
mathematics

Article

Dynamic Restructuring Framework for Scheduling
with Release Times and Due-Dates

Nodari Vakhania

Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Morelos 62209, Mexico;
nodari@uaem.mx

Received: 8 October 2019; Accepted: 12 November 2019; Published: 14 November 2019
����������
�������

Abstract: Scheduling jobs with release and due dates on a single machine is a classical strongly
NP-hard combination optimization problem. It has not only immediate real-life applications but
also it is effectively used for the solution of more complex multiprocessor and shop scheduling
problems. Here, we propose a general method that can be applied to the scheduling problems
with job release times and due-dates. Based on this method, we carry out a detailed study of the
single-machine scheduling problem, disclosing its useful structural properties. These properties
give us more insight into the complex nature of the problem and its bottleneck feature that makes it
intractable. This method also helps us to expose explicit conditions when the problem can be solved
in polynomial time. In particular, we establish the complexity status of the special case of the problem
in which job processing times are mutually divisible by constructing a polynomial-time algorithm
that solves this setting. Apparently, this setting is a maximal polynomially solvable special case of the
single-machine scheduling problem with non-arbitrary job processing times.

Keywords: scheduling algorithm; release-time; due-date; divisible numbers; lateness; bin packing;
time complexity

1. Introduction

Scheduling jobs with release and due-dates on single machine is a classical strongly NP-hard
combination optimization problem according to Garey and Johnson [1]. In many practical scheduling
problems, jobs are released non-simultaneously and they have individual due-dates by which they
ideally have to complete. Since the problem is NP-hard, the existing exact solution algorithms have an
exponential worst-case behavior. The problem is important not only because of its immediate real-life
applications, but also because it is effectively used as an auxiliary component for the solution of more
complex multiprocessor and shop scheduling problems.

Here, we propose a method that can, in general, be applied to the scheduling problems with job
release times and due-dates. Based on this method, we carry out a detailed study of the single-machine
scheduling problem disclosing its useful structural properties. These properties give us more insight
into the complex nature of the problem and its bottleneck feature that makes it intractable. At the
same time, the method also helps us to expose explicit conditions when the problem can be solved
in polynomial time. Using the method, we establish the complexity status of the special case of the
problem in which job processing times are mutually divisible by constructing a polynomial-time
algorithm that solves this setting. This setting is a most general polynomially solvable special case of
the single-machine scheduling problem when jobs have restricted processing times but job parameters
are not bounded: if job processing times are allowed to take arbitrary values from set {p, 2p, 3p, . . . },
for an integer p, the problem remains strongly NP-hard [2]. At the same time, the restricted setting
may potentially have practical applications in operating systems (we address this issue in more detail
in Section 12).

Mathematics 2019, 7, 1104; doi:10.3390/math7111104 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9013-9334
http://dx.doi.org/10.3390/math7111104
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/11/1104?type=check_update&version=2

Mathematics 2019, 7, 1104 2 of 42

Problem description. Our problem, commonly abbreviated in the scheduling literature as
1|rj|Lmax (the notation suggested by Graham et al. [3]), can be stated as follows. There are given
n jobs {1, 2, . . . , n} and a single machine. Each job j has (uninterruptible) processing time pj, release time
rj and due-date dj: pj is the time required by job j on the machine; rj is the time moment by which job j
becomes available for scheduling on the machine; and dj is the time moment, by which it is desirable
to complete job j on the machine (informally, the smaller is job due-date, the more urgent it is, and the
late completion is penalized by the objective function).

The problem restrictions are as follows. The first basic restriction is that the machine can handle
at most one job at a time.

A feasible schedule S is a mapping that assigns to every job j its starting time tj(S) on the machine,
such that

tj(S) ≥ rj (1)

and
tj(S) ≥ tk(S) + pk, (2)

for any job k included earlier in S (for notational simplicity, we use S also for the corresponding job-set).
The inequality in Equation (1) ensures that no job is started before its release time, and the

inequality in Equation (2) ensures that no two jobs overlap in time on the machine.

cj(S) = tj(S) + pj

is the completion time of job j in schedule S.
The delay of job j in schedule S is

tj(S)− rj.

An optimal schedule is a feasible schedule minimizing the maximum job lateness

Lmax = max{j|cj − dj}

(besides the lateness, there exist other due-date oriented objective functions). Lmax(S) (Lj(S),
respectively) stands for the maximum job lateness in schedule S (the lateness of job j in S, respectively).
The objective is to find an optimal schedule.

Adopting to the standard three-field scheduling notation, we abbreviate the special case of
problem 1|rj|Lmax with divisible job processing times by 1|pj : divisible, rj|Lmax. In that setting, we
restrict job processing times to the mutually divisible ones: given any two neighboring elements in a
sequence of job processing times ordered non-decreasingly, the first one exactly divides the second one
(this ratio may be 1). A typical such sequence is formed by the integers each of which is (an integer)
power of 2 multiplied by an integer p ≥ 1.

A brief introduction to our method. Job release times and due-dates with due-date orientated
objective functions compose a sloppy combination for most of the scheduling problems in the sense
that it basically contributes to their intractability. In such problems, the whole scheduling horizon
can be partitioned, roughly, into two types of intervals, the rigid one and the flexible ones. In an
optimal schedule, every rigid interval (that potentially may contribute to the optimal objective value)
is occupied by a specific set of (urgent) jobs, whereas the flexible intervals can be filled out by the
rest of the (non-urgent) jobs in different ways. Intuitively, the “urgency” of a job is determined by its
due-date and the due-dates of close-by released jobs; a group of such jobs may form a rigid sequence
in a feasible schedule if the differences between their due-dates are “small enough”. The remaining
jobs are to be “dispelled” in between the rigid sequences.

This kind of division of the scheduling horizon, which naturally arises in different machine
environments, reveals an inherent relationship of the scheduling problems with a version of bin
packing problem and gives some insight into a complicated nature of the scheduling problems with job

Mathematics 2019, 7, 1104 3 of 42

release times and due-dates. As shown below, this relationship naturally yields a general algorithmic
framework based on the binary search.

A bridge between the scheduling and the bin packing problems is constructed by a procedure
that partitions the scheduling horizon into the rigid and the flexible intervals. Exploring a recurrent
nature of the scheduling problem, we develop a polynomial-time recursive procedure that partitions
the scheduling horizon into the rigid and flexible intervals. After this partition, the scheduling of the
rigid intervals is easy but scheduling of the flexible intervals remains non-trivial. Optimal scheduling
of the flexible intervals, despite the fact that these intervals are formed by non-urgent jobs, remains
NP-hard. To this end, we establish further structural properties of the problem, which yield a general
algorithmic framework that may require exponential time. Nevertheless, we derive a condition when
the framework will find an optimal solution in polynomial time. This condition reveals a basic difficulty
that would face any polynomial-time algorithm to create an optimal solution.

Some kind of compactness property for the flexible segments may be guaranteed if they are
scheduled in some special way. In particular, we show that the compactness property can be achieved
by an underlying algorithm that works for the mutually divisible job processing times. The algorithm
employs some nice properties of a set of mutually divisible numbers.

In terms of time complexity, our algorithmic framework solves problem 1|rj|Lmax in time
O(n2 log n log pmax) if our optimality condition is satisfied. Whenever during the execution of
the framework the condition is not satisfied, an additional implicit enumeration procedure can
be incorporated (to maintain this work within a reasonable size, here we focus solely to exact
polynomial-time algorithms). Our algorithm for problem 1|pj : divisible, rj|Lmax yields an additional
factor of O(n log pmax), so its time complexity is O(n3 log n log p2

max).
Some previous related work. Coffman, Garey and Johnson [4] previously showed that some

special cases of a number of weakly NP-hard bin packing problems with divisible item sizes can be
solved in polynomial time (note that our algorithm implies a similar result for a strongly NP-hard
scheduling problem). We mention briefly some earlier results concerning our scheduling problem. As
to the exponential-time algorithms, the performance of venerable implicit enumeration algorithms
by McMahon and Florian [5] and Carlier [6] has not yet been surpassed. There is an easily seen
polynomial special case of the problem when all job release times or due-dates are equal (Jackson [7]),
or all jobs have unit processing times (Horn [8]). If all jobs have equal integer length p, the problem
1|pj = p, rj|Lmax can also be solved in polynomial time O(n2 log n). Garey et al. [9] described how the
union and find tree with path compression can be used to reduce the time complexity to O(n log n).
The problem 1|pj ∈ {p, 2p}, rj|Lmax, in which job processing times are restricted to p and 2p, for an
integer p, can also be solved in polynomial O(n2 log n log p) time [10]. If we bound the maximum
job processing time pmax by a polynomial function in n, P(n) = O(nk), and the maximal difference
between the job release times by a constant R, then the problem 1/pmax < P, |rj − ri| < R/Lmax

remains polynomially solvable [2]. When P(n) is a constant or it is O(n), the time complexity of the
algorithm by [2] is O(n2 log n log pmax); for k ≥ 2, it is O(nk+1 log n log pmax). The algorithm becomes
pseudo-polynomial without the restriction on pmax and it becomes exponential without the restriction
on job release times. In another polynomially solvable special case the jobs can be ordered so that
d1 ≤ · · · ≤ dn and d1− αr1− βp1 ≥ · · · ≥ dn − αrn − βpn, for some α ∈ [0,+∞) and β ∈ [0, 1] Lazarev
and Arkhipov [11]. The problem allows fast O(n log n) solution if for any pair of jobs j, i with ri > rj
and di < dj, dj − rj − pj ≤ di − ri − pi, and if ri + pi ≥ rj + pj then di ≥ dj [12].

The structure of this work. This paper consists of two major parts. In Part 1, an algorithmic
framework for a single machine environment and a common due-date oriented objective function, the
maximum job lateness, is presented, whereas, in Part 2, the framework is finished to a polynomial-time
algorithm for the special case of the problem with mutually divisible job processing times. In Section 2,
we give a brief informal introduction to our method. Section 3 contains a brief overview of the basic
concepts and some basic structural properties that posses the schedules enumerated in the framework.
In Section 4, we study recurrent structural properties of our schedules, which permit the partitioning

Mathematics 2019, 7, 1104 4 of 42

of the scheduling horizon into the two types of intervals. In Section 5, we describe how our general
framework is incorporated into a binary search procedure. In Section 6, we give an aggregated
description of our main framework based on the partitioning of the scheduling horizon into the flexible
and the rigid segments, and show how the rigid segments are scheduled in an optimal solution. In
Section 7, we describe a procedure which is in charge of the scheduling of the non-urgent segments,
and formulate our condition when the main procedure will deliver an optimal solution. This completes
Part 1. Part 2 consists of Sections 8–11, and is devoted to the version of the general single-machine
scheduling problem with mutually divisible job processing times (under the assumption that the
optimality condition of Section 7 is not satisfied). In Section 8, we study the properties of a set
of mutually divisible numbers that we use to reduce the search space. Using these properties, we
refine our search in Section 9. In Section 10, we give the final examples illustrating the algorithm for
divisible job processing times. In Section 11, we complete the correctness proof of that algorithm. The
conclusions in Section 12 contain final analysis, possible impact, extensions and practical applications
of the proposed method and the algorithm for the divisible job processing times.

2. An Informal Description of the General Framework

In this section, we give a brief informal introduction to our method (the reader may choose to
skip it and go to formal definitions of the next section). We mention above the ties of our scheduling
problem with a version of bin packing problem, in which there is a fixed number of bins of different
capacities and the objective is to find out if there is a feasible solution respecting all the bin capacities.
To see the relationship between the bin packing and the scheduling problems, we analyze the structure
of the schedules that we enumerate. In particular, the scheduling horizon will contain two types of
sequences formed by the “urgent” jobs (that we call kernels) and the remaining sequences formed
by the “non-urgent” jobs (that we call bins). A key observation is that a kernel may occupy a quite
restricted time interval in any optimal schedule, whereas the bin intervals can be filled out by the
non-urgent jobs in different ways. In other words, the urgent jobs are to be scheduled within the rigid
time intervals, whereas non-urgent ones are to be dispelled within the flexible intervals. Furthermore,
the time interval within which each kernel is to be scheduled can be “adjusted” in terms of the delay
of its earliest scheduled job. In particular, it suffices to consider the feasible schedules in which the
earliest job of a kernel K is delayed by at most some magnitude, e.g., δK; δK ∈ [0, ∆K], where ∆K is
the initial delay of the earliest scheduled job of that kernel (intuitively, ∆K can be seen as an upper
bound on the possible delay for kernel K, a magnitude, by which the earliest scheduled job of kernel K
can be delayed without surpassing the minimal so far achieved maximum job lateness). As shown
below, for any kernel K, ∆K < pmax = maxj{pj}. Observe that, if δK = 0, i.e., when we restrict our
attention to the feasible schedules in which kernel K has no delay, the lateness of the latest scheduled
job of that kernel is a lower bound on the optimal objective value. In this way, we can calculate the
time intervals which are to be assigned to every kernel relatively easily. The bins are formed by the
remaining time intervals. The length of a bin, i.e., that of the corresponding time interval, will not be
prior fixed until the scheduling of that bin is complete (roughly, because there might be some valid
range for the “correct” ∆Ks).

Then, roughly, the scheduling problem reduces to finding out if all the non-kernel jobs can “fit”
feasibly (with respect to their release times) into the bins without surpassing the currently allowable
lateness for the kernel following that bin; recall that the “allowable lateness” of kernel K is determined
by δK. We “unify” all the δKs to a single δ (common for all the kernels), and carry out binary search to
find an optimal δ within the interval [0, maxK ∆K (the minimum δ such that all the non-kernel jobs fit
into the bins; the less is δ, the less is the imposed lateness for the kernel jobs).

Thus, there is a fixed number of bins of different capacities (which are the lengths of the
corresponding intervals in our setting), and the items which are to be assigned to these bins are
non-kernel jobs. We aim to find out if these items can feasibly be packed into these bins. A simplified
version of this problem, in which no specified time interval with each bin is associated and the items

Mathematics 2019, 7, 1104 5 of 42

can be packed in any bin, is NP-hard. In our version, whether a job can be assigned to a bin depends,
in a straightforward way, on the interval of that bin and on the release time of that job (a feasible
packing is determined according to these two parameters).

If the reader is not yet too confused, we finally note that the partition of jobs into kernel and
non-kernel ones is somewhat non-permanent: during the execution of our framework, a non-kernel
job may be “converted” into a kernel one. This kind of situation essentially complicates the solution
process and needs an extra treatment. Informally, this causes the strong NP-hardness of the scheduling
problem: our framework will find an optimal solution if no non-kernel job converts to a kernel one
during its execution (the so-called instance of Alternative (b2)). We observe this important issue in
later sections, starting from Section 7.

3. Basic Definitions

This subsection contains definitions which consequently gain in structural insight of problem
1|rj|Lmax (see, for instance, [2,13]). First, we describe our main schedule generation tool. Jackson’s
extended heuristics (Jackson [7] and Schrage [14]), also referred to as the Earliest Due-date heuristics
(ED-heuristics), is commonly used for scheduling problems with job release times and due-dates.
ED-heuristics is characterized by n scheduling times: these are the time moments at which a job is
assigned to the machine. Initially, the earliest scheduling time is set to the minimum job release time.
Among all jobs released by a given scheduling time (the jobs available by that time moment), one
with the minimum due-date is assigned to the machine (ties can be broken by selecting a longest
job). Iteratively, the next scheduling time is the maximum between the completion time of the latest
assigned so far job to the machine and the minimum release time of a yet unassigned job (note that
no job can be started before the machine gets idle, and no job can be started before its release time).
Among all jobs available by each scheduling time, a job with the minimum due-date is determined and
is scheduled on the machine at that time. Thus, whenever the machine becomes idle, ED-heuristics
schedules an available job giving the priority to a most urgent one. In this way, it creates no gap that
can be avoided (by scheduling some already released job).

3.1. Structural Components in an ED-Schedule

While constructing an ED-schedule, a gap (an idle machine-time) may be created (a maximal
consecutive time interval during which the machine is idle; by our convention, there occurs a 0-length
gap (cj, ti) if job i is started at its release time immediately after the completion of job j.

An ED-schedule can be seen as a sequence of somewhat independent parts, the so-called blocks;
each block is a consecutive part in that schedule that consists of a sequence of jobs successively
scheduled on the machine without any gap in between any neighboring pair of them; a block is
preceded and succeeded by a (possibly a 0-length) gap.

As shown below in this subsection, by modifying the release times of some jobs, ED-heuristics
can be used to create different feasible solutions to problem 1|rj|Lmax. All feasible schedules that
we consider are created by ED-heuristics, which we call ED-schedules. We construct our initial
ED-schedule, denoted by σ, by applying ED-heuristics to the originally given problem instance. Then,
we slightly modify the original problem instance to generate other feasible ED-schedules.

Kernels. Now, we define our kernels and the corresponding bins formally. Recall that kernel jobs
may only occupy restricted intervals in an optimal schedule, whereas the remaining bin intervals are to
be filled in by the rest of the jobs (the latter jobs are more flexible because they may be “moved freely”
within the schedule, without affecting the objective value to a certain degree, as we show below).

