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Abstract: In this paper, we determine the upper and lower bound for the total domination number
and exact values and the upper bound for the double-total domination number on hexagonal grid
Hm,n with m hexagons in a row and n hexagons in a column. Further, we explore the ratio between
the total domination number and the number of vertices of Hm,n when m and n tend to infinity.
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1. Introduction

Graph dominations are widely applied in different problems such as dominating queens,
computer network, school bus routing, and social network problems. Specifically, graph dominations
have huge applications in chemistry [1–5]. Chemical structures can be represented by graphs, where
vertices and edges represent atoms and chemical bonds, respectively. Because of such a correspondence,
many chemical and physical properties of molecules are in correlation with graph theoretical invariants.
One very important such invariant is the total (double) domination number [2,6–10].

In this paper, we consider hexagonal grids with m hexagons in a row and n hexagons in
a column and also infinite hexagonal grids. Hexagonal systems are geometric objects that are
obtained by arranging congruent regular hexagons in a plane. They are of significant importance
in theoretical chemistry as a natural graph representation of benzenoid hydrocarbons [1,5,11].
Benzenoid hydrocarbons and their derivates are an important class of organic compounds, which
have, apart from their chemical importance, great technical and pharmaceutical importance as well
and belong to the class of the most serious polluters of the environment.

We explore total and double-total dominations on an arbitrary hexagonal grid. We give upper
and lower bound for the totally dominating number and the upper bound for the double-totally
dominating number. Furthermore, we explore the ratio between the total domination number and
the number of vertices of Hm,n when m and n tend to infinity. At this moment, there are only few
publications on total and double-total domination on hexagonal chains [3,12], but none dealing with
arbitrary grids.

Apart from this Introduction, the rest of the paper is organized as follows. Section 2 lists
preliminaries about total and double domination, dominating sets, and hexagonal systems. Section 3
gives upper and lower bounds for total domination number γt on arbitrary hexagonal grid Hm,n.
Further, Section 4 is concerned with the ratio between the total domination number and the number
vertices of Hm,n when m and n tend to infinity. Section 5 deals with double-total domination and
gives double-total domination number γ×2t for linear hexagonal chain Hm,1 and the upper bound for
arbitrary hexagonal grid Hm,n. The final Section 6 gives conclusions and future work.
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2. Preliminaries

Let G be a graph with the vertex set V(G) and edge set E(G). A set D ⊂ V(G) we call a
dominating set of a graph G if every vertex y in V(G) \ D is adjacent to some vertex in D. Domination
number γ(G) is the cardinality of the smallest dominating set. Total domination is the stronger version
of domination. A set D ⊂ V(G) is a totally dominating set of a graph G if every vertex y in V(G) is
adjacent to some vertex in D. The total domination number γt(G) is the cardinality of the smallest
totally dominating set.

A set S ⊆ V is a k-tuple dominating set if every vertex v ∈ V \ S satisfies degS(v) ≥ k (vertex
v is adjacent to at least k vertices from the set S). The k-tuple domination number is the minimum
cardinality among all k-tuple dominating sets. A set S ⊆ V is a k-tuple totally dominating set (k-totally
dominating set) if every vertex v ∈ V satisfies degS(v) ≥ k, e.g., each vertex in V has at least k
neighbors in S. In such a case, it must be k ≤ δ where δ is the minimum degree of vertices on G and
|S| ≥ k + 1. The k- tuple total domination number γ×kt(G) (k-total domination number γkt(G)) is the
cardinality of the smallest k-tuple totally dominating set. For k = 2, the two-tuple totally dominating
set is called the double-totally dominating set.

Each vertex in a hexagonal system has either degree two or degree three. It follows that on the
hexagonal grid, there is no ×k-total domination for k ≥ 3.

A vertex shared by three hexagons is called an internal vertex of the respective hexagonal system.
A hexagonal system where no three hexagons have an intersection (no internal vertices) is called a
catacondensed system, else it is pericondensed.

A catacondensed hexagonal system in which every hexagon is adjacent to at most two hexagons is
called a hexagonal chain. A linear hexagonal chain is a hexagonal chain that is a graph representation
of linear polyacene. The linear hexagonal chain with m hexagons will be denoted by H(m, 1). A double
hexagonal chain consists of two condensed identical hexagonal chains (H(m, 2)).

