay (U, E). We will use Theorem 1 to show F is essential in Ay (U, E).
Let f € Dy (U, E) be any selection of F, g§ € Dy;(U, E) be any selection of G and consider any map
0 € Dyy (U, E) with 0|3 = flau- Now, (a) above guarantees that f 2 6 in Dy (U, E) and this together
with F 2 G in Ay (U, E) (so f = gin Dy (U, E)) and Remark 3 guarantees that ¢ = 6 in Dy (U, E).
Thus, (1) holds so Theorem 1 guarantees that F is essential in Ay;;(U, E). A similar argument shows
that, if F is essential in Ay (U, E), then G is essential in Ay (U, E). O

Theorem 3. Let E be a Hausdorff locally convex topological vector space, U an open subset of E and 0 € U.
Assume the zero map is in A(U, E). Then, the zero map is essential in Ay (U, E).

Proof. Note F(x) = {0} for x € U (i.e., F is the zero map) and let f € Dy;(U, E) be any selection of F.
Note f(x) = 0 for x € U. Consider any map g € Dy (U, E) with ¢|o; = flauy = {0}. We must show
there exists a x € U with x = g(x). Let

) glx), xeU,
r(x) = { 0, x € E\T.

Note r : E — E is a continuous, compact map so [8] guarantees that there exists a x € E with
x =r(x). If x € E\U, then r(x) = 0, a contradiction since 0 € U. Thus, x € Uand so x = g(x). O

Now, we consider the above in the weak topology setting. Let X be a Hausdorff locally convex
topological vector space and U a weakly open subset of C where C is a closed convex subset of X.
Again, we consider a class A of maps.

Definition 8. Wesay f € WD(U®,C) if f : U® — C is a weakly continuous, weakly compact map; here, U%
denotes the weak closure of U in C.

Definition 9. We say f € WD, (U%,C) if f € WD(U®,C) and x # f(x) for x € oU; here, 9U denotes
the weak boundary of U in C.

Definition 10. We say F € WA(UY,C) if F : U% — 2€ with F € A(U%,C) and there exists a selection
f e WD(U®,C) of .

Definition 11. We say F € WA ;(U%,C) if F € WA(UY,C) and x ¢ F(x) for x € oU.

Definition 12. Wesay F € WAy, (U®, C) is essential in WAy (U%, C) if for any selection f € WD(U¥, C)
of F and any map § € WDy (U%, C) with flay = glau there exists a x € U with x = g(x).

Definition 13. Let f, g € WDy (U%,C). We say f = g in WDy (U?,C) if there exists a weakly
continuous, weakly compact map h : U® x [0,1] — C with x # hy(x) forany x € U and t € (0,1)
(here hy(x) = h(x,t)), ho = fand hy = g.

Definition 14. Let F, G € WAy (U%,C). We say F = G in WAy (U%,C) if for any selection f €
WD, (U®,C) (respectively, § € WDy (U™, C)) of F (respectively, of G) we have f = ¢ in WDy (U®,C).

Theorem 4. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of C,
where C is a closed convex subset of X. Suppose F € WAy (U®,C) and G € WAy (U%, C) is essential in
WAy, (U, C) and

for any selection f € WDy (U%,C) (respectively, ¢ € WDy (U?,C))
of F (respectively, of G)and any map 6 € WDy, (U?,C) ()
with 03y = flouy wehave ¢ =260 in WDy, (U%,C).
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Then, F is essential in WAy (U%, C).

Proof. Let f € WDy;(U®,C) be any selection of F and consider any map 6 € WDy;(U%,C) with
Olou = flou. Let § € WDy;(U®,C) be any selection of G. Now, (2) guarantees that there exists
a weakly continuous, weakly compact map h : U% x [0,1] — C with x # h;(x) for any x € 0 U and
t € (0,1) (here h(x) = h(x,t)), ho = gand hy = 6. Let

Q= {xel®: x=h(xt) forsome te [0,1]}.

Recall that X = (X, w), the space X endowed with the weak topology, is completely regular.
Now, ) # @ is weakly closed and is in fact weakly compact with Q N oU = @. Thus, there exists
a weakly continuous map u : U? — [0,1] with u(9U) = 0 and u(Q) = 1. Define the map r by
r(x) = h(x, u(x)) and note r € WD,; (U, C) with r|y; = ¢lau- Since G is essential in WAy, (U%, C),
there exists a x € U with x = r(x). Thus, x € Qsox = hy(x) =0(x). O

An obvious modification of the argument in Theorem 2 immediately yields the following result.

Theorem 5. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of
C, where C is a closed convex subset of X. Suppose F and G are two maps in WAy (U, C) with F = G in
WAy (U, C). Now, F is essential in WAy (U, C) if and only if G is essential in WAy (U, C).

Now, we consider a generalization of essential maps, namely the d—essential maps [2]. Let E be
a completely regular topological space and U an open subset of E. For any map f € D(U,E), let
f*=Ixf:U—UxE,with I:U — U givenby I(x) = x, and let

d:{(f) " (B)}u{} = K )
be any map with values in the nonempty set K; here, B = {(x,x): x € U}.

Definition 15. Let F € Ay, (U, E) with F* = I x F. We say F* : U — 2U%E is d—essential if, for any
selection f € D(U, E) of Fand any map § € Dy (U, E) with f|yy = glaou , we have that d ((f*)71 (B)) =

d ((g*)fl (B)) #d(D); here, f* =1x fand g* =1x g.
Remark 4. If F* is d—essential, then, for any selection f € D(U, E) of F (with f* = I X f), we have

O # (f) (B)={xeU: (xf(x)) €B},
so there exists a x € U with x = f(x) (so, in particular, x € F(x)).