Let B(S) be a block in an ED-schedule S containing job o that realizes the maximum job lateness
in that schedule, i.e.,

Lo(S) = maxj{Lj(S)} = Lmax(S). (3)

Mathematics 2019, 7, 1104 6 of 42

Among all jobs in block B(S) satisfying Equation (3), the latest scheduled one is called an overflow
job in schedule S.

A kernel in schedule S is a longest continuous job sequence ending with an overflow job o, such
that no job from this sequence has a due-date greater than do (for notational simplicity, we use K also
for the corresponding job-set). For a kernel K, we let r(K) = mini∈K{ri}. We may observe that the
number of kernels in schedule S equals to the number of the overflow jobs in it. Besides, since every
kernel is contained within a single block, it may include no gap. We denote by K(S) the earliest kernel
in schedule S. The following proposition states an earlier known fact from [13]. Nevertheless, we also
give its proof as it gains some intuition on the used here techniques.

Proposition 1. The maximum lateness of a job of kernel K in ED-schedule S is the minimum possible if the
earliest scheduled job of that kernel starts at time r(K). Hence, if schedule S contains a kernel with this property,
then it is optimal.

Proof. By the definition, for any job j ∈ K, dj ≤ do (job j is no-less urgent than the overflow job o),
whereas note that the maximum lateness of a job of kernel K in schedule S is Lo(S). At the same time,
the jobs in kernel K form a tight (continuous) sequence without any gap. Let S′ be a complete schedule
in which the order of jobs of kernel K differs to that in schedule S and let job o′ realizes the maximum
lateness of a job of kernel K in schedule S′. Then, from the above observations and the fact that the
earliest job of kernel K starts at its release time in schedule S, it follows that

Lo(S) ≤ Lo′(S
′).

Hence,
Lmax(S′) ≥ Lo(S) = Lmax(S) (4)

and schedule S is optimal.

Emerging jobs. In the rest of this section, let S be an ED-schedule with kernel K = K(S) and with
the overflow job o ∈ K such that the condition in Proposition 1 does not hold. That is, there exists job e
with de > do scheduled before all jobs of kernel K that imposes a forced delay (right-shift) for the jobs
of that kernel. By creating an alternative feasible schedule in which job e is rescheduled after kernel
K, this kernel may be (re)started earlier, i.e., the earliest scheduled job of kernel K may be restarted
earlier than the earliest scheduled job of that kernel has started in schedule S. We need some extra
definitions before we define the so-obtained alternative schedule formally.

Suppose job i precedes job j in ED-schedule S. We say that i pushes j in S if ED-heuristics may
reschedule job j earlier if job i is forced to be scheduled after job j.

If (by the made assumption immediately behind Proposition 1) the earliest scheduled job of kernel
K does not start at its release time, then it is immediately preceded and pushed by Job l with dl > do,
the so-called delaying emerging job for kernel K (we use l exclusively for the delaying emerging job).

Besides the delaying emerging job, there may exist job e with de > do scheduled before kernel K
(hence before Job l) in schedule S pushing jobs of kernel K in schedule S. Any such job as well as Job l
is referred to as an emerging job for K.

We denote the set of emerging jobs for kernel K in schedule S by E(K). Note that l ∈ E(K) and
since S is an ED-schedule, re < r(K), for any e ∈ E(K), as otherwise a job of kernel K with release time
r(K) would have been included at the starting time of job e in schedule S.

Besides jobs of set E(K), schedule S may contain job j satisfying the same parametric conditions
as an emerging job from set E(K), i.e., dj > do and rj < r(K), but scheduled after kernel K. We call
such a job a passive emerging job for kernel K (or for the overflow job o) in schedule S. We denote the set
of all the passive emerging jobs for kernel K = K(S) by EP(K).

Mathematics 2019, 7, 1104 7 of 42

Note that any j ∈ EP(K) is included in block B(S) (the block in schedule S containing kernel K)
in schedule S. Note also that, potentially, any job j ∈ EP(K) can be feasibly scheduled before kernel K
as well. A job not from set E(K) ∪ EP(K) is a non-emerging job in schedule S.

In summary, all jobs in E(K) ∪ EP(K) are less urgent than all jobs of kernel K and any of them
may be included before or after that kernel within block B(S). The following proposition is not difficult
to prove (e.g., see [13]).

Proposition 2. Let S′ be a feasible schedule obtained from schedule S by the rescheduling a non-emerging job of
schedule S after kernel K. Then, The inequality in Equation (4) holds.

Activation of an emerging job. Because of the above proposition, it suffices to consider only the
rearrangements in schedule S that involve the jobs from set E(K) ∪ EP(K). As the first pass, to restart
kernel K earlier, we may create a new ED-schedule Se obtained from schedule S by the rescheduling
an emerging job e ∈ E(K) after kernel K (we call this operation the activation of job e for kernel K).
In ED-schedule Se, besides job e, all jobs in EP(K) are also scheduled (remain to be scheduled) after
kernel K. Technically, we create schedule Se by increasing the release times of job e and jobs in EP(K)
to a sufficiently large magnitude (e.g., the maximum job release time in kernel K), so that, when
ED-heuristics is newly applied, neither job e nor any of the jobs in set EP(K) will be scheduled before
any job of kernel K.

It is easily seen that kernel K (regarded as a job-set) restarts earlier in ED-schedule Se than it has
started in schedule S. In particular, the earliest job of kernel K is immediately preceded by a gap and
starts at time r(K) in schedule Sl , whereas the earliest scheduled job of kernel K in schedule S starts
after time r(K) (the reader may have a look at the work of Vakhania, N. [13] for more details on the
relevant issues).

L-schedules. We call a complete feasible schedule SL in which the lateness of no job is more than
threshold L, an L-schedule. In schedule S, job i is said to surpass the L-boundary if Li(S) > L.

The magnitude
λi(S) = Li(S)− L (5)

is called the L-delay of job i in schedule S.

3.2. Examples

We illustrate the above introduced notions in the following two examples.

Example 1. We have a problem instance with four jobs {l, 1, 2, 3}, defined as follows:
rl = 0, pl = 16, dl = 100,
r1 = 5, p1 = 2, d1 = 8,
r2 = 4, p2 = 4, d2 = 10,
r3 = 3, p3 = 8, d3 = 12.

The initial ED-schedule σ is illustrated in Figure 1. There is a single emerging job in that
schedule, which is the delaying emerging Job l pushing the following scheduled Jobs 1–3, which
constitute the kernel in σ; Job 3 is the overflow job o in schedule σ, which consists of a single block.
Lmax(σ) = L3(σ) = 30− 12 = 18.

ED-schedule σl , depicted in Figure 2, is obtained by activating the delaying emerging Job l in
schedule σ (the release time of Job l is set to that of job 1 and ED-heuristics is newly applied). Kernel in
that schedule is formed by Jobs 1 and 2, Job 2 is the overflow job with Lmax(σl) = L2(σl) = 17− 10 = 7,
whereas Job 3 becomes the delaying emerging job in schedule σl .

Mathematics 2019, 7, 1104 8 of 42

0 16 18 22 30

1 2 3

Figure 1. The initial ED-schedule σ for Example 1.

0

1 23

3 11 13 17 33

Figure 2. The ED-schedule σl for Example 1.

Example 2. In our second (larger) problem instance, we have eight jobs {l, 1, 2, . . . , 7}, defined as follows:
rl = 0, pl = 32, dl = 50,
r1 = 3, p1 = 4, d1 = 23,
r2 = 10, p2 = 2, d2 = 22,
r3 = 11, p3 = 8, d3 = 20,
r4 = 0, p4 = 8, d4 = 67,
r5 = 54, p5 = 4, d5 = 58,
r6 = 54, p6 = 4, d6 = 58,
r7 = 0, p7 = 8, d7 = 69.

The initial ED-schedule σ is illustrated in Figure 3. Job l is the delaying emerging job, and Jobs 4
and 7 are passive emerging jobs. The kernel K1 = K(σ) is formed by Jobs 3, 2, and 1 (Job 1 being the
overflow job).

ED-schedule σl is depicted in Figure 4. There arises a (new) kernel K2 = K(σl) formed by Jobs 5
and 6, whereas Job 4 is the delaying emerging job (Job 7 is the passive emerging job for both, kernels
K1 and K2). Job 6 is the overflow job, with Lmax(σl) = L6(σl) = 68− 58 = 10.

0

123

32 4042 46 54 58 62 70

4 5 6 7

Figure 3. The initial ED-schedule σ for Example 2.

0

1 2 3 4 5 6 7

3 7 1012 20 52 60 64 68 76

Figure 4. ED-schedule σl for Example 2.

4. Recurrent Substructures for Kernel Jobs

In this section, we describe a recursive procedure that permits us to determine the rigid intervals of
a potentially optimal schedule (as we show below, these intervals not necessarily coincide with kernel
intervals detected in ED-schedules). The procedure relies on an important recurrent substructure
property, which is also helpful for the establishment of the ties of the scheduling problem with bin
packing problems.

We explore the recurrent structure of our scheduling problem by analyzing ED-schedules. To start
with, we observe that in ED-schedule Sl (where l is the delaying emerging job for kernel K = K(S)),
the processing order of the jobs in kernel K can be altered compared to that in schedule S. Since
the time interval that was occupied by Job l in schedule S gets released in schedule Sl , some jobs of
kernel K may be scheduled within that interval (recall that by the construction, no job from EP(K)
may occupy that interval). In fact, the processing order of jobs of kernel K in schedules S and Sl might
be different: recall from Section 3 that a job j ∈ K with rj = r(K) will be included the first within

Mathematics 2019, 7, 1104 9 of 42

the above interval in schedule Sl (whereas kernel K in schedule S is not necessarily initiated by job j;
the reader may compare ED-schedules of Figures 1 and 2 and those of Figures 3 and 4 of Examples 1
and 2, respectively).

We call job j ∈ K anticipated in schedule Sl if it is rescheduled to an earlier position in that schedule
compared to its position in schedule S (in ED-schedules of Figures 2 and 4, Job 3 and Jobs 1 and 2,
respectively, are the anticipated ones). In other words, job j surpasses at least one job i in schedule Sl
such that i has surpassed j in schedule S (we may easily observe that, due to ED-heuristics, this may
only happen if qj < qi, as otherwise job j would have been included before job i already in schedule S).
Recall from Section 3 that the earliest scheduled job of kernel K is immediately preceded by a newly
arisen gap in schedule Sl (in ED-schedules of Figures 2 and 4 it is the gap [0, 3)). Besides, a new gap in
between the jobs of kernel K may also arise in schedule Sl if there exists an anticipated job since, while
rescheduling the jobs of kernel K, there may occur a time moment at which some job of that kernel
completes but no other job is available in schedule Sl . Such a time moment in ED-schedule of Figure 4
is 7, which is extending up to the release Time 10 of Job 2 resulting in a new gap [7, 10) arising within
the jobs of kernel K1.

It is apparent now that jobs of kernel K (kernel K1 in the above example) may be redistributed
into several continuous parts separated by the gaps in schedule Sl (the first such part in ED-schedule
of Figure 4. consists of the anticipated Job 1 and the second part consists of Jobs 2 and 3, where Job 2 is
another anticipated job).

If there arises an anticipated job so that the jobs of kernel K are redistributed into one or more
continuous parts in schedule Sl , then kernel K is said to collapse; if kernel K collapses into a single
continuous part, then this continuous part and kernel K, considered as job-sets, are the same, but the
corresponding job sequences are different because of an anticipated job. It follows that, if kernel K
collapses, then there is at least one anticipated job in schedule Sl that converts to the delaying emerging
job in that schedule (recall from Proposition 1 that schedule S is optimal if it possesses no delaying
emerging job).

Throughout this section, we concentrate our attention to the part of schedule Sl initiating at the
starting time of Job l in schedule S and containing all the newly arisen continuous parts of kernel K in
that schedule that we denote by Sl [K]. We treat this part as an independent ED-schedule consisting
of solely the jobs of the collapsed kernel K (recall that no job distinct from a job of kernel K may be
included in schedule Sl until all jobs of kernel K are scheduled, by the definition of that schedule).
For the instance of Example 1 with S = σ, schedule σl [K] is the part of the ED-schedule of Figure 2 that
initiates at at Time 0 and ends at Time 17. For the instance of Example 2, schedule σl [K1] starts at Time
0 and ends at Time 20 (see Figure 4).

We distinguish three different types of continuous parts in schedule Sl [K]. A continuous
part that consists of only anticipated jobs (contains no anticipated job, respectively) is called an
anticipated (uniform, respectively) continuous part. A continuous part which is neither anticipated
nor uniform is called mixed (hence, mixed continuous part contains at least one anticipated and one
non-anticipated job).

We observe that in ED-schedule of Figure 2 schedule σl [K] consists of a single mixed continuous
part with the anticipated Job 3, which becomes the new delaying emerging job in that schedule.
Schedule σl [K1] of Example 2 (Figure 4) consists of two continuous parts, the first of which is anticipated
with a single anticipated Job 1, and the second one is mixed with the anticipated Job 2. The latter job
becomes the delaying emerging job in schedule σl [K1] and is followed by Job 3, which constitutes the
unique kernel in schedule σl [K1].

Substructure Components

The decomposition of kernel K into the continues parts has the recurrent nature. Indeed, we easily
observe that schedule Sl [K] has its own kernel K1 = K((Sl)[K]). If kernels K and K1 (considered as
sequences) are different, then the decomposition process naturally continues with kernel K1 (otherwise,

Mathematics 2019, 7, 1104 10 of 42

it ends by Point (4) of Proposition 3). For instance, in Example 1, kernel K1 is constituted by Jobs 1 and 2
(Figure 2) and, in Example 2, it is constituted by Job 3 (see Figure 4) (in Lemma 4, we show that schedule
Sl [K] may contain only one kernel, which is from the last continuous part of that schedule). In turn, if
kernel K1 possesses the delaying emerging job, it may also collapse, and this process may recurrently
be repeated. This gives the rise to a recurrent substructure decomposition of kernel K. The process
continues as long as the next arisen kernel may again collapse, i.e., it possesses the delaying emerging
job. Suppose there is the delaying emerging job l1 for kernel K1 in schedule Sl [K]. We recurrently
define a (sub)schedule Sl,l1 [K, K1] of schedule Sl [K] containing only jobs of kernel K1 and in which
the delaying emerging job l1 is activated for that kernel, similarly to what is done for schedule Sl [K].
This substructure definition applies recursively as long as every newly derived (sub)schedule contains
a kernel that may collapse, i.e., it possesses the delaying emerging job (this kernel belongs to the
last continuous part of the (sub)schedule, as we prove in Lemma 4). This delaying emerging job is
activated and the next (sub)schedule is similarly created.

We refer to the created is this (sub)schedules as the substructure components arisen as a result
of the collapsing of kernel K and the following arisen kernels during the decomposition process. As
already specified, the first component in the decomposition is Sl [K] with kernel K1 = K(Sl [K]), the
second one is Sl,l1 [K, K1] with kernel K2 = K(Sl,l1 [K, K1]), the third one is Sl,l1,l2 [K, K1, K2], with kernel
K3 = K(Sl,l1,l2 [K, K1, K2]), where l2 is the delaying emerging job of kernel K2, and so on, with the
last atomic component being Sl,l1,...,lk [K, K1, . . . , Kk] such that the kernel K∗ = K(Sl,l1,...,lk [K, K1, . . . , Kk])

of that component has no delaying emerging job (here, lk is the delaying emerging job of kernel
Kk). Note that the successively created components during the decomposition form an embedded
substructure in the sense that the set of jobs that contains each next generated component is a proper
subset of that of the previously created one: substructure component Sl,l1,...,lj

[K, K1, . . . , Kj], for any
j ≤ k, contains only jobs of kernel Kj, whereas clearly |Kj| < |Sl,l1,...,lj−1

[K, K1, . . . , Kj−1]| (as kernel Kj
does not contain, at least, job lj, i.e., no activated delaying emerging job pertains to the next generated
substructure component).

Below, we give a formal description of the procedure that generates the complete decomposition
of kernel K, i.e., it creates all the substructure components of that kernel.

PROCEDURE Decomposition(S, K, l)
{S is an ED-schedule with kernel K and delaying emerging Job l}

WHILE Sl [K] is not atomic DO
BEGIN

S := Sl [K]; K := the kernel in component Sl [K];
l := the delaying emerging job of component Sl [K];
CALL PROCEDURE Decomposition(S, K, l)

END.

We illustrate the decomposition procedure on our two problem instances.