3. Total Domination Number of a Hexagonal Grid with m Hexagons in a Row and n Hexagons in
a Column

We denote by Hm,n a hexagonal grid with m hexagons in a row and n hexagons in a column.
For n = 1, we have a linear hexagonal chain, and for n = 2, a double hexagonal chains. In Hm,n, any
zigzag line with no vertical edges is called a horizontal zigzag line. The horizontal zigzag line of Hm,n

is denoted by Li, (1 ≤ i ≤ n + 1), where vertices on Li are vi,1, vi,2, . . . , vi,2m, vi,2m+1, if i ∈ {1, n + 1}.
Otherwise, for each Li, 2 ≤ i ≤ n, we have vertices vi,1, vi,2, . . . , vi,2m+2. Therefore, on Hm,n, there are
2(2m + 1) + (n− 1) · (2m + 2) = 2(mn + m + n) vertices. See Figure 1 for an example for H4,3.

L1 

L2 

L3 

L4 

V1,1 V1,3 V1,5 V1,7 V1,9

V1,2 V1,4 V1,6 V1,8

V2,2

V2,3V2,1 V2,5 V2,9

V2,4 V2,6 V2,8 V2,10

V3,2 V3,4 V3,6 V3,8 V3,10

V2,7

V3,1

V4,1

V3,3

V4,3

V3,5

V4,5

V3,7

V4,7

V3,9

V4,2 V4,4 V4,6 V4,8

V4,9

Figure 1. Horizontal zigzag lines denoted by Li, i = 1, . . . 4, and vertices of H4,3. Grid H4,3 has m = 4
hexagons in a row and n = 3 hexagons in a column. As an example, L1 consists of vertices v1,1, v1,2,
v1,3, v1,4, v1,5, v1,6, v1,7, v1,8, v1,9. Similarly, L2 consists of vertices v2,1, v2,2, v2,3, v2,4, v2,5, v2,6, v2,7, v2,8,
v2,9, v2,10.
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It is known [9] that for the cycle Cn, it holds that:

γt(Cn) =

{
n
2 + 1, n ≡ 2(mod4)
d n

2 e, otherwise.

For linear and double hexagonal chains, the following two theorems are proven [3,4]:

Theorem 1. ([4]) For a linear hexagonal chain with m hexagons, it holds that:

γt(Hm,1) = 2m + 2.

Theorem 2. ([3]) For a double hexagonal chain with m hexagons, it holds that:

γt(Hm,2) ≤


5m
2 + 2, m ≡ 0(mod4)

10bm
4 c+ 6, m ≡ 1(mod4)

10bm
4 c+ 8, m ≡ 2(mod4)

10dm
4 e, m ≡ 3(mod4).

Now, we will consider Hm,n when n ≥ 3 and give the upper bounds for total domination
number γt(Hm,n).

Theorem 3. For a hexagonal grid with m hexagons in a row and n hexagons (n ≥ 3) in a column Hm,n, it
holds that:

γt(Hm,n) ≤


(n + 2) 2m+3

3 − 1, m ≡ 0(mod3)
(n + 2) 2m+4

3 − 2, m ≡ 1(mod3)
(n + 2) 2m+2

3 , m ≡ 2(mod3).

Proof. We will consider six different cases depending on m modulo three and n modulo two (n is odd
or even).

Case 1.1 m ≡ 0(mod3), n odd.
Let us define Si = {vi,2+3j, j = 0, . . . , 2m

3 }, i = 2, . . . , n, S1 = {v1,5+6j, j = 0, . . . , m
3 − 1} and

Sn+1 = {vn+1,5+6j, j = 0, . . . , m
3 − 1}. See Figure 2 for an example for H9,7.

      S1

      S2

      S3

      S4

      S5

      S6

      S7

      S8

Figure 2. S1 ∪ S2 ∪ · · · ∪ S8 on H9,7.
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|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1| = (n− 1)(
2m
3

+ 1) + 2 · m
3

= n(
2m + 3

3
)− 1.

These vertices totally dominate all vertices on L2, . . . , Ln and also totally dominate both 3(m
3 ) = m

vertices on the L1 and on Ln+1.
All vertices are totally dominated by exactly one vertex. Further, all totally dominating vertices

totally dominate three vertices except for totally dominating vertices from the last column. The totally
dominating vertices from the last column have degree two, so they can totally dominate two vertices
at most.