Theorem 6. Let E be a completely regular topological space, U an open subset of E, B = {(x,x) : x € U},
d is defined in(3), F € Ayy(U,E), G € Ayy(U,E) with F* = I x Fand G* = I x G. Suppose G* is
d—essential and

for any selection f € Dy (U, E) (respectively, ¢ € Dy;(U,E))
of F (respectively, of G)and any map 6 € Dy (U, E)
with 0|y = flou wehave ¢ =20 in Dyy(U,E) and )

d ((f*)*1 (B)) =d ((g*)fl (B)); here f*=1x f and g =1x g.

Then, F* is d—essential.
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Proof. Let f € Dy;(U, E) be any selection of F and consider any map 6 € Dy (U, E) with 0|y =
flou- We must show d ((f*)_1 (B)) =d ((9*)_1 (B)) # d(D); here, f* = I x fand 0" = I x 6.
Let ¢ € Dy;;(U, E) be any selection of G. Now, (4) guarantees that there exists a continuous, compact
map h : U x [0,1] — E with x # h(x) forany x € 0U and t € (0,1) (here ht(x) = h(x,t)), hp = g,
Iy = 6and d ((f*)_l (B)) —d ((g*)_l (B)),- here, ¢* = I x g. Letli* : U x [0,1] — U x E be given
by h*(x,t) = (x,h(x,t)) and let

Q={xel: h*(x,t) € B forsome t € [0,1]}.
Now, Q) # @ is closed, compact and Q) N AU = @ so there exists a continuous map p : U — [0,1]

with u(oU) = 0 and u(Q) = 1. Define the map r by r(x) = h(x,u(x)) and r* = I x r. Now,
r € Dyy(U, E) with r|yy = g|au- Since G* is d—essential, then

4" ) =d (") (B)) #d(@). 5)
Now, since y(Q)) = 1, we have
™)' (B) = {xelU: (xh(x,u(x)) eB} ={xel: (xh(x,1)) € B}
= (007 (B),

so, from the above and Equation (5), we have d ((f*)_1 (B)) =d ((9*)_1 (B)) #d(©). O

Theorem 7. Let E be a completely regular topological space, U an open subset of E, B = {(x,x): x € U}
and d is defined in (3). Suppose F and G are two maps in Ayy (U, E) with F* = I x F, G* = I x G and
F = Gin Ayy(U,E). Then, F* is d—essential if and only if G* is d—essential.

Proof. Assume G* is d—essential. Let f € Dy (U, E) be any selection of F, ¢ € Dy (U, E) be any
selection of G and consider any map 0 € Dyy (U, E) with 0|5y = flay. If we show (4), then F* is
d—essential from Theorem 6. Now, f 2 0 in Dy;(U, E) together with F = G in Ay (U, E) (so f & gin

Dy (U, E)) guarantees that g = 6 in Dy; (U, E). To complete (4), we need to show d ((f*)_1 (B)) =
d ((g*f1 (B)); here, f* = I x f and g* = I x g. We will show this by following the argument in

Theorem 6. Note G = Fin Ayy(U,E) and let h : U x [0,1] — E be a continuous, compact map
with x # h(x) for any x € dU and t € (0,1) (here ht(x) = h(x,t)), hgp = gand hy = f. Let
h*: U x [0,1] — U x E be given by h*(x,t) = (x,h(x,t)) and let

Q= {xelU: h*(x,t) € B forsome t € [0,1]}.

Now, Q) # @ and there exists a continuous map u : U — [0,1] with x(dU) =0 and u(Q) = 1.
Define the map r by r(x) = h(x, u(x)) and r* = I x r. Now, r € Dyy; (U, E) with r|y; = glou so, since
G* is d-essential, then d ((g*)*l (B)) =d ((r*)*l (B)) # d(@). Now, since u(Q) = 1, we have (see

the argument in Theorem 6) (+*)~! (B) = (f*)"! (B) and, as a result, we have d ((f*)*1 (B)) =
d(g) " ®) O

Remark 5. It is also easy to extend the above ideas to other natural situations. Let E be a (Hausdorff) topological
vector space (so automatically completely regular), Y a topological vector space, and U an open subset of
E. In addition, let L : domL C E — Y be a linear (not necessarily continuous) single valued map; here,
dom L is a vector subspace of E. Finally, T : E — Y will be a linear, continuous single valued map with
L+ T :domL — Y an isomorphism (i.e., a linear homeomorphism); for convenience we say T € Hr(E,Y).
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Wesay F € A(U,Y;L,T) if (L+T) ' (F+T) € A(U, E) and we could discuss essential and d—essential in
this situation.

Now, we present an example to illustrate our theory.

Example 1. Let E be a Hausdorff locally convex topological vector space, U an open subset of E, 0 € U
and U paracompact. In this case, we say that F € A(U,E) if F € PK(U,E) (see Remark 1) is a compact
map. Let F € Ay (U, E) and assume x ¢ AF (x) for x € 9U and A € (0,1). Then, F = 0in Ayy (U, E).
To see this, let f € Dy (U, E) be any selection of F and let h : U x [0, 1] be given by h(x,t) = t f(x). Note
that hg = 0, hy = fand x & hy(x) forx € QU and A € (0,1) so f = 0in Dy (U, E). Now, Theorems 2 and 3
guarantee that F is essential in Ay (U, E).

3. Conclusions

In this paper, we prove that, for two set-valued maps F and G with continuous compact selections
and F = G, then one being essential (or d—essential) guarantees that the other is essential (or d—essential).
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