Example 1 (continuation). In the decomposition of kernel K(σ) of Example 1, in ED-schedule
of Figure 2, kernel K1 of substructure component Sl [K] consists of Jobs 1 and 2, and Job 3 is the
corresponding delaying emerging job. Figure 5 illustrates schedule σl,3 obtained from schedule
σl of Figure 2 by the activation of the (second) emerging Job 3 (which, in fact, is optimal for the
instance of Example 1, with Lmax(σl,3) = L3(σl,3) = 18− 12 = 6). A new substructure component
Sl,3[K, K1] consisting of jobs of kernel K1 is a mixed continuous part with the anticipated Job 2.
Kernel K2 of that component consists of Job 1, whereas Job 2 is the delaying emerging job for that
sub-kernel (L1(σl,3) = 10 − 8 = 2). Figure 6 illustrates ED-schedule σl,3,2 that contains the next
substructure component Sl,3,2[K, K1, K2] consisting of Job 1. Substructure component Sl,3,2[K, K1, K2] is
uniform and is the last atomic component in the decomposition, as it possesses no delaying emerging
job and forms the last (atomic) kernel K3 in the decomposition (with no delaying emerging job).
Lmax(Sl,3,2[K, K1, K2]) = L1(σl,3,2) = 7− 8 = −1. Note that the kernel in component Sl,3,2[K, K1, K2]

Mathematics 2019, 7, 1104 11 of 42

coincides with that component and is not a kernel in ED-schedule σl,3,2 (the overflow job in that
schedule is Job 3 with Lmax(σl,3,2) = L3(σl,3,2) = 19− 12 = 7).

0

12 3

34181084

Figure 5. ED-schedule representing the second substructure component in the decomposition of kernel
K for Example 1.

0

1 2 3

11 195 7 35

Figure 6. ED-schedule representing the third (atomic) substructure component in the decomposition of
kernel K for Example 1.

Example 2 (continuation). Using this example, we illustrate the decomposition of two different
kernels, which are denoted by K1 and K2 abvoe. In the decomposition of kernel K1, in ED-schedule
σl of Figure 4, we have two continuous parts in substructure component Sl [K1], the second of which
contains kernel K1

1 consisting of Job 3; the corresponding delaying emerging job is Job 2. The next
substructure component Sl,2[K1, K1

1] consisting of Job 3 (with the lateness 19− 20 = −1) is uniform
and it is an atomic component that completes the decomposition of kernel K1. This component can be
seen in Figure 7 representing ED-schedule σl,2 obtained from schedule σl of Figure 4 by the activation
of the emerging Job 2 for kernel K1

1.
Once the decomposition of kernel K1 is complete, we detect a new kernel K2 consisting of Jobs

5 and 6 in the ED-schedule σl,2 depicted in Figure 7 (the same kernel is also represented in the
ED-schedule σl of Figure 4). Kernel K2 possesses the delaying emerging Job 4. The first substructure
component S4[K2] in the decomposition of kernel K2 consists of a single uniform continuous part,
which forms also the corresponding kernel K2

1. The latter kernel has no delaying emerging job and the
component S4[K2] is atomic (see Figure 8).

0

1 23 4 5 6 7

3 7 11 19 21 53 61 65 69 77

Figure 7. ED-schedule representing the second (atomic) substructure component in the decomposition
of kernel K1 and kernel K2 for Example 2.

0

1 23 45 6 7

3 7 11 19 21 5354 58 62 70 78

Figure 8. ED-schedule representing the atomic substructure components for kernels K1 and K2 for
Example 2.

We need a few auxiliary lemmas to prove the validity of the decomposition procedure.
For notational simplicity, we state them in terms of schedule S with kernel K and the component
Sl [K] (instead of referring to an arbitrary component Sl,l1,...,lj

[K, K1, . . . , Kj] with kernel Kj+1 and the
following substructure component Sl,l1,...,lj ,lj+1

[K, K1, . . . , Kj, Kj+1]). The next proposition immediately
follows from the definitions.

Proposition 3. Suppose kernel K collapses. Then:

(1) The anticipated jobs from kernel K are non-kernel jobs in schedule Sl [K].
(2) Any continuous part in schedule Sl [K] is either anticipated or uniform or mixed.

Mathematics 2019, 7, 1104 12 of 42

(3) If schedule Sl [K] consists of a single continuous part then it is mixed.
(4) If K((Sl)[K]) = K (considering the kernels as job sequences), then schedule Sl [K] consists of (a unique)

uniform part that forms its kernel K((Sl)[K]). This kernel has no delaying emerging job and hence cannot
be further decomposed.

Lemma 1. Let A be an anticipated continuous part in component Sl [K]. Then for any job j ∈ A,

Lj(Sl [K]) < Lmax(Sl [K]),

i.e., an anticipated continuous part may not contain kernel K(Sl [K]).

Proof. Let G be the set of all jobs which have surpassed job j in schedule S and were surpassed
by j in Sl [K] (recall the definition of an anticipated part). For any job i ∈ G, dj ≥ di since job j is
released before jobs in set G and it is included after these jobs in ED-schedule S. This implies that
Lj(Sl [K]) < Li(Sl [K]) ≤ Lmax(Sl [K]). The lemma is proved.

Lemma 2. A uniform continuous part U in component Sl [K] (considered as an independent ED-schedule),
may contain no delaying emerging job.

Proof. Schedule U has no anticipated job, i.e., the processing order of jobs in U in both schedules S and
Sl [K] is the same. Observe that U constitutes a sub-sequence of kernel K in schedule S. However, kernel
K has a single delaying emerging Job l that does not belong to schedule Sl [K]. Since U is part of Sl [K]
and it respects the same processing order as schedule S, it cannot contain the delaying emerging job.

Lemma 3. Suppose a uniform continuous part U ∈ Sl [K] contains a job realizing the maximum lateness in
component Sl [K]. Then,

Lmax(U) ≤ Lmax(Sopt), (6)

i.e., the lateness of the corresponding overflow job is a lower bound on the optimal objective value.

Proof. Considering part U as an independent schedule, it may contain no emerging job (Lemma 2).
At the same time, the earliest scheduled job in U starts at its release time since it is immediately
preceded by a gap, and the lemma follows from Proposition 1.

Lemma 4. Only a job from the last continuous part C ∈ Sl [K] may realize the maximum job lateness in
schedule Sl [K].

Proof. The jobs in the continuous part C: (i) either were the latest scheduled ones from kernel K in
schedule S; or (ii) the latest scheduled ones of schedule S have anticipated the corresponding jobs in
C in schedule Sl [K]. In Case (ii), these anticipated jobs may form part of C or be part of a preceding
continuous part P. In the latter sub-case, due to a gap in between the continuous parts in Sl [K], the jobs
of continuous part P should have been left-shifted in schedule Sl [K] no less than the jobs in continuous
part C and our claim follows. The former sub-case of Case (ii) is obviously trivial. In Case (i), similar
to in the earlier sub-case, the jobs from the continuous parts preceding C in Sl [K] should have been
left-shifted in Sl [K] no less than the jobs in C (again, due to the gap in between the continuous parts).
Hence, none of them may have the lateness more than that of a job in continuous part C.

Proposition 4. PROCEDURE Decomposition(S, K, l) finds the atomic component of kernel K in less than
κ/2 iterations, where κ is the number of jobs in kernel K. The kernel of that atomic component is formed by a
uniform continuous part, which is the last continuous part of that component.

Mathematics 2019, 7, 1104 13 of 42

Proof. With every newly created substructure component during the decomposition of a kernel with
κ jobs, the corresponding delaying emerging job is associated. At every iteration of the procedure, the
delaying emerging job is activated, and that job does not belong to the next generated component.
Then, the first claim follows as every kernel contains at least one job. Hence, the total number of the
created components during all calls of the collapsing stage is bounded above by κ/2.

Now, we show the second claim. From Lemma 4, the last continuous part of the atomic component
contains the overflow job of that component. Clearly, the last continuous part of any component cannot
be anticipated, whereas any mixed continuous part (seen as an independent schedule) contains an
emerging job, hence a component with the last mixed continuous part cannot be atomic. Then, the
last continuous part of the atomic component is uniform (see Point (2) in Proposition 3), and since it
possesses no delaying emerging job (Lemma 2), it wholly constitutes the kernel of that component.

From here on, let K∗ = K(Sl,l1,...,lk [K, K1, . . . , Kk]), where Sl,l1,...,lk [K, K1, . . . , Kk] is the atomic
component in the decomposition of kernel K, and let ω∗ be the overflow job in kernel K∗.
By Proposition 4, K∗ (the atomic kernel in the decomposition) is the only kernel in the atomic component
Sl,l1,...,lk [K, K1, . . . , Kk] and is also the last uniform continuous part of that component.

Corollary 1. There exists no L-schedule if

Lmax(K∗) = Lω∗(Sl,l1,...,lk [K, K1, . . . , Kk]) > L.

In particular, Lmax(K∗) is a lower bound on the optimum objective value.

Proof. By Lemma 4 and Proposition 4, kernel K∗ is the last continuous uniform part of the atomic
component Sl,l1,...,lk [K, K1, . . . , Kk]). Then, by Proposition 4 and the inequality in Equation (6),

Lmax(K∗) = Lmax(Sl,l1,...,lk [K, K1, . . . , Kk] ≤ Lmax(Sopt).

Theorem 1. PROCEDURE Decomposition(S, K, l) forms all substructure components of kernel K with the
last atomic component and atomic kernel K∗ in time O(κ2 log κ) (where κ is the number of jobs in kernel K).

Proof. First, observe that, for any non-atomic component Sl,l1,...,lj
[K, K1, . . . , Kj] (j < k) created by the

procedure, the kernel Kj+1 = K(Sl,l1,...,lj
[K, K1, . . . , Kj]) of that component is within its last continuous

part (Lemma 4). This part cannot be anticipated or uniform (otherwise, it would not have been
non-atomic). Thus, the last continuous part M in that component is mixed and hence it contains
an anticipated job. The latest scheduled anticipated job in M is the delaying emerging job lj+1 for
kernel Kj+1 in the continuous part M. Then, the decomposition procedure creates the next component
Sl,l1,...,lj ,lj+1

[K, K1, . . . , Kj, Kj+1] in the decomposition (consisting of the jobs of kernel Kj+1) by activating
job lj+1 for kernel Kj+1.

Consider now the last atomic component Sl,l1,...,lk [K, K1, . . . , Kk]. By Proposition 4, atomic kernel
K∗ of component Sl,l1,...,lk [K, K1, . . . , Kk] is the last uniform continuous part in that component. By the
inequality in Equation (6), Lmax(Sl,l1,...,lk [K, K1, . . . , Kk]) = Lmax(K∗) is a lower bound on the optimal
objective value and hence the decomposition procedure may halt: the atomic kernel K∗ cannot
be decomposed and the maximum job completion time in that kernel cannot be further reduced.
Furthermore, if Lmax(K∗) > L, then there exists no L-schedule (Corollary 1).

As to the time complexity, the total number of iterations (recursive calls of PROCEDURE
Decomposition(S, K, l)) is bounded by κ/2 (where κ is the number of jobs in kernel K, see Proposition 4).
At every iteration i, kernel Ki+1 and job li+1 can be detected in time linear in the number of jobs in
component Sl,l1,...,li [K, K1, . . . , Ki], and hence the condition in WHILE can be verified with the same

Mathematics 2019, 7, 1104 14 of 42

cost. Besides, at iteration i, ED-heuristics with cost O(κ log κ) is applied, which yields the overall time
complexity O(κ2 log κ) of PROCEDURE Decomposition(S, K, l).

Corollary 2. The total cost of the calls of the decomposition procedure for all the arisen kernels in the framework
is O(n2 log n).

Proof. Let K1, . . . , Kk be all the kernels that arise in the framework. For the purpose of this estimation,
assume κ, kκ ≤ n, is the number of jobs in every kernel (this will give an amortized estimation). Since
every kernel is processed only once, the the total cost of the calls of the decomposition procedure for
kernels K1, . . . , Kk is then

kO(κ2 log κ) ≤ n
κ

O(κ2 log κ) < O(n2 log n).

5. Binary Search

In this section, we describe how binary search can be beneficially used to solve problem 1|rj|Lmax.
Recall from the previous section that PROCEDURE Decomposition(S, K, l) extracts the atomic kernel
K∗ from kernel K (recall that l is the corresponding delaying emerging job—without loss of generality,
assume that it exists, as otherwise the schedule S with K(S) = K is optimal by Proposition 1). Notice
that, since the kernel of every created component in the decomposition is from its last continuous part
(Lemma 4), there is no intersection between the continuous parts of different components excluding
the last continuous part of each component. All the continuous parts of all the created components
in the decomposition of kernel K except the last continuous part of each component are merged in
time axes resulting in a partial ED-schedule which initiates at time r(K) and has the number of gaps
equal to the number of its continuous parts minus one (as every two neighboring continuous parts are
separated by a gap). It includes (feasibly) all the jobs of kernel K except ones from the atomic kernel K∗

(that constitutes the last continuous part of the atomic component, see Proposition 4). By merging this
partial schedule with the atomic kernel K∗, we obtain another feasible partial ED-schedule consisting
of all the jobs of kernel K, which we denote by S∗[K]. We extend PROCEDURE Decomposition(S, K, l)
with this construction. It is easy to see that the time complexity of the procedure remains the same.
Thus, from here on, we let the output of PROCEDURE Decomposition(S, K, l) be schedule S∗[K].

Within the gaps in partial schedule S∗[K], some external jobs for kernel K, ones not in schedule
S∗[K], will be included. During such an expansion of schedule S∗[K] with the external jobs, the
right-shift (a forced delay) of the jobs from that schedule by some constant units of time, which is
determined by the current trial δ in the binary search procedure, will be allowed (in this section, we
define the interval from which trial δs are taken).

At an iteration h of the binary search procedure with trial δh, one or more kernels may arise.
Iteration h starts by determining the earliest arisen kernel, which, as we show below, depends on the
value of trial δh. This kernel determines the initial partition of the scheduling horizon into one kernel
and two non-kernel (bin) intervals. Repeatedly, during the scheduling of a non-kernel interval, a new
kernel may arise, which is added to the current set of kernels at iteration h. Every newly arisen kernel
is treated similarly in a recurrent fashion. We denote by K the set of kernels detected by the current
state of computation at iteration h (omitting parameter h for notational simplicity). For every newly
arisen kernel K ∈ K, PROCEDURE Decomposition(S, K, l) is invoked and partial schedule S∗[K] is
expanded by external jobs. Destiny feasible schedule of iteration h contains all the extended schedules
S∗[K], K ∈ K.

The next proposition easily follows from the construction of schedule S∗[K], Lemma 4 and
Corollary 1:

Mathematics 2019, 7, 1104 15 of 42

Proposition 5. K∗ = K(S∗[K]) (K∗ is the only kernel in schedule S∗[K]) and

Lmax(S∗[K]) = Lmax(K∗) ≤ Lmax(Sopt),

i.e., Lmax(S∗[K]) is a lower bound on the optimum objective value.

L∗max = max
K∈K
{Lmax(K∗)}

is a stronger lower bound on the objective value.

Now, we define an important kernel parameter used in the binary search. Given kernel K ∈ K, let

δ(K∗) = L∗max − Lmax(K∗) ≥ 0, (7)

i.e., δ(K∗) is the amount of time by which the starting time of the earliest scheduled job of kernel K∗

can be right-shifted (increased) without increasing lower bound L∗max. Note that for every K ∈ K,
δ(K∗) + Lmax(K∗) is the same magnitude.

Example 2 (continuation). For the problem instance of Example 2, Lmax(K1∗) = L3(σl,2) =

19− 20 = −1, Lmax(K2∗) = L6(σl,2,4) = 62− 58 = 4; hence, δ(K1∗) = 5 and δ(K2∗) = 0 (recall that
atomic kernel K1∗ consists of a single Job 3, and atomic kernel K2∗ consists of Jobs 5 and 6; hence,
the lower bound L∗max = 4 is realized by atomic kernel K2∗).

Proposition 6. Let S be a complete schedule and K be the set of the kernels detected prior to the creation of
schedule S. The starting time of every atomic kernel K∗, K ∈ K, can be increased by δ(K∗) time units (compared
to its starting time in schedule S∗[K]) without increasing the maximum lateness Lmax(S).

Proof. Let (K′)∗, K′ ∈ K, be an atomic kernel that achieves lower bound L∗max, i.e., Lmax((K′)∗) = L∗max
(equivalently, δ((K′)∗) = 0). By Equation (7), if the completion time of every job in atomic kernel
K∗ 6= (K′)∗ is increased by δ(K∗), the lateness of none of these jobs may become greater than that of
the overflow job from kernel (K′)∗, which proves the proposition as Lmax(S) ≥ L∗max.

We immediately obtain the following corollary:

Corollary 3. In an optimal schedule Sopt, every atomic kernel K∗, K ∈ K, starts either no later than at time
r(K∗) + δ(K∗) or no later than at time r(K∗) + δ(K∗) + δ, for some δ ≥ 0.

An extra delay δ might be unavoidable for a proper accommodation of the non-kernel jobs.
Informally, δ is the maximum extra delay that we will allow for every atomic kernel in the iteration of
the binary search procedure with trial value δ. For a given iteration in the binary search procedure
with trial δ, the corresponding threshold, an upper limit on the currently allowable maximum job
lateness, Lδ-boundary (or L-boundary) is

Lδ = L∗max + δ = Lmax(K∗) + δ(K∗) + δ (K ∈ K). (8)

We call Lδ − schedule a feasible schedule in which the maximum lateness of any job is at most
Lδ = L∗max + δ (see Equation (8)).