Now, we consider the case on L1 (it is the same for Ln+1). From the previous, m vertices on L1 are
totally dominated, and m + 1 are not totally dominated. From the structure of S1, it follows that there
exist m

3 groups of three consequent vertices, which are not totally dominated. From each such group,
we must take two vertices into the totally dominating set D. It follows that we have to take 2 · m

3 such
vertices to dominate L1 totally. Then, only v1,2m+1 is not totally dominated (vn+1,2m+1 for Ln+1), so we
need at least one vertex more to dominate it totally. Finally,

γt(Hm,n) ≤ n(
2m + 3

3
)− 1 + 4

m
3
+ 2 = (n + 2)

2m
3

+ (n + 1) = (n + 2)
2m + 3

3
− 1.

Case 1.2 m ≡ 0(mod3), n even.
In this case, S1, S2, . . . , Sn are the same as in Case 1.1. Only Sn+1 = {vn+1,1+6j, j = 0, . . . , m

3 }. Then,
|Sn+1| = m

3 + 1. Therefore,

|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1|+ 1 = (n− 1)(
2m
3

+ 1) + 2 · m
3
+ 1

= n · (2m
3

+ 1) = n(
2m + 3

3
).

On L1 and Ln+1 (same for odd n), we need 2 · 2m
3 = 4m

3 totally dominating vertices. In this case,
only the vertex v1,2m+1 is not totally dominated, and we need at least one vertex more to dominate it
totally. From this follows:

γt(Hm,n) ≤ n · (2m
3

+ 1) + 4 · m
3
+ 1 = (n + 2)

2m
3

+ (n + 1) = (n + 2)
2m + 3

3
− 1.

Case 2.1 m ≡ 1(mod3), n odd.
Let us define Si = {vi,2+3j, j = 0, . . . , b 2m

3 c}, i = 2, . . . , n, S1 = {v1,5+6j, j = 0, . . . , bm
3 c − 1}, and

Sn+1 = {vn+1,5+6j, j = 0, . . . , bm
3 c − 1}. See Figure 3 for an example for H10,7.

|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1| = (n− 1)(b2m
3
c+ 1) + 2 · bm

3
c.

These vertices totally dominate all vertices on L2, . . . , Ln except for the last column. Furthermore,
they totally dominate 3(bm

3 c) vertices on L1 and the same on Ln+1.
All vertices in this case are totally dominated by exactly one vertex, and each totally dominating

vertex totally dominates three vertices (which is maximum on a hexagon).
Now, we consider the case on L1 (it is the same on Ln+1). On L1 exist dm

3 e groups of three
consequent vertices, which are not totally dominated. From each such group, we have to take at least
two vertices into the totally dominating set D. It follows that we have to take 2 · dm

3 e such vertices to
dominate L1 totally.
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            S1

            S2

            S3

            S4

            S5

            S6

            S7

            S8

Figure 3. S1 ∪ S2 ∪ · · · ∪ S8 on H10,7.

Then, on the last nth column, 2 · b n
2 c vertices are not totally dominated. They are in groups of two

consequent vertices:

(v2,2m+2, v3,2m+2; v4,2m+2, v5,2m+2; . . . ; vn−1,2m+2vn,2m+2).

See Figure 3 for an example for H10,7. Therefore, to dominate them totally, we must take all of
them in the totally dominating set D. Hence,

γt(Hm,n) ≤ (n− 1)(b2m
3
c+ 1) + 2 · bm

3
c+ 4 · dm

3
e+ 2 · bn

2
c

=
2
3
(mn + 2m + 2n + 1) = (n + 2)

2m + 1
3

+ n = (n + 2)
2m + 4

3
− 2.

Case 2.2 m ≡ 1(mod3), n even.
In this case, S1, S2, . . . , Sn are the same as in Case 2.1 for odd n. Only Sn+1 = {vn+1,1+6j, j =

0, . . . , bm
3 c}. Then, |Sn+1| = bm

3 c+ 1. Therefore,

|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1|+ 1

= (n− 1)(b2m
3
c+ 1) + 2 · bm

3
c+ 1.

On L1, we need 2 · dm
3 e totally dominating vertices more, and on Ln+1, we need 2 · bm

3 c totally
dominating vertices more (there is one block more with three undominated vertices on the L1).

The same as for the case when nis odd, there are 2 · n
2 vertices, which are not totally dominated

on the last nth column. Furthermore, to dominate them totally, we must take all of them in the totally
dominating set D. Hence,

γt(Hm,n) ≤ ((n− 1)(b2m
3
c+ 1) + 2 · bm

3
c+ 1) + 2 · dm

3
e+ 2 · bm

3
c+ 2 · n

2

=
2
3
(mn + 2m + 2n + 1) = (n + 2)

2m + 4
3

− 2.

Case 3.1 m ≡ 2(mod3), n odd.
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Similar to the previous cases, Si = {vi,2+3j, j = 0, . . . , b 2m
3 c}, i = 2, . . . , n, S1 = {v1,5+6j, j =

0, . . . , bm
3 c}, and Sn+1 = {vn+1,5+6j, j = 0, . . . , bm

3 c}. See Figure 4 for an example for H8,7.

|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1|

= (n− 1)(b2m
3
c+ 1) + 2 · (bm

3
c+ 1) = n

2m + 2
3

.

     

      S5

      S6

      S7

      S8

      S3

      S4

      S1

      S2

Figure 4. S1 ∪ S2 ∪ · · · ∪ S8 on H8,7.

These vertices totally dominate all vertices on L2, . . . , Ln and also totally dominate 3bm
3 c + 2

vertices both on L1 and Ln+1.
All vertices are totally dominated by exactly one vertex. Further, all totally dominating vertices

totally dominate three vertices except for v1,2m+1 and vn+1,2m+1, which totally dominate two vertices.
Vertices v1,2m+1 and vn+1,2m+1 have degree two, so they can totally dominate two vertices at most.

Now, we consider the case on L1 (it is the same on Ln+1). Similar to the case m ≡ 1(mod3), on L1

exist dm
3 e groups of three consequent vertices, which are not totally dominated. From each such group,

we have to take at least two vertices into the totally dominating set D. It follows that we have to take
2 · dm

3 e such vertices to dominate L1 totally. Then, all vertices on Hm,n are total dominated.

γt(Hm,n) ≤ n
2m + 2

3
+ 4 · dm

3
e

= n
2m + 2

3
+ 4 · m + 1

3
= (n + 2)

2m + 2
3

Case 3.2 m ≡ 2(mod3), n even.
In this case, S1, S2, . . . , Sn are the same as in Case 3.1. Only Sn+1 = {vn+1,1+6j, j = 0, . . . , bm

3 c}.
Then, |Sn+1| = bm

3 c+ 1. These vertices totally dominate all vertices on L2, . . . Ln, and each vertex is
totally dominated by exactly one vertex.

|S1 ∪ S2 ∪ · · · ∪ Sn+1| = (n− 1)|S2|+ 2|S1| = (n− 1)(b2m
3
c+ 1) + 2 · (bm

3
c+ 1).

The same as in Case 3.1, we need 2 · dm
3 e vertices to dominate L1 totally (also for Ln+1). From this,

it follows:
γt(Hm,n) ≤ (n− 1)(b2m

3
c+ 1) + 6 · dm

3
e = (n + 2)

2m + 2
3

.
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Remark 1. It is easy to check that the bounds are tight for small examples. For example, it holds that
γt(H2,3) = 10, γt(H2,4) = 12, γt(H3,3) = 14, and γt(H4,3) = 18. All these numbers are equal to the upper
bound for γt(Hm,n). See Figure 5 for an example for H3,3.

Figure 5. Total dominating set on H3,3. Black vertices belong to S1 ∪ S2 ∪ · · · ∪ S4. Gray vertices must
be added to the totally dominating set to dominate L1, L4 and the last column n = 3.

Proposition 1. For a hexagonal grid with m hexagons in a row and n hexagons (n ≥ 3) in a column Hm,n, it
holds that:

γt(Hm,n) >
2nm

3
.

Proof. It follows from Theorem 3 if we take only S1 ∪ · · · ∪ Sn+1 as a part of the totally dominating set
on Hm,n. Vertices on Hm,n are then totally dominated with only one vertex from S1 ∪ · · · ∪ Sn+1 or are
not totally dominated. Then:

γt(Hm,n) > |S1 ∪ · · · ∪ Sn+1| >
2nm

3
.

4. Determining lim
m,n→∞

γt(Hm,n)

2(mn + m + n)

Theorem 4. For a hexagonal grid with m hexagons in a row and n hexagons in a column Hm,n, which has
2(mn + m + n) vertices, it holds that:

lim
m,n→∞

γt(Hm,n)

2(mn + m + n)
=

1
3

.