Note that, since to every iteration a particular δ corresponds, the maximum allowable lateness at
different iterations is different. The concept of the overflow job at a given iteration is consequently
redefined: such a job must have the lateness greater than Lδ. Note that this implicitly redefines also the
notation of a kernel at that iteration of the binary search procedure.

Mathematics 2019, 7, 1104 16 of 42

It is not difficult to determine the time interval from which the trial δs can be derived. Let ∆ be
the delay of kernel K(σ) imposed by the delaying emerging Job l in initial ED-schedule σ, i.e.,

∆ = cl(σ)− r(K(σ)). (9)

Example 1 (continuation). For the problem instance of Example 1, for instance, ∆ = 16− 3 = 13
(see Figure 1).

Proposition 7.
Lmax(σ)− L∗max ≤ ∆. (10)

Proof. This is a known property that easily follows from the fact that no job of kernel K(σ) could have
been released by the time tl(σ), as otherwise ED-heuristics would have been included the former job
instead of Job l in schedule σ.

Assume, for now, that we have a procedure that, for a given L-boundary (see Equation (8)), finds
an L-schedule SL if it exists, otherwise, it outputs a “no” answer.

Then, the binary search procedure incorporates the above verification procedure as follows.
Initially, for δ = ∆, L∗max + ∆-schedule σ already exists. For δ = 0 with L = L∗max, if there exists no
L∗max-schedule then the next value of δ is [∆/2]. Iteratively, if an L-schedule with L = L∗max + δ for the
current δ exists, the δ is increased correspondingly, otherwise it is decreased correspondingly in the
binary search mode.

Proposition 8. The L-schedule SL corresponding to the minimum L = L∗max + δ found in the binary search
procedure is optimal.

Proof. First, we show that trial δs can be derived from the interval [0, ∆]. Indeed, the left endpoint
of this interval can clearly be 0 (potentially yielding a solution with the objective value L∗max). By the
inequality in Equation (10), the maximum job lateness in any feasible ED-schedule in which the delay
of some kernel is more than ∆ would be no less than Lmax(σ), which obviously proves the above claim.

Now note that the minimum L-boundary yields the minimal possible lateness for the kernel
jobs subject to the condition that no non-kernel job surpasses L-boundary. This obviously proves
the proposition.

By Proposition 8, the problem 1|rj|Lmax can be solved, given that there is a verification procedure
that, for a given L-boundary, either constructs Lδ-schedule SLδ or answers correctly that it does not
exist. The number of iterations in the binary search procedure is bounded by log pmax as clearly,
∆ < pmax. Then, note that the running time of our basic framework is log pmax multiplied by the
running time of the verification procedure. The rest of this paper is devoted to the construction of the
verification procedure, invoked in the binary search procedure for trial δs.

6. The General Framework for Problem 1|rj|Lmax

In this section, we describe our main algorithmic framework which basic components form the
binary search and the verification procedures. The framework is for the general setting 1|rj|Lmax (in
the next section, we give an explicit condition when the framework guarantees the optimal solution
of the problem). At every iteration in the binary search procedure, we intend to keep the delay of
jobs from each partial schedule S∗[K], K ∈ K within the allowable margin determined by the current
Lδ-boundary.

For a given threshold Lδ, we are concerned with the existence of a partial Lδ-schedule that includes
all the jobs of schedule S∗[K] and probably some external jobs. We refer to such partial schedule as an
augmented Lδ-schedule for kernel K and denote it by SLδ [K] (we specify the scope of that schedule more
accurately later in this section).

Mathematics 2019, 7, 1104 17 of 42

Due to the allowable maximum job lateness of Lδ ≥ Lopt in schedule SLδ [K], in the case that the
earliest scheduled job of kernel K∗ gets pushed by some (external) job l∗ in schedule SLδ [K], that job
will be considered as the delaying emerging job iff

cl∗(SL[K]) ≥ r(K∗) + δ(K∗) + δ.

For a given threshold L = Lδ, the allowable L-bias for jobs of kernel K∗ in schedule SL[K]

βL(K∗) = L− Lmax(K∗). (11)

The intuition behind this definition is that the jobs of kernel K∗ in schedule S∗[K] can be
right-shifted by βL(K∗) time units without surpassing the L-boundary (see Proposition 9 below).

Proposition 9. In an L-schedule SL, all the jobs of schedule S∗[K] are included in the interval of schedule
S∗[K]. Furthermore, any job in S∗[K] \ K∗ can be right-shifted provided that it remains scheduled before the
jobs of kernel K∗, whereas the jobs from kernel K∗ can be right-shifted by at most βL(K∗).

Proof. Let j be the earliest scheduled job of atomic kernel K∗ in schedule S∗[K]. By right-shifting job
j by βL(K∗) time units (Equation (11)) we get a new (partial) schedule S′ in which all the jobs are
delayed by βL(K∗) time units with respect to schedule S∗[K] (note that the processing order of the
jobs of atomic kernel K∗ need not be altered in schedule S′ as the jobs of kernel K∗ are scheduled in
ED-order in schedule S∗[K]). Hence,

max
i∈S∗ [K]

Li(S′) ≤ max
i∈S∗ [K]

{Li(S∗[K]) + βL(K∗)} = max
i∈S∗ [K]

{Li(S∗[K])}+ βL(K∗).

By substituting for βL(K∗) using Equation (11) and applying that maxi∈S∗ [K]{Li(S∗[K])} =

Lmax(K∗), we obtain
max

i∈S∗ [K]
Li(S′) ≤ L.

Hence, the lateness of any job of atomic kernel K∗ is no more than L. Likewise, any other job from
schedule S∗[K] can be right-shifted within the interval of S∗[K] without surpassing the magnitude
Lmax(K∗) ≤ L given that it is included before the jobs of kernel K∗ (see the proof of Lemma 4).

6.1. Partitioning the Scheduling Horizon into the Bin and Kernel Segments

By Proposition 9, all jobs from the atomic kernel K∗ are to be included with a possible delay
(right-shift) of at most βL(K∗) in L-schedule SL. The rest of the jobs from schedule S∗[K] are to
“dispelled” before the jobs of K∗ within the interval of that schedule. Since schedule S∗[K] contains the
gaps, some additional external jobs may also be included within the same time interval. According to
this observation, we partition every complete feasible L-schedule into two types of segments, rigid and
flexible ones. The rigid segments are to be occupied by the atomic kernels, and the rest of the (flexible)
segments, which are called bin segments or intervals, are left for the rest of the jobs (we use term bin
for both, the corresponding time interval and for the corresponding schedule portion interchangeably).
For simplicity, we refer to the segments corresponding to the atomic kernels as kernel segments or
intervals.

In general, we have a bin between two adjacent kernel intervals, and a bin before the first and
after the last kernel interval. Because of the allowable right-shift βL(K∗) for the jobs of an atomic kernel
K∗, the starting and completion times of the corresponding kernel and bin intervals are not priory
fixed. We denote by B−(K) (B+(K), respectively) the bin before (after, respectively) the kernel interval
corresponding to the atomic kernel K∗ of kernel K. There are two bins in schedule σl,3,2, surrounding
the atomic kernel consisting of Job 1 in Figure 6. We have three bins in schedules depicted in

Mathematics 2019, 7, 1104 18 of 42

Figures 8 and 9 for the problem instance of Example 2, B1 = B−(K1), B2 = B+(K1) = B−(K2)

and B3 = B+(K2) (schedule of Figure 9 incorporates an optimal arrangement of jobs in these bins).

0

1 23

54 58 62 70

45 67

8 12 2022

Figure 9. An optimal L-schedule for Example 2 with three bins (L = L∗max = 4).

The scope of augmented L-schedule SL[K] for kernel K includes that of bin B−(K) and that of the
atomic kernel K∗. These two parts are scheduled independently. The construction of second part relies
on the next proposition that easily follows from Proposition 9:

Proposition 10. No job of the atomic kernel K∗ will surpass the L-boundary if the latest scheduled job of bin
B−(K) completes no later than at time moment

ψL(K) = r(K∗) + βL(K∗) (12)

(the latest time moment when atomic kernel K∗ may start in an L-schedule) and the jobs of that kernel are
scheduled by ED-heuristics from time moment ψL(K).

We easily arrange the second part of augmented schedule SL[K], i.e., one including the atomic
kernel K∗, as specified in Proposition 10. Hence, from here on, we are solely concerned with the
construction of the the first part, i.e., that of bin B−(K), which is a complicated task and basically
contributes to the complexity status of problem 1|rj|Lmax.

We refer to a partial feasible L-schedule for the first part of schedule SL[K] (with its latest job
completion time not exceeding the magnitude ψL(K), at which the second part initiates) as a preschedule
of kernel K and denote it by PreS(K). Note that the time interval of preschedule PreS(K) coincides
with that of bin B−(K); in this sense, PreS(K) is a schedule for bin B−(K).

Kernel preschedules are generated in Phase 1, described in Section 7. If Phase 1 fails to construct
an L-preschedule for some kernel, then Phase 2 described in Section 9 is invoked (see Proposition 12 in
Section 5). Phase 2 basically uses the construction procedure of Phase 1 for the new problem instances
that it derives.

6.1.1. The Main Partitioning Procedure

Now, we describe the main procedure (PROCEDURE MAIN) of our algorithm, that is in charge
of the partitioning of the scheduling horizon into the kernel and the corresponding bin intervals.
This partition is dynamically changed and is updated in a recurrent fashion each time a new kernel
arises. The occurrence of each new kernel K during the construction of a bin, the split of this bin into
smaller bins and the collapsing of kernel K induce the recurrent nature in our method (not surprising,
the recurrence is a common feature in the most common algorithmic frameworks such are dynamic
programming and branch-and-bound).

Invoked for kernel K (K is a global variable), PROCEDURE MAIN first calls PROCEDURE
Decomposition(S, K, l) that forms schedule S∗[K] ending with the atomic kernel K∗ (see the beginning
of Section 5 and Propositions 5 and 9).

PROCEDURE MAIN incorporates properly kernel K into the current partition updating
respectively the current configuration C(δ, K) defined by a trial δ, the current set of kernels K together
with the corresponding δ(M∗)s (see Equation (7)) and the augmented schedules SLδ [M], for M ∈ K,
constructed so far.

Given trial δ and kernel K, the configuration C(δ, K) is unique, and there is a unique corresponding
schedule ΣC(δ,K) with K = K(ΣC(δ,K)) that includes the latest generated (so far) augmented schedules
SLδ [M], M ∈ K.

Mathematics 2019, 7, 1104 19 of 42

PROCEDURE MAIN starts with the initial configuration C(∆, K) with δ = ∆, K = K(σ), ΣC(∆,K) =

σ and K = ∅ (no bin exists yet in that configuration).
Iteratively, PROCEDURE MAIN, invoked for kernel K, creates a new configuration C(∆, K)

with two new surrounding bins B−(K) and B+(K) and the atomic kernel K∗ in between these bins.
These bins arise within a bin of the previous configuration (the later bin disappears in the updated
configuration). Initially, atomic kernel (K(σ))∗ splits schedule σ in two bins B−(K(σ)) and B+(K(σ)).

Two (atomic) kernels in schedule ΣC(δ,K) are tied if they belong to the same block in that schedule.
Given configuration C(δ, K), the longest sequence of the augmented L-schedules of the pairwise

tied kernels in schedule ΣC(δ,K) is called a secondary block.
We basically deal with the secondary block containing kernel K and denote it by BK (we may omit

argument K when this is not important). An essential characteristic of a secondary block is that every
job that pushes a job from that secondary block belongs to the same secondary block. Therefore, the
configuration update in PROCEDURE MAIN can be carried out solely within the current secondary
block BK.

As we show below, PROCEDURE MAIN will create an L-schedule for an instance of 1|pj :
divisible, rj|Lmax whenever it exists (otherwise, it affirms that no L-schedule for that instance exists).
The same outcome is not guaranteed for an instance of 1|rj|Lmax, in general. In Theorem 3, we give
an explicit condition under which an L-schedule for an instance of 1|rj|Lmax will always be created,
yielding a polynomial-time solution for the general setting. Unfortunately, if the above condition is not
satisfied, we cannot, in general, affirm that there exists no feasible L-augmented schedule, even if our
framework fails to find it for an instance of problem 1|rj|Lmax.

6.1.2. PROCEDURE AUGMENTED(K, δ), Rise of New Kernels and Bin Split

PROCEDURE MAIN uses PROCEDURE AUGMENTED(K, δ) as a subroutine. PROCEDURE
AUGMENTED(K, δ), called for kernel K with threshold Lδ, is in charge of the creation of
an Lδ-augmented schedule SLδ [K] respecting the current configuration C(δ, K). PROCEDURE
AUGMENTED(K, δ) constructs the second part of schedule SLδ [K] (one including the atomic kernel
K∗) directly as specified in Proposition 10. The most time consuming part of PROCEDURE
AUGMENTED(K, δ) is that of the construction of the preschedule PreS(K) of schedule SLδ [K].
This construction is carried out at Phase 1 described in Section 7.

After a call of PROCEDURE AUGMENTED(K, δ), during the construction of an L-preschedule
PreS(K) at Phase 1, a new kernel K′ may arise (the reader may have a look at Proposition 12 and
Lemma 5 from the next section). Then, PROCEDURE AUGMENTED(K, δ) returns the newly arisen
kernel K′ and PROCEDURE MAIN, invoked for that kernel, updates the current configuration.
Since the rise of kernel K′ splits the earlier bin B−(K) into two new surrounding bins B−(K′) and
B+(K′) = B−(K) of the new configuration, the bin B−(K) of the previous configuration disappears
and is “replaced” by a new bin B−(K) = B+(K′) of the new configuration. Correspondingly, the scope
of a preschedule for kernel K is narrowed (the former bin B−(K) is “reduced” to the newly arisen bin
B+(K′) = B−(K)).

In this way, as a result of the rise of a new kernel within the (current) bin B−(K) and the resultant
bin split, PROCEDURE AUGMENTED(K, δ) may be called more than once for different (gradually
decreasing in size) bins: The initial bin B−(K) splits into two bins, the resultant new smaller bin B−(K)
may again be split, and so on. Thus, to the first call of PROCEDURE AUGMENTED(K, δ) the largest
bin B−(K) corresponds, and the interval of the new arisen bin for every next call of the procedure is a
proper sub-interval of that of the bin corresponding to the previous call of the procedure. Note that
each next created preschedule is composed of the jobs from the corresponding bin.

PROCEDURE AUGMENTED(K, δ) has three outcomes. If no new kernel during the construction
of preschedule PreS(K) respecting the current configuration arises, the procedure completes with the
successful outcome generating an L-augmented schedule SLδ [K] respecting the current configuration
(in this case, schedule SLδ [K] may form part of the complete L-augmented schedule if the later schedule

Mathematics 2019, 7, 1104 20 of 42

exists). PROCEDURE MAIN incorporates Lδ-augmented schedule SLδ [K] into the current configuration
(the first IF statement in the iterative step in the description of the next subsection).

With the second outcome, a new kernel K′ during the construction of preschedule PreS(K) within
bin B−(K) arises (Proposition 12 and Lemma 5). Then, PROCEDURE AUGMENTED(K, δ) returns
kernel K′ and PROCEDURE MAIN is invoked for this newly arisen kernel and it updates the current
configuration, respectively (see the iterative step in the description). Then, PROCEDURE MAIN calls
recursively PROCEDURE AUGMENTED(K′, δ) for kernel K′ and the corresponding newly arisen bin
B−(K′) (this call is now in charge of the generation of an L-preschedule PreS(K′) for kernel K′, see the
second IF statement in the iterative step of the description in the next subsection).

With the third (failure) outcome, Phase 1 (invoked by PROCEDURE AUGMENTED(K, δ) for
the creation of an L-preschedule PreS(K)) fails to create an L-preschedule respecting the current
configuration (an IA(b2), defined in the next section, occurs (see Proposition 12). In this case,
PROCEDURE MAIN invokes Phase 2. Phase 2 is described in Section 9. Nevertheless, the reader can
see a brief description of that phase below:

Phase 2 uses two subroutines, PROCEDURE sl-SUBSTITUTION(K) and PROCEDURE
ACTIVATE(s), where s is an emerging job. PROCEDURE sl-SUBSTITUTION(K) generates modified
configurations with an attempt to create an L-preschedule PreS(K) respecting a newly created
configuration, in which some preschedules of the kernels, preceding kernel K in the secondary block
BK are reconstructed. These preschedules are reconstructed by the procedure of Phase 1, which is
called by PROCEDURE ACTIVATE(s). PROCEDURE ACTIVATE(s), in turn, is repeatedly called by
PROCEDURE sl-SUBSTITUTION(K) for different emerging jobs in the search of a proper configuration
(each call of PROCEDURE ACTIVATE(s) creates a new configuration by a call of Phase 1). If at
Phase 2 a configuration is generated for which Phase 1 succeeds to create an L-preschedule PreS(K)
respecting that configuration (the successful outcome), the augmented L-schedules corresponding to
the reconstructed preschedules remain incorporated into the current schedule ΣC(δ,K).

6.1.3. Formal Description of PROCEDURE MAIN

The formal description of PROCEDURE MAIN below is completed by the descriptions of Phases 1
and 2 in the following sections. For notation simplicity, in set operations, we use schedule notation for
the corresponding set of jobs. Given a set of jobs A, we denote by ED(A) the ED-schedule obtained by
the application of ED-heuristics to the jobs of set A.