Proof. From Proposition 1 and Theorem 3, it follows that:

2nm
3

< γt(Hm,n) <
2(n + 2)(m + 2)

3
.

If we divide this by 2(mn + m + n) = 2((m + 1)(n + 1)− 1) (the number of vertices on Hm,n),
we obtain:

2nm
3 · 2((m + 1)(n + 1)− 1)

<
γt(Hm,n)

2((m + 1)(n + 1)− 1)

<
2(n + 2)(m + 2)

3 · 2((m + 1)(n + 1)− 1)
. (1)
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For m, n→ ∞, the left and the right hand side of (1) tend to 1
3 . Applying the sandwich rule gives

us the desired result:

lim
m,n→∞

γt(Hm,n)

2(mn + m + n)
=

1
3

.

The previous limit is no surprise because on a hexagonal grid, one vertex can totally dominate at
most three vertices. This means that on very large grids, around one third of their vertices should be in
any totally dominating set.

5. Double-Total Domination on a Hexagonal Grid

Theorem 5. For a linear hexagonal chain with m hexagons, it holds that:

γ×2t(Hm,1) =

{
6dm

2 e, m odd
6 m

2 + 4, m even.

Proof. (a) m is odd.
Because we consider double-total domination, each vertex adjacent to a vertex with degree two

must be in any minimal double-totally dominating set D. From this, it follows that all vertices from the
first and last hexagon and all other vertices with degree three must be in D. If only these vertices are in
D, inner vertices of degree three are not ×2-totally dominated. They are totally dominated only once.
We have to take at least two vertices of degree two on each odd hexagon to double-totally dominate
them. Then, {(vi,1+4j), (vi,2+4j), (vi,3+4j); i ∈ {1, 2}; j ∈ {0, 1, . . . , bm

2 c}} are in D. Hence,

|D| = 6(bm
2
c+ 1) = 6dm

2
e.

(b) m is even.
Like in the previous case, any minimal double-totally dominating set must have all vertices that are

adjacent to at least one vertex of degree two. If only these vertices are in D, the inner vertices of degree
three are not double-totally dominated. Therefore, we have to take into D the remaining two inner
vertices from every odd hexagon. Then, {(vi,1+4j), (vi,2+4j), (vi,3+4j); i ∈ {1, 2}; j ∈ {0, 1, . . . , m

2 − 1}}
∪{v1,2m, v1,2m+1, v2,2m, v2,2m+1} are in D. Therefore,

|D| = 6
m
2
+ 4.

Theorem 6. For a hexagonal grid with m hexagons in a row and n hexagons in a column Hm,n, it holds that:

γ×2t(Hm,n) ≤


(3n + 3)dm

2 e+ n− 1, m, n odd
n( 3m

2 + 2) + 2m + 1, m, n even
(n + 1)( 3m

2 + 2), m even, n odd
3n
(

m+1
2

)
+ 2m + n m odd, n even.

Proof. Case 1. m, n are odd.
By Ti, we denote the subset of the double-totally dominating set on the ith zigzag line of Hm,n. Let

us define:

T1 = {v1,1+4j, v1,2+4j, v1,3+4j, j = 0, . . . , bm
2
c}

Ti = {vi,1+4j, vi,2+4j, vi,3+4j, j = 0, . . . , bm
2
c} ∪ vi,2m+2, i = 2, . . . , n
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Tn+1 = {vn+1,1+4j, vn+1,2+4j, vn+1,3+4j, j = 0, . . . , bm
2
c}.

See Figure 6 for an example for H5,5. It is easy to see that T1 ∪ T2 ∪ · · · ∪ Tn+1 is a double-totally
dominating set on Hm,n for m and n odd.

            T1

            T2

            T3

            T4

            T5

            T6

Figure 6. T1 ∪ T2 ∪ · · · ∪ T6 on H5,5.

We have |T1 ∪ T2 ∪ · · · ∪ Tn+1| = 2|T1| + (n − 1)|Ti|. This is 2 · 3dm
2 e + (n − 1)

(
3dm

2 e+ 1
)
=

(3n + 3)dm
2 e+ (n− 1). Hence,

γ×2t(Hm,n) ≤ (3n + 3)dm
2
e+ (n− 1).