Whenever a call of PROCEDURE MAIN for kernel K creates an augmented L-schedule
SLδ [K], the procedure completes secondary block BK by merely applying ED-heuristics to the
remaining available jobs, ones to be included in that secondary block; i.e., partial ED-schedule
ED(BK \ ∪M∈BK{S

Lδ [M]}) is generated and is merged with the already created part of block BK to
complete the block (the rest of the secondary blocks are left untouched in the updated schedule ΣC(δ,K)).

PROCEDURE MAIN returns Lδ-schedule with the minimal δ, which is optimal by Lemma 8.

PROCEDURE MAIN
Initial step: {Determine the initial configuration C(∆, K), K = K(σ)}
Start the binary search with trial δ = ∆

{see Equation (9) and the inequality in Equation (10)}
ΣC(∆,K) := σ

{initialize the set of kernels}
K := K(σ); K := K

{set the initial lower bound and the initial allowable delay for kernel K}
L∗max := Lmax(K∗); δ(K∗) := 0
IF schedule σ contains no kernel with the delaying emerging job, output σ and halt

{σ is optimal by Proposition 1}

Iterative step:

Mathematics 2019, 7, 1104 21 of 42

{Update the current configuration C(δ, K) with schedule ΣC(δ,K) as follows:}
{update the current set of kernels}
K := K ∪ K;
{update the current lower bound}
L∗max := max{L∗max, Lmax(K∗)};
{update the corresponding allowable kernel delays (see Equation (7))}
δ(M∗) := L∗max − Lmax(M∗), for every kernel M ∈ K
Call PROCEDURE AUGMENTED(K, δ) {construct an Lδ-augmented schedule SLδ [K]}
IF during the execution of PROCEDURE AUGMENTED(K, δ) a new kernel K′ arises

{update the current configuration according to the newly arisen kernel}
THEN K := K′; repeat Iterative step
IF the outcome of PROCEDURE AUGMENTED(K, δ) is failure THEN call Phase 2

{at Phase 2 new configuration is looked for such that there exist preschedule PreS(K) respecting that
configuration, see Section 9}

IF Lδ-augmented schedule SLδ [K] is successfully created
{the outcome of PROCEDURE AUGMENTED(K, δ) and that of Phase 2 is successful, hence complete
secondary block BK by ED-heuristics if there are available jobs which were not included in any of the
constructed augmented schedules, i.e., BK \ ∪M∈BK{S

Lδ [M]} 6= ∅}
THEN update block BK and schedule ΣC(δ,K) by merging it with partial ED-schedule

ED(BK \ ∪M∈BK{S
Lδ [M]})

(leave in the updated schedule ΣC(δ,K) the rest of the secondary blocks as they are)
IF (the so updated) schedule ΣC(δ,K) is an Lδ-schedule
{continue the binary search with the next trial δ}
THEN δ :=the next trial value and repeat Iterative step; return the generated Lδ-schedule with the

minimum δ and halt if all the trial δs were already considered
ELSE {there is a kernel with the delaying emerging job in schedule ΣC(δ,K)}

K := K(ΣC(δ,K)); repeat Iterative step
IF Lδ-augmented schedule SLδ [K] could not been created

{the outcome of Phase 2 is failure and hence there exists no Lδ-schedule; continue the binary search
with the next trial δ}

THEN δ := the next trial value and repeat Iterative step; return the generated Lδ-schedule with the
minimum δ and halt if all the trial δs were already considered.

7. Construction of Kernel Preschedules at Phase 1

At Phase 1, we distinguish two basic types of the available (yet unscheduled) jobs which can
feasibly be included in bin B−(K), for every K ∈ K. Given a current configuration, we call jobs that
can only be scheduled within bin B−(K) y-jobs; we call jobs which can also be scheduled within some
succeeding bin(s) the x-jobs for bin B−(K) or for kernel K. In this context, y-jobs have higher priority.

We have two different types of the y-jobs for bin B−(K). The set of the Type (a) y-jobs is formed by
the jobs in set K \ K∗ and yet unscheduled jobs not from kernel K released within the interval of bin
B−(K). The rest of the y-jobs are ones released before the interval of bin B−(K), and they are referred
to as the Type (b) y-jobs.

Recall that the interval of bin B−(K) begins right after the atomic kernel of the preceding bin (or at
mini ri if K is the earliest kernel in K) and ends with the interval of schedule S∗[K]. The following
proposition immediately follows:

Proposition 11. Every x-job for bin B−(K) is an external job for kernel K, and there may also exist the external
y-jobs for that kernel. A Type (a) y-job can feasibly be scheduled only within bin B−(K), whereas Type (b) y-jobs
can potentially be scheduled within a preceding bin (as they are released before the interval of bin B−(K)).

Mathematics 2019, 7, 1104 22 of 42

Phase 1 for the construction of preschedule PreS(K) of kernel K consists of two passes. In Pass 1
y-jobs of bin B−(K) are scheduled. In Pass 2, x-jobs of bin B−(K) are distributed within that bin. We
know that all Type (a) y-jobs can be feasibly scheduled within bin B−(K) without surpassing the
L-boundary (since they were so scheduled in that bin), and these jobs may only be feasibly scheduled
within that bin. Note that, respecting the current configuration with the already created augmented
schedules for the kernels in set K), we are forced to include, besides Type (a) y-jobs, also all the Type
(b) y-jobs into bin B−(K). If this does not work at Phase 1 in the current configuration, we try to
reschedule some Type (b) y-jobs to the earlier bins in Phase 2 by changing the configuration.

7.1. Pass 1

Pass 1 consists of two steps. In Step 1, ED-heuristics is merely applied to all the y-jobs for
scheduling bin B−(K).

If the resultant ED-schedule PreS(K, y) is a feasible L-schedule (i.e., no job in it surpasses the
current L-boundary and/or finishes after time ψL(K)), Step 1 completes with the successful outcome
and Pass 1 outputs PreS(K, y) (in this case, there is no need in Step 2), and Phase 1 continues with Pass
2 that augments PreS(K, y) with x-jobs, as described in the next subsection.

If schedule PreS(K, y) is not an L-schedule (there is a y-job in that schedule surpassing the
L-boundary), Pass 1 continues with Step 2.

Proposition 12 specifies two possible cases when preschedule PreS(K, y) does not contain
all the y-jobs for bin B−(K), and Step 1 fails to create an L-preschedule for kernel K at the
current configuration.

Proposition 12. Suppose PreS(K, y) is not a feasible L-schedule, i.e., there arises a y-job surpassing the current
L-boundary and/or completing after time ψL(K).

(1) If there is a Type (b) y-job surpassing the L-boundary, then there exists no feasible partial L-preschedule
for kernel K containing all the Type (b) y-jobs for this kernel (hence there is no complete feasible L-schedule
respecting the current configuration).

(2) If there is a Type (a) y-job y surpassing the L-boundary and there exists a feasible partial L-preschedule
for kernel K containing all the y-jobs, it contains a new kernel consisting of some Type (a) y-jobs including job y.

Proof. We first show Case (2). As already mentioned, all Type (a) y-jobs may potentially be included in
bin B−(K) without surpassing the L-boundary and be completed by time ψL(K) (recall Equation (12)).
Hence, since y is a Type (a) y-job, it should have been pushed by at least one y-job i with di > dy in
preschedule PreS(K, y). Then, there exists the corresponding kernel with the delaying emerging y-job
(containing job y and possibly other Type (a) y-jobs).

Now, we prove Case (1). Let y be a Type (b) y-job that was forced to surpass the L-boundary
and/or could not be completed by time moment ψL(K). In the latter case, ED-heuristics could create
no gap in preschedule PreS(K, y) as all the Type (b) y-jobs were released from the beginning of the
construction, and Case (1) obviously follows. In the former case, job y is clearly pushed by either
another Type (b) y-job or a Type (a) y-job. Let k be a job pushing job y. Independently of whether k
is a Type (a) or Type (b) y-job, since job y is released from the beginning of the construction and job
k was included ahead job y, by ED-heuristics, dk ≤ dy. Then, no emerging job for job y may exist in
preschedule PreS(K, y) and Case (1) again follows as all the Type (a) y-jobs must be included before
time ψL(K).

For convenience, we refer to Case (1) in Proposition 12 as an instance of Alternative (b2) (IA(b2) for
short) with Type (b) y-job y (we let y be the latest Type (b) y-job surpassing the L-boundary and/or
completing after time ψL(K)). (The behavior alternatives were introduced in a wider context earlier
in [13].) If an IA(b2) in bin B−(K) arises and there exists a complete L-schedule, then, in that schedule,
some Type (b) y-job(s) from bin B−(K) is (are) included within the interval of some bin(s) preceding
bin B−(K) in the current secondary block BK (we prove this in Proposition 16 in Section 7).

Mathematics 2019, 7, 1104 23 of 42

In Step 2, Cases (1) and (2) are dealt with as follows. For Case (1) (an IA(b2)), Step 2 invokes
PROCEDURE sl-SUBSTITUTION(K) of Phase 2. PROCEDURE sl-SUBSTITUTION(K) creates one or
more new (temporary) configurations, as described in Section 7. For every created configuration, it
reconstructs some bins, preceding bin B−(K) in the secondary block BK incorporating some Type (b)
y-jobs for bin B(K) into the reconstructed preschedules. The purpose of this is to find out if there exists
an L-preschedule PreS(K) respecting the current configuration and construct it if it exists.

For Case (2) in Proposition 12, Step 2 returns the newly arisen kernel K′ and PROCEDURE MAIN
is invoked with that kernel, which updates the current configuration respectively. PROCEDURE MAIN
then returns the call to PROCEDURE AUGMENTED(K′, δ) (see the description of Section 4) (note that,
since PROCEDURE AUGMENTED(K′, δ) invokes Phase 1 now, for kernel K′, Case (2) yields recursive
calls of Phase 1).

7.2. Pass 2: DEF-Heuristics

If Pass 1 successfully completes, i.e., creates a feasible L-preschedule PreS(K̄, y), Pass 2, described
in this subsection, is invoked (otherwise, IA(b2) with a Type (b) y-job from bin B−(K) arises and
Phase 2 is invoked). Throughout this section, PreS(K, y) stands for the output of Pass 1 containing
all the y-jobs for bin B−(K). At Pass 2, the x-jobs released within the remaining available room in
preschedule PreS(K, y) are included by a variation of the Next Fit Decreasing heuristics, adopted for
our scheduling problem with job release times. We call this variation Decreasing Earliest Fit heuristics,
DEF-heuristics for short. It works with a list of x-jobs for kernel K sorted in non-increasing order of
their processing times, the ties being broken by sorting jobs with the same processing time in the
non-decreasing order of their due-dates.

DEF-heuristics, iteratively, selects next job x from the list and initially appends this job to the
current schedule PreS(K, y) by scheduling it at the earliest idle-time moment t′ before time ψL(K)
(any unoccupied time interval in bin B−(K) before time ψL(K) is an idle-time interval in that bin).
Let PreS(K, y,+x) be the resultant partial schedule, that is obtained by the application of ED-heuristics
from time moment t′ to job x and to the following y-jobs from schedule PreS(K, y) which may possibly
right-shifted in schedule PreS(K, y,+x)) (compared to their positions in schedule PreS(K, y)). In the
description below, the assignment PreS(K, y) := PreS(K, y,+x) updates the current partial schedule
PreS(K, y) according to the rearrangement in schedule PreS(K, y,+x), removes job x from the list and
assigns to variable x the next x-job from the list.

PROCEDURE DEF(PreS(K, y), x)
IF job x completes before or at time ψL(K) in schedule PreS(K, y,+x) {i.e., t′ + px falls within the
current bin}
THEN GO TO Step (A) {verify the conditions in Steps (A) and (B)}
ELSE remove job x from the list {job x is ignored for bin B−(K)}; set x to the next job from the list;

CALL PROCEDURE DEF(PreS(K, y), x)
(A) IF job x does not push any y-job in schedule PreS(K, y,+x) {x can be scheduled at time moment t′

without the interference with any y-job, i.e., t′ + px is no greater than the starting time of the next y-job
in preschedule PreS(K, y)} and it completes by time moment ψL(K) in schedule PreS(K, y,+x)

THEN PreS(K, y) := PreS(K, y,+x); CALL PROCEDURE DEF(PreS(K, y), x)
(B) IF job x pushes some y-job in schedule PreS(K, y,+x)

THEN {verify the conditions in Steps (B.1)–(B.3)}
(B.1) IF in schedule PreS(K, y,+x) no (right-shifted) y-job surpasses L-boundary and

all the jobs are completed by time moment ψL(K)
THEN PreS(K, y) := PreS(K, y,+x); CALL PROCEDURE DEF(PreS(K, y), x)

(B.2) IF in schedule PreS(K, y,+x) some y-job completes after time moment ψL(K)
THEN set x to the next x-job from the list and CALL PROCEDURE DEF(PreS(K, y), x).
We need the following auxiliary lemma before we describe Step (B.3):

Mathematics 2019, 7, 1104 24 of 42

Lemma 5. If a (right-shifted) y-job surpasses L-boundary in schedule PreS(K, y,+x), then there arises a new
kernel in that schedule (in bin B−(K)) consisting of solely Type (a) y-jobs, and x is the delaying emerging job of
that kernel.

Proof. Obviously, by the condition in the lemma, there arises a new kernel in schedule PreS(K, y,+x),
call it K′, and it consists of y-jobs following job x in schedule PreS(K, y,+x). Clearly, x is the delaying
emerging job of kernel K′. Such a right-shifted job y cannot be of Type (b) as otherwise it would have
been included within the idle-time interval (occupied by job x) at Pass 1. Hence, kernel K′ consists of
only Type (a) y-jobs.

Due to the above lemma, PROCEDURE DEF continues as follows:
(B.3) IF in schedule PreS(K, y,+x) the lateness of some (right-shifted) y-job exceeds L

THEN return the newly arisen kernel K′ and invoke PROCEDURE MAIN with kernel K′ {this updates
the current configuration respectively and makes a recursive call of Phase 1 now for kernel K′}

IF the list is empty THEN OUTPUT(PreS(K, y)) and halt.

This completes the description of Pass 2 and that of Phase 1.
From here on, we let PreS(K) = PreS(K, y, x) be the output of Phase 1 (a feasible L-preschedule

for kernel K containing all the y-jobs for bin B−(K)). An easily seen property of PROCEDURE DEF
and preschedule PreS(K, y, x) is summarized in the following proposition.

Proposition 13. An L-preschedule cannot be obtained by replacing any x-job x ∈ PreS(K, y, x) with a longer
available x-job in preschedule PreS(K, y, x). Hence, the omission of job x from preschedule PreS(K, y, x) will
create a new gap which may only be filled in by including job(s) with the same or smaller processing time.

Let υ and χ be the number of y-jobs and x-jobs of bin B−(K), respectively, ν = υ + χ is the total
number of jobs in that bin, and let υ1 be the number of Type (b) y-jobs. The next theorem gives a valid
upper bound on the cost of a call of PROCEDURE AUGMENTED(K, δ) at Phase 1 (including all the
recursive calls that the initial call may yield).

Theorem 2. The total cost of a call of Phase 1 for a kernel K is O(ν2 log ν). Hence, the cost of a call of
PROCEDURE AUGMENTED(K, δ) is the same.

Proof. At Step 1 of Pass 1, during the construction of preschedule PreS(K) ED-heuristics with an
upper bound on its running time O(υ log υ) for scheduling up to υ y-jobs is used, whereas at less than
υ1 scheduling times a new kernel may arise (as the delaying emerging job may only be a Type (b)
y-job). Phase 1 invokes PROCEDURE MAIN which, in turn, calls the decomposition procedure for
each of these kernels. By Lemma 2, the total cost of all the calls of the decomposition procedure can be
estimated as O(κ2

1 log κ1 + κ2
2 log κ2 + · · ·+ κ2

υ1
log κυ1), where κ1, . . . , κυ1 is the number of jobs in each

of the υ1 arisen kernels, correspondingly. Let m be the mean arithmetic of all these κs. Since any newly
arisen kernel may contain only y-jobs for bin B−(K) and no two kernels may have a common job,
υ1m ≤ υ. The maximum in the sum is reached when all the κs are equal to m, and from the above sum
another no-smaller magnitude O(υ1m2 log m) ≤ O(υ1(υ/υ1)

2 log(υ/υ1)) ≤ O(υ2 log υ) is obtained
(in the first and second inequalities, υ1m ≤ υ and υ1 ≥ 1, respectively, are applied).

Then, the total cost of Pass 1 for kernel K (including that of Step 2, Case (2)) is O(υ1υ log υ +

υ2 log υ) = O(υ2 log υ). The cost of Steps (A), (B.1) and (B.2) of Pass 2 is that of ED-heuristics,
i.e., O(χ log χ). At Step (B.3), since the delaying emerging job for every newly arisen kernel is
a distinct x-job for bin B−(K), the number of the calls of PROCEDURE MAIN for all the newly
arisen kernels after the initial call of PROCEDURE AUGMENTED(K, δ), and hence the number
of the recursive calls of Phase 1 for kernel K, is bounded by χ. Similar to what is done for Pass
1, we let κ1, . . . , κυ1 be the number of jobs in each of the χ arisen kernels, respectively. Again, by
Lemma 2, the total cost of all the calls of PROCEDURE MAIN to the decomposition procedure is

Mathematics 2019, 7, 1104 25 of 42

O(κ2
1 log κ1 + κ2

2 log κ2 + · · ·+ κ2
χ log κχ). We let again m be the mean arithmetic of all these κs, χm ≤ υ

and obtain an upper bound O(χ2 log χ + χm2 log m) ≤ O(χ2 log χ + χ(υ/χ)2 log(υ/χ)) ≤ O(ν2 log ν)

on the cost of Pass 2 and hence the total cost of Phase 1 is O(ν2 log ν).
The second claim in theorem follows as the cost of the generation of the second part of an

augmented Lδ-schedule is absorbed by that of the first part. Indeed, recall that for a call of PROCEDURE
AUGMENTED(K, δ), the second part of schedule SLδ [K] consisting of the jobs of the atomic kernel
K∗, is constructed by ED-heuristics in time O(κ′ log κ′), where κ′ ≤ κ is the total number of jobs in
atomic kernel K∗, and κ is the number of jobs in kernel K (Proposition 10). Similar to above in this
proof, we can show that the construction of the second part of the augmented schedules for the calls of
PROCEDURE AUGMENTED for all the arisen kernels (for the same δ) is O(n log n).

At this stage, we can give an optimality (sufficient) condition for problem 1|rj|Lmax, that is
helpful also in that it exhibits where the complex nature of the problem is “hidden”. Dealing with
an IA(b2) is a complicated task as it implies the solution of NP-hard set/numerical problems such
as 3-PARTITION yet with additional restrictions that impose job release times. As to the solution
provided by PROCEDURE MAIN, as we have seen above, the recurrences at Step 2, Case (2) in Pass 1,
and at Step (B.3) at Pass 2 do not, in fact, cause an exponential behavior.

Theorem 3. PROCEDURE MAIN finds an optimal solution to problem 1|rj|Lmax in time
O(n2 log n log pmax) if no IA(b2) at Phase 1 arises.

Proof. The proof is quite straightforward, we give a scratch. The initial step takes time O(n log n)
(the cost of ED-heuristics). At iterative step, the cost of updates of L∗max and δ(M∗), M ∈ K and that of
the detection of every newly arisen kernel is bounded by the same magnitude. It is easy to see that
an L-preschedule for every kernel in K will be generated at Phase 1 if no Type (b) y-job is forced to
surpasses the L-boundary, or, equivalently, no IA(b2) arises (only a y-job may be forced to surpass the
L-boundary, whereas, if a Type (a) y-job surpasses it, PROCEDURE MAIN proceeds with the newly
arisen kernel). Hence, PROCEDURE AUGMENTED(K, δ) will create a feasible L-augmented schedule
for every kernel (since no IA(b2) at Pass 1 arises). Then, it remains to estimate the calls of PROCEDURE
AUGMENTED(K, δ) in the iterative step. The cost of a call of PROCEDURE AUGMENTED(K, δ) for a
given kernel K including all the embedded recursive calls is O(ν2 log ν) (Theorem 2). These recursive
calls include the calls for all the kernels which may arise within bin B−(K). Hence, for the purpose of
our estimation, it suffices to distinguish the calls PROCEDURE AUGMENTED(K, δ) and PROCEDURE
AUGMENTED(M, δ) for two distinct kernels K and M such that bins B−(K) and B−(M) have no jobs
in common. Then, similar to what is done to estimate the cost of Pass 1 in the proof of Theorem 2, we
easily get an overall (amortized) cost of O(n2 log n) for PROCEDURE MAIN for a given trial δ. Then,
we obtain the overall cost of O(n2 log n log pmax) for PROCEDURE MAIN taking into account that
there are no more than log pmax trial δs.

8. Construction of Compact Preschedules for Problem 1|pj : divisible, rj|Lmax

This section starts Part 2, in which our basic task is to develop an auxiliary algorithm that
deals with an IA(b2) occurred at Phase 1 (recall that if no IA(b2) occurs, PROCEDURE MAIN with
PROCEDURE AUGMENTED(K, δ) using Phase 1 already solves problem 1|rj|Lmax). A compact
feasible schedule, one without any redundant gap, has properties that are helpful for the establishment
of the existence or the non-existence of a complete L-schedule whenever during the construction of
a kernel preschedule at Phase 1 an instance of Alternative (b2) arises. In this section, we study the
compactness properties for instances of problem 1|pj : divisible, rj|Lmax.

Since the basic construction components of a complete feasible schedule are the secondary blocks,
it suffices to deal with compact secondary blocks. A secondary block B is compact if there is no feasible
L-schedule containing all the jobs of that block with the total length of all the gaps in it no-less than
that in block B.

Mathematics 2019, 7, 1104 26 of 42

We can keep the secondary blocks compact if the processing times of some non-kernel jobs are
mutually divisible. For the commodity and without loss of generality, we assume that the processing
times of the non-kernel jobs are powers of 2 (precisely, we identify the specific non-kernel jobs for which
mutual divisibility is required on the fly). Below, we give a basic property of a set of divisible numbers
and then we give another useful property of a kernel preschedule with divisible job processing times,
which are used afterwards.

Lemma 6. For a given job x, let J−(x) be the set of jobs J−(x) = {i|pi < px} such that p(J−(x)) > px and
the processing times of jobs in set J−(x) ∪ {x} are mutually divisible. Then, there exists a proper subset J′ of set
J−(x) with p(J′) = px (that can be found in an almost liner time).

Proof. The following simple procedure finds subset J′. Sort the jobs in set J−(x) in non-increasing
order of their processing times, say {x1, . . . , xk}. It is straightforward to see that, because of the
divisibility of the processing times of the jobs in set J−(x) ∪ {x}, there exists integer l < k such that
∑l

ι=1 xι = px, i.e., J′ = {x1, . . . , xk}.

Lemma 7. Preschedule PreS(K, y, x), constructed at Pass 2 of Phase 1 for an instance of 1|pj :
divisible, rj|Lmax, contains no gap except one that may possibly arise immediately before time moment ψL(K).

Proof. By the way of contradiction, suppose I is an internal gap in schedule PreS(K, y) of Pass 1. Note
that initially, gap I was completely occupied in bin B−(K) in schedule σ, and that it is succeeded by at
least one y-job in preschedule PreS(K, y). That is, the x-jobs with the total length of at least |I| should
have been available while scheduling the interval of gap I in PROCEDURE DEF at Pass 2. Then, an
idle time interval within the interval of gap I in preschedule PreS(K, y, x) of Pass 2 may potentially
occur only at the end of that interval, say at time moment τ, due to the non-permitted interference in
schedule PreS(K, y,+x) of an available (and not yet discarded) x-job with a succeeding y-job, say y
(Step (B)). Note that job y is a Type (a) y-job (if it were of Type (b), then it would have been included
ahead any x-job in bin B−(K)) and that the lateness of that job did not exceed L before kernel K was
detected in schedule Σ(C(δ, K)). Let X be the set of the x-jobs preceding job y in the interval of gap I in
the latter schedule, and X′ be the corresponding set of the x-jobs in preschedule PreS(K, y, x) (by our
construction, P(X) > P(X′)). In PROCEDURE DEF, during the construction of schedule PreS(K, y, x),
at time moment τ there must have been no job with processing time p(X)− p(X′) or less available.
However, this is not possible since, because of the divisibility of job processing times, set X must
contain such a job (and that job must have been available and yet unscheduled). The existence of a gap
from time moment τ in the interval of gap I in schedule PreS(K, y, x) has led to a contradiction and
hence it cannot exist.

In the rest of this section, we assume that preschedule PreS(K) contains a gap; i.e., it ends with a
gap (Lemma 7). Our objective is to verify if that gap can be reduced. To this end, we define two kinds
of jobs such that their interchange may possibly be beneficial.

The first type of jobs are formed from set EP(K, L), the set of the passive emerging jobs for kernel
K in the current configuration with threshold L = Lδ. Recall that a job from set EP(K, L) is included
after kernel K in schedule ΣC(δ,K) but it may feasibly be included (as an x-job) in a preschedule of
kernel K (in bin B−(K)).

Recall at the same time, that a job from preschedule PreS(K) which may be rescheduled after all
jobs of kernel K without surpassing the L-boundary is one from set E(K, L), the set of emerging jobs
for kernel K at the current configuration (such a job was included as an x-job in preschedule PreS(K)).

A vulnerable component of a secondary block is a preschedule in it, in the sense that we can
maintain a secondary block compact if every preschedule that it contains is also compact, i.e., there
exists no other preschedule (for the same kernel) with the total length of the gaps less than that in
the former preschedule (see Corollary 4 at the end of this section). A key informal observation here

Mathematics 2019, 7, 1104 27 of 42

is that, if a preschedule for kernel K is not compact, then a compact one can only be obtained from
the former preschedule by replacing some jobs from set E(K, L) with some jobs from set EP(K, L),
whereas nothing is to be gained by substituting any jobs from a compact preschedule by any jobs from
set EP(K, L) (Proposition 14 below).

Let A ⊆ E(K, L) and B ⊆ EP(K, L). Consider A and B as potential “swap” subsets and denote
by PreS(K,−A,+B) the preschedule for kernel K obtained by interchanging the roles of jobs from
sets A and B while reconstructing the current preschedule PreS(K) by the procedure of Phase 1.
Technically, preschedule PreS(K,−A,+B) can be constructed at Phase 1 for the restricted problem
instance PI(PreS(K),−A,+B) that contains all jobs from preschedule PreS(K) and set B but does not
contain ones in set A (so jobs from set A are activated for kernel K). Note that a job from set A belongs
to PreS(K,−A,+B), and, along with the remaining jobs from preschedule PreS(K), some job(s) from
set B may also be included in PreS(K,−A,+B).

Proposition 14. If an L-preschedule PreS(K) is not compact then there exist sets A and B such that an
L-preschedule PreS(K,−A,+B) is compact.

Proof. Among the jobs included in schedule ΣC(δ,K) after preschedule PreS(K), the available room
(the gap) from preschedule PreS(K) may only potentially be used by job(s) from set EP(K, L). By the
construction of Phase 1, this will not be possible unless some emerging job(s) from preschedule PreS(K)
is (are) rescheduled after kernel K. Then, this kind of the interchange of the jobs from set E(K, L)
with the jobs from set EP(K, L) yields the only potentially improving rearrangement of the jobs in
preschedule PreS(K), and the proposition follows.

Let us say that set A covers set B if preschedule PreS(K,−A,+B) includes all jobs from problem
instance PI(PreS(K),−A,+B). Since we wish to reduce the total gap length in preschedule PreS(K),
p(A) < p(B) must hold, which is our assumption from now on (we use p(A) for the total processing
time in job-set A; below, we use pmin{A} for the minimum job processing time in A).

Let γ(K) the total gap length in preschedule PreS(K) ∈ ΣC(δ,K). We call

ST(K) = γ(K) + βL(K∗) (13)

the store of kernel K in the current configuration C(δ, K). It is easily seen that ST(K) is the maximum
available vacant room in preschedule PreS(K) ∈ ΣC(δ,K):

Proposition 15. The total length of the jobs (the gaps, respectively) in preschedule PreS(K) ∈ ΣC(δ,K) might
be increased (decreased, respectively) by at most ST(K) time units in any L-preschedule for kernel K. If set A
covers set B, then the store of kernel K in an updated configuration with preschedule PreS(K,−A,+B) is

ST(K)− (P(B)− P(A)).

Lemma 8. If ST(K) < pmin{E(K, L)}, then preschedule PreS(K) is compact. If preschedule PreS(K) is not
compact, then ST(K) ≥ pmin{A}, for any A ⊆ E(K, L).

Proof. By the condition in lemma, the gap in preschedule PreS(K) (see Lemma 7) can potentially be
occupied only by a job j with pj ≤ pmin{E(K, L)}/2 (see Proposition 15). There may exist no such job
in set EP(K, L) as otherwise it would have been included in preschedule PreS(K) as an x-job at Pass 2.
Now, it can be straightforwardly seen that no interchange of jobs in set E(K, L) from preschedule
PreS(K) with jobs from set EP(K, L) may reduce the gap, because of the divisibility of the processing
times of the jobs in sets E(K, L) and EP(K, L), and the first claim in lemma follows from Proposition 14.

Now, we show the second claim. Suppose preschedule PreS(K) is not compact. Then, there
exist sets A and B such that A covers B and preschedule PreS(K,−A,+B) results in the reduction
of the store of kernel K by p(B)− p(A) (see Equation (13) and Propositions 14 and 15). Because of

Mathematics 2019, 7, 1104 28 of 42

the divisibility of job processing times in sets A and B, p(B) − p(A) is a multiple of pmin{A ∪ B}.
Hence, if ST(K) < pmin{A ∪ B}, then preschedule PreS(K) is compact; ST(K) ≥ pmin{A ∪ B} must
hold if PreS(K) is not compact. ST(K) ≥ pmin{B} is not possible, as otherwise a job from set B with
processing time pmin{B} would have been included in preschedule PreS(K) at Pass 2 of Phase 1.
It follows that ST(K) ≥ pmin{A}.

Due to Lemma 8, from here on, assume that ST(K) ≥ pmin{A}. It is not difficult to see that not all
ST(K) time units may potentially be useful. In particular, let ν ≥ 1 be the maximum integer such that
ST(K) ≥ νpmin{A}, and let p′ = νpmin{A}.

Lemma 9. A feasible L-preschedule PreS(K,−A,+B) contains gap(s) with the total length of at least ST(K)−
p′; hence, p(B) ≤ p(A) + p′ when set A covers set B. Furthermore, pmin(EP(K, L)) = 2κ pmin{A}, for some
integer κ ≥ 1, and p′ ≤ 2κ pmin{A}.

Proof. The first claim easily follows from the definitions and the mutual divisibility of the processing
times of jobs in sets A and B, and inequality p(B) ≤ p(A) + p′ immediately follows. As to the
second claim, first we note that, for any π ∈ EP(K, L), pπ > ST(K), as otherwise job π would have
been included in preschedule PreS(K) at Pass 2 of Phase 1. Then, pmin(EP(K, L)) > p′, whereas
p′ ≥ pmin{A}. Hence, pmin(EP(K, L)) > pmin{A}. Now, the second claim follows from the fact that
the processing times of jobs in sets EP(K, L) and A are powers of 2.

Example 3. Suppose pmin{A} = 4 and ST(K) = 23. Then, p′ = 5pmin{A} = 20, hence a gap of length 3
is unavoidable. Let pmin(EP(K, L)) = 23 pmin{A} = 32. Since the shortest job that set B may contain has
processing time 32, the most we may expect is to form set A of three jobs of (the minimal) length 4, set B being
formed by a single job with the length 32. Then, after swapping sets A and B, we have a residue 32− 3× 4 = 20.
Because of these extra 20 units, the available idle space of length 23 is reduced to 3 in schedule SL(K,−A,+B)
in which set A covers set B. In that schedule, a gap of (the minimal possible) length 23− 20 = 3 occurs.

We may restrict our attention to sets A and B which do not contain equal-length jobs, as otherwise
we may simply discount the corresponding jobs from both sets. In particular, for given A and B
with i ∈ A and j ∈ B with pi = pj, we obtain sets A(−i) and B(−j) by eliminating job i and job
j, respectively, from sets A and B, respectively. Let A(−all_equal, B) and B(−all_equal, A) be the
reduced sets A and B, respectively, obtained by the repeated application of the above operation for all
equal-length jobs. Sets A(−all_equal, B) and B(−all_equal, A) contain no equal-length jobs. We have
proved the following lemma.

Lemma 10. If set A covers set B, then set A(−all_equal, B) covers set B(−all_equal, A), where p(B) −
p(A) = p(B(−all_equal, A))− p(A(−all_equal, B)).

Theorem 4. If set A covers set B, then there are also (reduced) sets A′ ⊆ A and B′ ⊆ B, where set B′ contains
a single element π ∈ EP(K, L) with the minimum processing time in set B and with P(B′)− p′ ≤ P(A′) <
P(B′) such that set A′ covers set B′ and P(B′)− P(A′) = P(B)− P(A).

Proof. Let A and B be the reduced sets that contain no equal-length jobs and such that A covers B
(see Lemma 10). We can further reduce sets A and B by discounting, similarly, for each job j ∈ B, jobs
from set A, for which processing times sum up to pj. In particular, take a longest job j ∈ B and longest
jobs from set A that sum up to pj. Due to the divisibility of job processing times and the inequalities
p(B) > p(A) and pmin(EP(K, L)) = 2κ pmin{A} (see Lemma 9), this will be possible as long as the total
processing time in A is no smaller than pj. The sets A and B are reduced respectively, and the same
operation for these reduced sets is repeated until the total processing time of the remaining jobs in
the reduced set A is less than pj. Then, we are left with a single job j ∈ B (one with the minimum

Mathematics 2019, 7, 1104 29 of 42

processing time in B) and the jobs in set A with the total processing time less than pj, and such that
pj − p(A) ≤ p′ (see Lemma 9).