Case 2. m, n are even.
Let us define:

T1 = {v1,1+4j, v1,2+4j, v1,3+4j, j = 0, . . . ,
m
2
− 1} ∪ {v1,2m, v1,2m+1}

Ti = {vi,1+4j, vi,2+4j, vi,3+4j, j = 0, . . . ,
m
2
− 1} ∪ {vi,2m+1, vi,2m+2}, i = 2, . . . , n

Tn+1 = {vn+1,1, vn+1,2, . . . , vn+1,2m+1}.

See Figure 7 for an example for H6,6. It is easy to see that T1 ∪ T2 ∪ · · · ∪ Tn+1 is a double-totally
dominating set on Hm,n for m and n even. |T1 ∪ T2 ∪ · · · ∪ Tn+1| = n|T1|+ |Tn+1|. This is n

( 3m
2 + 2

)
+

2m + 1. Therefore,

γ×2t(Hm,n) ≤ n
(

3m
2

+ 2
)
+ 2m + 1.

Case 3. m is even, and n is odd.
Let us define:

T1 = {v1,1+4j, v1,2+4j, v1,3+4j, j = 0, . . . ,
m
2
− 1} ∪ {v1,2m, v1,2m+1}

Ti = {vi,1+4j, vi,2+4j, vi,3+4j, j = 0, . . . ,
m
2
− 1} ∪ {v1,2m+1, v1,2m+2}, i = 2, . . . , n

Tn+1 = {vn+1,1+4j, vn+1,2+4j, vn+1,3+4j, j = 0, . . . ,
m
2
− 1} ∪ {vn+1,2m, vn+1,2m+1}.

See Figure 8 for an example for H6,5. It is easy to see that T1 ∪ T2 ∪ · · · ∪ Tn+1 is a double-totally
dominating set on Hm,n |T1 ∪ T2 ∪ · · · ∪ Tn+1| = (n + 1)|T1|. This is (n + 1)

( 3m
2 + 2

)
. Hence,

γ×2t(Hm,n) ≤ (n + 1)
(

3m
2

+ 2
)

.
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            T1

            T2

            T3

            T4

            T5

            T6

            T7

            

Figure 7. T1 ∪ T2 ∪ · · · ∪ T7 on H6,6.

            T1

            T2

            T5

            T6

            T3

            T4

Figure 8. T1 ∪ T2 ∪ · · · ∪ T6 on H6,5.

Case 4. m is odd, and n is even.
Let us define:

T1 = {v1,1+4j, v1,2+4j, v1,3+4j, j = 0, . . . , bm
2
c}

Ti = {vi,1+4j, vi,2+4j, vi,3+4j, j = 0, . . . , bm
2
c} ∪ {v1,2m+2}, i = 2, . . . , n

Tn+1 = {vn+1,1, vn+1,2, . . . , vn+1,2m+1}.

See Figure 9 for an example for H5,6. It is easy to see that T1 ∪ T2 ∪ · · · ∪ Tn+1 is a double-totally
dominating set on Hm,n. Then, it holds |T1 ∪ T2 ∪ · · · ∪ Tn+1| = |T1|+ (n− 1)|T2|+ |Tn+1|. This is
3
(
bm

2 c+ 1
)
+ (n− 1)

(
3(bm

2 c+ 1) + 1
)
+ 2m + 1 = 3n

(
m+1

2

)
+ 2m + n.

Therefore,

γ×2t(Hm,n) ≤ 3n
(

m + 1
2

)
+ 2m + n.
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Figure 9. T1 ∪ T2 ∪ · · · ∪ T7 on H5,6.

6. Conclusions

We determined the upper and lower bounds for the total domination number and exact values and
the upper bound for the double-total domination number on hexagonal grid Hm,n with m hexagons in
a row and n hexagons in a column. Previous works [3,12] explored the total domination on hexagonal
chains, but none dealt with arbitrary hexagonal grids. We tried to fill this gap. Further, we showed
that the ratio between the total domination number γt(Hm,n) and the number of vertices of Hm,n

when m and n tend to infinity equals 1/3. This means that for very large grids, around a third of
the vertices should be in the totally dominating set. Finally, we showed with multiple examples that
the given bounds were tight. Moreover, the given bounds were equal to the exact solution for the
given examples. In future work, we plan to determine the exact values for γt(Hm,n) and γ×2t(Hm,n).
We suspect that some of the given bounds are minimal. Furthermore, we plan to explore total and
double-total dominations on some other types of chemical graphs.
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