Let A′ and B′ be the reduced sets obtained from sets A and B, respectively. By the construction
of set A′ and B′ and the fact that set A covers set B, it immediately follows that P(B′) − P(A′) =

P(B)− P(A) and that set A′ covers set B′.

Now, we show that the current secondary block BK will be kept compact if we merely unify the
compact preschedules in schedule ΣC(δ,K).

Theorem 5. A secondary block B consisting of compact L-preschedules is compact.

Proof. If the time interval of every preschedule PreS(K) from block B extends up to time ψL(K) and it
contains no gap then the secondary block B is clearly compact. Suppose there is preschedule PreS(K)
from block B that contains a gap and/or completes before time ψL(K). First, we observe that no extra
job can be included within preschedule PreS(K) to obtain another L-preschedule with an extended
time interval and/or with less total gap length. Indeed, let x′, px′ < px, be a shortest available x-job
from set ∈ J−(x). By PROCEDURE DEF, schedule PreS(K,+x′) is not a feasible L-preschedule for
kernel K (as otherwise PROCEDURE DEF would include job x′ in preschedule PreS(K) at Pass 2).
Thus, job x′ may only feasibly be included in preschedule PreS(K) by removing a longer job x from
that preschedule. However, such a rearrangement may, at most, fill in the former execution interval of
job x due to the above made observation and Lemma 6.

To prove the lemma, now it clearly suffices to show that nothing is to be gained by a job
rearrangement in preschedule PreS(K) that involves, besides the jobs from sets E(K, L) and EP(K, L),
the jobs from a preschedule preceding preschedule PreS(K).

Let PreS′(K) be an arbitrary L-preschedule for kernel K (one respecting the current threshold Lδ).
Without loss of generality, assume preschedules PreS(K) and PreS′(K) start at the same time, whereas
none of them may complete after time ψL(K) (Equation (12)). Let W and Z, respectively, be the sets
of integer numbers, the processing times of jobs in the current preschedule PreS(K) ∈ ΣC(δ,K) and in
preschedule PreS′(K), respectively (here, we assume that sets W and Z consist of mutually divisible
integer numbers, possibly with some repetitions).

Similar to what is done in Lemma 10 and Theorem 4, we discount the same numbers from sets
W and Z and the numbers from one set which sum up to another number from the other set (taking
a combination with the longest possible jobs). Note that both sets are reduced by the same amount
(a sum of powers of 2). Denote by W ′ and Z′ the resultant sets.

If p(W ′) ≥ p(Z′) then the total gap length in preschedule PreS(K) cannot be more than that in
preschedule PreS′(K), and the theorem follows if the condition holds for all preschedules in block B.

Otherwise, suppose p(W ′) < p(Z′). By the definition of the sets W ′ and Z′ and the store of kernel
K (Equation (13)), p(Z′)− p(W ′) = p(Z)− p(W) ≤ ST(K) (see Theorem 4) and the preschedule for
kernel K consisting of the jobs associated with the set of processing times {W \W ′} ∪ Z′ will have the
same total gap length as preschedule PreS′(K) (the substitution of the jobs corresponding to set W ′ by
those from set Z′ would result in a preschedule with the same total gap length as that in preschedule
PreS′(K)). By the construction of preschedule PreS(K) at Phase 1, no job x with processing time from
set Z′ which could have been feasibly included within preschedule PreS(K) was available during
the construction of that preschedule. Hence, every such job x should have been already scheduled
in a preschedule PreS(K′) preceding preschedule PreS(K) in block B. By rescheduling job x from
preschedule PreS(K′) to preschedule PreS(K), the total gap length in the newly created preschedule
of kernel K will be reduced by px, but a new gap of the same length will occur in the resultant new
preschedule of kernel K′ as there is no other suitable job available (otherwise, it would have been
included in preschedule PreS(K)). Hence, the total gap length in block B will remain the same. Thus,
no matter how the jobs are redistributed among the preschedules from block B, the total length of the
remaining gaps in that block will remain the same. The lemma is proved.

Mathematics 2019, 7, 1104 30 of 42

Corollary 4. If a secondary block B is constituted by the preschedules created at Phase 1, then it is compact.

Proof. For every kernel K ∈ B, if an L-preschedule PreS(K, x, y) of Phase 1 is not compact then there
exist sets A ⊆ E(K, L) and B ⊆ EP(K, L) such that an L-preschedule PreS(K,−A,+B) is compact
(Proposition 14). By Theorem 4, B = {π}, for some job π ∈ EP(K, L). However, since for every job
j ∈ A, pj < pπ (see Lemma 9), set A cannot cover set B in preschedule PreS(K,−A,+B), as otherwise
job π would have been included in preschedule PreS(K, x, y) at Pass 2 instead of the shorter jobs
from set A. It follows that every preschedule from block B is compact, and the corollary follows from
Theorem 5.

9. Phase 2: Search for an L-preschedule When an IA(b2) at Phase 1 Arises

Throughout this section, we consider the scenario when a compact preschedule for a newly arisen
kernel K cannot be constructed at Phase 1, i.e., an IA(b2) with a Type (b) y-job y at Pass 1 arises. Recall
that this happens when Pass 1 is unable to include job y in preschedule PreS(K, y) in the current
configuration (see Proposition 12). Phase 2, invoked from Phase 1, generates one or more new problem
instances and calls back Phase 1 to create the corresponding new configurations. Thus, Phase 2 has no
proper algorithmic features except that it generates new problem instances.

We refer to the earliest occurrence of IA(b2) in secondary block BK at Phase 1 as the basic case.
In the inductive case (abbreviated IA(b2-I)), IA(b2) repeatedly arises in the current secondary block
(roughly, we “stay” in the current secondary block for IA(b2-I) in the inductive case, whereas we are
brought to a new secondary block with every newly occurred IA(b2) in the basic case). In general,
different occurrences of an IA(b2-I) in the inductive case may occur for different kernels, where all of
them pertain to the current secondary block B.

Throughout this section, let K− be the kernel immediately preceding kernel K in block BK. We
let y be an incoming job in bin B−(K) = B+(K−) at Phase 1; y is an incoming job in the first bin of
block BK if there exists no K−. Note that ry is no smaller than the starting time of block BK, and, since
it can feasibly be scheduled within every bin that initiates at or after time ry up to (and including)
bin B−(K), y is a former x-job for any such a bin (except that it is a Type (b) job for bin B−(K)), i.e., it
may potentially be included in any of these bins. We explore such possibility and seek for a suitable
distribution of all the x-jobs and Type (b) y-jobs into these bins at Phase 2.

Proposition 16. Suppose during the construction of preschedule PreS(K, y) an IA(b2)/IA(b2-I) with job y
occurs and there exists schedule SL. Then, job y or a Type (b) y-job included between kernel K− and job y in bin
B−(K) is scheduled before kernel K− in schedule SL.

Proof. Note that the critical block in schedule ΣC(δ,K) coincides with the secondary block BK− , and it is
compact when the above IA(b2)/IA(b2-I) occurs by Corollary 4. Then, job y cannot be restarted earlier
in any feasible L-schedule in which the same jobs (which were included in preschedule PreS(K, y) at
Pass 1) are left scheduled before job y. The lemma obviously follows if y is the earliest considered job
to be scheduled in bin B−(K). Otherwise, job y may potentially be started earlier either by scheduling
it before kernel K− or by decreasing (left-shifting) its current early starting time. The latter will only
be possible if some job included in bin B−(K) ahead of job y is rescheduled behind job y. By the
construction at Phase 1, any job included in bin B−(K) ahead of job y is a no less urgent than job y
y-job and it cannot be rescheduled after job y without surpassing the L-boundary. Then, job y may be
left-shifted only if one of the latter jobs is rescheduled before kernel K−. However, this is not possible
for a Type (a) y-job and the lemma is proved.

By the above proposition, either job y or a Type (b) y-job included between kernel K− and job y in
bin B−(K) is to be rescheduled before kernel K−. In particular, the following observations are evident:

• (1) If job y, is the first scheduled job in bin B−(K) or is preceded only by Type (a) y-jobs in that
bin, then job y is to be entirely rescheduled before kernel K−.

Mathematics 2019, 7, 1104 31 of 42

• (2) If job y is preceded by some Type (b) y-job(s), then either job y or some of these Type (b) y-job(s)
is (are) to be rescheduled before kernel K−. Since in any L-schedule job y needs to be left-shifted
by at least λy amount of time (the L-delay of job y (see Equation (5))), the total processing time of
these Type (b) y-jobs to be rescheduled before kernel K− must be no-less than λy.

Let us denote by Λy the set of the y-jobs to be rescheduled before kernel K− as defined in Cases (1)
and (2) above. Set Λy will not be explicitly defined; it will be formed implicitly during the activation
procedure that we describe in this section. In Case (1) above, set Λy will contain a single job y,
hence ps ≥ py must clearly hold, whereas, in Case (2), ps must clearly be no-less than the minimum
processing time of a y-job in set Λy. Let p̄min{y} be the minimum processing time among these y-jobs.
The next proposition follows:

Proposition 17. ps ≥ p̄min{y}.

9.1. The Activation of a Substitution Job

Given that an IA(b2)/IA(b2-I) with job y after kernel K− arises, s ∈ BK is called a substitution job
if ds > dy. Intuitively, job s is an emerging job for job y (the latter job surpasses the current L-boundary,
and in this sense, it is a potential overflow job).

PROCEDURE ACTIVATE(s) that activates substitution job s has some additional features
compared to the basic definition of Section 2, as we describe in this subsection (in the next subsection,
we complete the description of Phase 2 by a subroutine that tries different substitution jobs to determine
a “right” one).

Let B{(s)} be the bin from secondary block BK containing substitution job s (it follows that s was
included as an x-job in bin B{(s)}). PROCEDURE ACTIVATE(s) reconstructs preschedules for the
kernels in the current schedule ΣC(δ,K) between the kernel K′ with B−(K′) = B{(s)} (the kernel with
its first surrounding bin B{(s)}) and kernel K−, including these two kernels, calling Phase 1 for each of
these kernels (the kernel preschedules are reconstructed in their precedence order). This reconstruction
leads to a new temporal configuration. PROCEDURE ACTIVATE(s) aims to verify if there exists a
feasible L-preschedule for kernel K respecting this configuration. If it does not exist, PROCEDURE
sl-SUBSTITUTION(K), described in the next subsection, tries another substitution job for kernel K,
calling again Phase 1 for kernel K; each call creates a new temporary configuration and is carried out
for a specially derived problem instance that depends on the selected substitution job.

For notational simplicity, we denote every newly constructed preschedule of kernel K by PreS(K);
we distinguish preschedules constructed at different calls of Phase 1 just by referring to the call with the
corresponding substitution job, and will normally use PreS(K) for the latest so far created preschedule
for kernel K.

In the inductive case, the activation procedure for a substitution job s calls Phase 1 with a
non-empty set SB of the substitution jobs, ones in the state of activation in the secondary block B by the
corresponding call of Phase 1 (note that s 6∈ SB). As already noted, the activation procedure may be
called for different kernels which belong to the current secondary block, so that this block may contain
a preschedule, already reconstructed by an earlier call of the activation procedure for another kernel
from that block (set SB contains all the corresponding substitution jobs).

Problem instances for the basic and inductive cases. The problem instances for the basic and
inductive cases are different, as we specify now. The problem instance PI(current,+y, [s]) of the
basic case contains the jobs in schedule ΣC(δ,K) from all the bins between bin B{(s)} and bin B−(K−),
including the jobs of bins B−(K−) and B{(s)} except job s, job y and all the y-jobs included before job
y in preschedule PreS(K, y) of Pass 1 (the latter y-jobs are ones which were already included in bin
B−(K) at Pass 1 when the IA(b2) with job y has occurred; note that no x-job for bin B−(K) is included
in instance PI(current,+y, [s])).

Mathematics 2019, 7, 1104 32 of 42

The problem instance of the inductive case contains the same set of jobs as that in the basic case,
and it also contains the substitution jobs from set SB . For the sake of simplicity, we denote that problem
instance also by PI(current,+y, [s]).

Successful and failure outcomes. As already specified, the activation of job s consists of
the rescheduling of preschedules of bins B{(s)}, . . . , B−(K−) by a call of Phase 1 for instance
PI(current,+y, [s]) in this precedence order (note that while rescheduling these bins only the jobs from
that instance are considered). As we show at the end of this subsection in Lemma 11, all these bins will
be successfully reconstructed at Phase 1.

PROCEDURE ACTIVATE(s) halts either with the successful outcome or with the failure outcome.
For every successful outcome, the current call of Phase 2 (invoked for the IA(b2) with job y) completes
and Phase 1 is repeatedly invoked from PROCEDURE MAIN for the construction of a new preschedule
PreS(K) for kernel K. Intuitively, the difference between the configurations after this new and the
previous calls of Phase 1 for kernel K is that, as a result of the new call, no job from problem
instance PI(current,+y, [s]) may again surpass the L-boundary, and job y is already included in current
secondary block in the new configuration. We omit a straightforward proof of the next proposition.

Proposition 18. If there is a job from instance PI(current,+y, [s]) that the activation procedure could not
include in any of the reconstructed bins B{(s)}, . . . , B−(K−), this job is a y-job for bin B−(K) (or it is a job
from set SB in the inductive case). If a former y-job is of Type (a), then all such Type (a) y-jobs can be included in
bin B−(K) during the construction of a new preschedule PreS(K) for kernel K at Phase 1.

Note that, independently of the outcome, the activation procedure cannot include job s before any
of the Type (b) y-jobs for bin B−(K) from instance PI(current,+y, [s]) in the basic case. However, as
shown below, job s may be included ahead some of these Type (b) y-jobs at a later call of the activation
procedure for a substitution job, different from job s, in the inductive case.

Extension of Phase 1 for a call from the inductive case. The activation procedure for the
inductive case takes a special care on the jobs from set SB while invoking Phase 1 for instance
PI(current,+y, [s]) (or instance PI(current,+y, [∅]) which we define below). In particular, when Phase
1 is called from the inductive case, two types of the x-jobs are distinguished during the (re)construction
of a preschedule PreS(K̄), K̄ 6= K (one of the bins B{(s)}, . . . , B−(K−)). The Type (b) x-jobs are ones
which are also x-jobs for bin B−(K), and the rest of the x-jobs are Type (a) x-jobs. We observe that a
Type (a) x-job for bin B−(K̄) will transform to a Type (b) y-job for bin B−(K) unless it is included in
one of the preceding reconstructed bins B−(K̄), and that a substitution job from set SB is a Type (b)
x-job for any bin B−(K̄).

Phase 1, when invoked from the inductive case, is extended with an additional, Pass 3, designed
for scheduling the substitution jobs from set SB . Pass 3 uses the algorithm of Pass 2, DEF-heuristics,
but with a different input, restricted solely to Type (b) x-jobs (hence, a former substitution job from SB
may potentially be included at Pass 3). There is a respective modification in the input of Pass 2, which
consists now of only Type (a) x-jobs (hence no substitution job from set SB will be included at Pass 2).
Pass 3 is invoked after Pass 2, and Pass 2 is invoked after Pass 1, which remains unmodified while
rescheduling each of the bins B{(s)}, . . . , B−(K−).

Once (in both basic and inductive cases) preschedules of bins B{(s)}, . . . , B−(K−) are
reconstructed (Lemma 11), Phase 1 continues with the reconstruction of preschedule PreS(K)
as follows.

• (A) If there remains no unscheduled job from instance PI(current,+y, [s]) (except possibly jobs
from set SB in the inductive case), i.e., all these jobs are included in one of the reconstructed bins
B{(s)}, . . . , B−(K−), the activation procedure halts with the successful outcome.

If there is a job from instance PI(current,+y, [s]) that could not have been included in any of
the reconstructed bins B{(s)}, . . . , B−(K−) (excluding jobs from set SB in the inductive case),

Mathematics 2019, 7, 1104 33 of 42

then it is a y-job for bin B−(K) (and it might also be a job from set SB in the inductive case).
PROCEDURE ACTIVATE(s) proceeds as described below.

• (B) If every job from instance PI(current,+y, [s]) that could not have been included in any of the
reconstructed bins B{(s)}, . . . , B−(K−) is a Type (a) y-job for bin B−(K) (or a job from set SB in
the inductive case), the outcome of the activation of job s is again successful (see Proposition 18).
{all the Type (a) y-jobs for bin B−(K) will fit in that bin}.

• If there is a Type (b) y-job for bin B−(K) from instance PI(current,+y, [s]) that could not have
been included in any of the reconstructed bins B{(s)}, . . . , B−(K−), the outcome of the activation
procedure depends on whether Phase 1 will succeed to construct L-preschedule PreS(K) including
all such Type (b) y-jobs.

(C1) If during the construction of preschedule PreS(K) at Pass 1 an iteration is reached at which
all the Type (b) y-jobs from instance PI(current,+y, [s]) are included, then the outcome of the
activation of job s is again successful and Phase 1 continues with the construction of (a new)
preschedule PreS(K) for kernel K by considering all the available jobs (including job s) without
any further restriction.

(C2) If the above iteration during the construction of preschedule PreS(K) does not occur, then
either (C2.1) a new kernel K′ including the corresponding type (a) y-job(s) arises or (C2.2) an
IA(b2) with a Type (b) y-job occurs (see Proposition 12).

In Case (C2.1), Step 2 of Pass 1 returns kernel K′ and calls PROCEDURE MAIN to update the
current configuration (see the description of Pass 1 in Section 7.1).

In Case (C2.2), PROCEDURE ACTIVATE(s) completes with the failure outcome (then
PROCEDURE sl-SUBSTITUTION(K), described in the next subsection, looks for another
substitution job s′ and calls repeatedly PROCEDURE ACTIVATE(s′)).

This completes the description of PROCEDURE ACTIVATE(s). In the next subsection, we describe
how we select a substitution job in the basic and inductive cases completing the description of Phase 2.

Lemma 11. PROCEDURE ACTIVATE(s) creates an L-preschedule, for every reconstructed bin
B{(s)}, . . . , B−(K−) with the cost of Phase 1.

Proof. In this proof, we refer to a call of PROCEDURE ACTIVATE(s) from the condition of the lemma
as the current call of that procedure; note that, for the inductive case, there should have been performed
earlier calls of the same procedure within the current secondary block. In particular, prior to the current
call of PROCEDURE ACTIVATE(s), every bin B−(K̄) ∈ {B{(s)}, . . . , B−(K−)} was (re)constructed
directly at Phase 1 (one or more times). The current call reconstructs bin B−(K̄) (preschedule PreS(K̄))
once again. Recall also that problem instance PI(current,+y, [s]) contains additional job y and the
Type (b) y-jobs preceding that job by the construction of the preschedule for kernel K at Pass 1 (these
jobs were included prior to the occurrence of an IA(b2) with job y). All these Type (b) y-jobs for bin
B−(K) become x-jobs for a bin B−(K̄) after the current call of PROCEDURE ACTIVATE(s).

Again, the activation procedure calls Phase 1, and by the construction of Phase 1, it will suffice to
show that during the reconstruction of any of the bins B−(K̄), there will occur no Type (b) y-job that
cannot be included in the newly created preschedule PreS(K̄) (note that no such Type (a) y-job may
arise). Let us now distinguish two kinds of Type (b) y-jobs for bin B−(K̄): a Type (b) y-job that was
also a Type (b) y-job during the previous (re)construction of preschedule PreS(K̄), and a newly arisen
Type (b) y-job for bin B−(K̄), i.e., one that was earlier included as an x-job in a preceding preschedule
PreS(K′) but which turned out to be a Type (b) y-job during the current construction of preschedule
PreS(K̄).

The lemma is obviously true if there exists no latter kind of a y-job for bin B−(K̄). To the
contrary, suppose job x was scheduled in bin B−(K′) (preceding bin B−(K̄)) as an x-job, but it was
forced to be rescheduled to (a later) bin B−(K̄) as an y-job during the current call of PROCEDURE

Mathematics 2019, 7, 1104 34 of 42

ACTIVATE(s). Then, during the current construction of preschedule PreS(K′) (the last call of
PROCEDURE ACTIVATE(s) that has invoked Phase 1) a new x-job z was included before job x
was considered at Pass 2 of Phase 1. By DEF-heuristics (Pass 2), this may only occur if a job scheduled
in bin B−(K′) at the previous call is not considered at the current call during the construction of
that bin (the preschedule PreS(K′)). Let N be the set consisting of all such jobs. By the definition of
instance PI(current,+y, [s]) and the activation procedure, a job in set N may be job s or a job which
was left-shifted within the time intervals liberated by job s or by other left-shifted job(s).

Thus, job z has now occupied the time intervals within which job x and job(s) in set N were
scheduled. pz ≥ 2px, as otherwise job x would have been considered and included in bin B−(K′)
ahead of job z by DEF-heuristics (recall that the smallest job processing time, larger than px is 2px).
Then, p(N) < px is not possible, since otherwise p(N) + px < 2px ≤ pz and the length of the released
time intervals would not be sufficient to include job z in bin B−(K′) (hence, job z would not push out
job x). If p(N) = px, because of the divisibility of job processing times and by DEF-heuristics, job z
may only push out job x if pz = 2px = 2p(N). Then, pz is greater than the processing time of any
job in set N. However, in this case, job z would have been included at the previous call in bin B−(K̄)
ahead of job x and the jobs in set N since it is longer than any of these jobs, a contradiction.

If now at the current call p(N) > px, a job can be included ahead of job z in preschedule PreS(K′)
within the time intervals earlier occupied by the jobs in set N. Let p′, p′ ≤ p(N), be the length of the
remaining total idle-time intervals. If pz ≤ p′, then job z cannot push out job z since it fits within the
remaining idle-time interval. If pz > p′, then pz must be no smaller than the smallest power of 2 greater
than px + p′. Hence, job z cannot fit within the intervals of the total length of px + p′, and, again,
it cannot pull out job x.

We showed that job z cannot exist, hence job x does not exist and PROCEDURE ACTIVATE(s)
creates an L-preschedule for the bins B{(s)}, . . . , B−(K−). The cost of the procedure is the same as that
of Phase 1 since the cost of the creation of problem instance PI(current,+y, [s]) is obviously absorbed
by the cost of Phase 1.

9.2. Selecting a Substitution Job

Now, we describe PROCEDURE sl-SUBSTITUTION(K) that repeatedly activates different
substitution jobs for an IA(b2) occurred at Phase 1 (using PROCEDURE ACTIVATE(s)) to determine
one for which PROCEDURE ACTIVATE(s) completes with the successful outcome (whenever there
exists such a substitution job). From here on, we refer to the original precedence order of the
substitution jobs in the current secondary block BK (their precedence order corresponding to the
last configuration in which none of them were activated).

Lemma 12. Suppose an IA(b2)/IA(b2-I) with job y arises and s′ and s′′ are the substitution jobs such that job
s′′ preceded job s′. Then, if the outcome of activation of job s′ is the failure then outcome of activation of job s′′

will also be the failure.

Proof. Let j be any candidate job to be rescheduled before kernel K−, i.e., j = y or j is any of the
Type (b) y-jobs included after kernel K− before the above IA(b2)/IA(b2-I) with job y has occurred
(see Proposition 16). Job j is released either: (1) before the (former) execution interval of job s′; or (2)
within or after that interval. In Case (1), job j can immediately be included in bin B{(s′)}. Moreover,
as ps′ > pj, if j cannot be included in bin B{(s′)}, it can also not be included in any other bin before
kernel K− (one preceding bin B{(s′)}). In Case (2), job j cannot be included before kernel K− unless
some jobs from bin B{(s′)} and the following bins are left-shifted within the idle-time interval released
by job s′ (releasing, in turn, the idle-time within which job j may be included). Again, since ps′ > pj,
job j will fit within the idle-time interval released by job s′, given that all the intermediate jobs are
“sufficiently” left-shifted. Since job s′ succeeds job s′′, the activation of job s′ will left-shift these jobs

Mathematics 2019, 7, 1104 35 of 42

no-less than the activation of job s′′ (being a substitution job, s′ is “long enough”). The lemma now
obviously follows.

Determining the sl-substitution job. We use the above lemma for the selection of a right
substitution job. Let us call the shortest latest scheduled substitution job such that the outcome
of its activation is successful, the sl-substitution job for job y. We show in Lemma 16 that, if there exists
no sl-substitution job, there exists no L-schedule.

Our procedure for determining the sl-substitution job is easy to describe. PROCEDURE
sl-SUBSTITUTION(K) (invoked for an IA(b2) with a Type (b) y-job from Phase 1 during the
construction of preschedule PreS(K)) finds the sl-substitution job or otherwise returns the failure
outcome. Iteratively, it calls PROCEDURE ACTIVATE(s) for the next substitution job s (a candidate
for the sl-substitution job) until PROCEDURE ACTIVATE(s) delivers a successful outcome or all the
candidate jobs (which may potentially be the sl-substitution job) are considered.

The order in which the candidate substitution jobs are considered is dictated by Lemma 12.
Recall from Proposition 17 that a substitution job is at least as long as p̄min{y}. Let p̄ ≥ p̄min{y}
be the minimum processing time no smaller than p̄min{y} of any yet unconsidered substitution
job. PROCEDURE sl-SUBSTITUTION(K), iteratively, among all yet unconsidered substitution jobs
with processing time p̄ determines the latest scheduled substitution job s and calls PROCEDURE
ACTIVATE(s) (see Lemma 12). If the outcome of PROCEDURE ACTIVATE(s) is successful, the
outcome of PROCEDURE sl-SUBSTITUTION(K) is also successful and it returns job s (s is the
sl-substitution job). Otherwise, if there exits the sl-substitution job, it is longer than job s. p̄ is set to the
next smallest processing time larger than the current p̄, s becomes the latest scheduled substitution job
with the processing time p̄ and PROCEDURE ACTIVATE(s) is called again. The procedure continues
in this fashion as long as the latest outcome is the failure and p̄ can be increased (i.e., a substitution job
with the processing time greater than that of the latest considered one exists). Otherwise, PROCEDURE
sl-SUBSTITUTION(K) halts with the failure outcome.

Let µ be the number of non-kernel jobs in the current secondary block BK.

Lemma 13. PROCEDURE sl-SUBSTITUTION finds the sl-substitution job or establishes that it does not
exist by verifying at most log pmax substitution jobs in time O(log pmaxµ2 log µ).

Proof. The preprocessing step of PROCEDURE sl-SUBSTITUTION creates a list in which the
substitution jobs are sorted in non-decreasing order of their processing times, whereas the jobs of
the same processing time are included into the inverse precedence order of these jobs in that list.
The preprocessing step takes time O(µ log µ).

Since the processing time of every next tried substitution job is larger than that of the previous one,
the procedure works on log pmax iterations (assuming that the processing times of the substitution jobs
are powers of 2). By Lemma 12, among all the candidate substitution jobs with the same processing
time, it suffices to consider only the latest scheduled one. For the failure outcome, by the same lemma,
it suffices to consider the latest scheduled substitution job with the next smallest processing time (given
that the procedure starts with the latest scheduled substitution job with the smallest processing time).

At every iteration, the corresponding bins from the current secondary block BK are rebuilt at
Phase 1. Applying Theorem 2 and the fact that different bins have no common jobs, we easily obtain
that the cost of the reconstruction of all the bins at that iteration is O(µ2 log µ) and hence the total cost
is O(µ log µ + log pmaxµ2 log µ) = O(log pmaxµ2 log µ).

10. More Examples

Before we prove the correctness of our algorithm for problem 1|pj : divisible, rj|Lmax, we give final
illustrations using the problem instances of Examples 1 and 2 and one additional problem instance,
for which an IA(b2) arises. Recall that Figures 5 and 9 represent optimal solutions for the former two
problem instances.

Mathematics 2019, 7, 1104 36 of 42

For the problem instance of Example 1, in the schedule of Figure 6 the collapsing of kernel K is
complete and the decomposition procedure identifies the atomic kernel K∗; hence, the corresponding
two bins are determined. The atomic kernel K∗ consists of Job 1 with the lateness −1 = L∗max.
The binary search is carried out within the interval [0, 13) (∆ = 16 − 3 = 13). For δ = 7, the
Lδ-boundary is −1 + 7 = 6. At Phase 1, bins B1 and B2 are scheduled as depicted in the schedule of
Figure 5 (in bin 1 only a single x-Job 2 at Pass 2 can be included, whereas bin B2 is packed at Pass 1
with two y-Jobs 3 and l). Hence, the L-schedule of Figure 5 for L = 6 is successfully created. For the
next δ = 4, the Lδ-boundary is −1 + 4 = 3. Bin B1 is scheduled similarly at the iteration with δ = 7;
while scheduling bin B2 at Phase 1, an IA(b2) with y-Job 3 occurs (since its lateness results to be greater
than 3), but there exists no substitution job. Hence, there exists no Lδ-schedule for δ = 4, L = 3. Phase
1 will complete with the similar outcome for the iteration in the binary search with δ = 6, and the
algorithm halts with the earlier obtained feasible solution for δ = 7.

For the problem instance of Example 2, the schedule of Figure 8 represents the result of the
decomposition of both arisen kernels K1 and K2 (kernel K2 arises once the decomposition of kernel
K1 is complete and bin B1 gets scheduled). We have Lmax(K1∗) = L3(σl,2) = 19− 20 = −1, whereas
∆ = 32− 3 = 29. For δ = 0, bin B1 may contain only Job 1. Once bin B1 is scheduled, the second kernel
K2 arises. The result of its collapsing is reflected in Figure 8. We have L∗max = Lmax(K2∗) = L6(σl,2,4) =

62− 58 = 4. Then, δ(K1∗) = 5 (while δ(K2∗) = 0), and an extra delay of 5 is now allowed for kernel
K1. Note that the current secondary block BK2 includes all the three bins. For δ = 0, bin B1 is newly
rescheduled and at Pass 2 of Phase 1 an x-Job 7 is now included in that bin (due to the allowable extra
delay for kernel K1∗). No other job besides Job l can be included in bin B2, and the last bin B3 is formed
by Job 4. A complete L-schedule (with Lδ = L∗max + δ = 4 + 0 = 4) with the objective value equal to a
lower bound 4 is successfully generated (see Figure 9).

Example 4. In this example, we modify the problem instance of Example 2. The set of jobs is augmented with
one additional Job 8, and the parameters of Jobs 4 and 7 are modified as follows:
r4 = 0, p4 = 8, d4 = 66,
r7 = 0, p7 = 4, d7 = 60,
r8 = 0, p8 = 4, d8 = 63.

Figure 10 represents the last step in the decomposition of kernel K1, which is the same as for the
problem instance of Example 2 (the schedules represented in Figures 10–13 have different scaling due
to the differences in their lengths). This decomposition defines the two bins surrounding atomic kernel
K1∗. The binary search is invoked for δ = 0; since K1∗ is the only detected kernel so far, δ(K1∗) = 0
and Lδ = L3(S∗[K1]) = −1. The first bin is successfully packed with an additional external x-Job 7 at
Pass 2 of Phase 1 (since there exists no y-job, Pass 1 is not invoked). PROCEDURE MAIN proceeds by
applying ED-heuristics from Time 21 during which the second kernel K2 arises. Figure 11 represents
the resultant partial schedule with the first packing of bin B1 and kernel K2. Figure 12 represents the
result of the full decomposition of kernel K2 (which is again the same as for the problem instance of
Example 2). Now, δ(K2∗) = 0 and δ(K1∗) = 5. Bin B1 is repacked, in which a longer x-Job 4 can now
be included, and bin B2 at Phase 1 is packed (at Pass 1 an y-Job 2, and at Pass 2 an x-Job l is included in
that bin, see Figure 12). PROCEDURE MAIN is resumed to expand the current partial schedule, but
now an IA(b2) with the earliest included Job 7 arises (as its resultant lateness is 66− 60 = 6 > 4). Job
4 from bin B1 is the sl-substitution job. The result of its activation is reflected in Figure 13: bin B1 is
repacked now with x-Jobs 7 and 8, bin B2 remains the same, and the last Job 4 is included in bin B3 at
Phase 0, yielding a complete SL0 -schedule with the optimal objective value 4 (both Jobs 6 and 4 realize
this optimal value).

0 3 7 11 19 21
1 3 2

Figure 10. Full decomposition of kernel K1.

Mathematics 2019, 7, 1104 37 of 42

0 11 19 21

1 3 2

4 8 53 57 61 65

7 8 5 6

Figure 11. Extended schedule SL(current, K1) with kernel K2.

0

1 3 2

8 53

5 6

625854222012

4

Figure 12. In schedule SL(current, K2) Job 7 cannot be included.

0

1 3 2

8 53

5 6

6258542220124

47 8

70

Figure 13. An optimal schedule SL in which bins B1, B2 and B3 are successfully repacked.

11. Correctness of the Framework for Jobs with Divisible Processing Times

In Section 8, we show that, for an instance of 1|pj : divisible, rj|Lmax, the current secondary block
is kept active at Phase 1 (Corollary 4). Now, we generalize this result proving a similar statement
for a secondary block that gets reconstructed at Phase 2 (we cannot affirm a similar property for an
instance of 1|rj|Lmax, a reason PROCEDURE MAIN may not provide an optimal solution to the general
problem). For the commodity in the proof that we present here, we introduce a few new definitions.

First, we observe that a call of PROCEDURE ACTIVATE(s) may create the new, so-called critical
gap(s) in a reconstructed preschedule in the current secondary block BK. To every critical gap in
secondary block BK, the substitution job from set SB which activation has yielded that gap, corresponds.
Denote by CG(s) the set of all the currently remaining (yet unused at that configuration) critical gaps
yielded by the activation of a substitution job s; let |CG(s)| be the total length of these gaps.

A substitution job s ∈ SB is stable if |CG(s)| = 0. When a substitution job s is activated, the total
length of the critical gaps arisen after its activation depends, in particular, on ps. For example, in the
basic case, or in the inductive case if substitution jobs in SB are stable, the new critical gaps with the
total length ps − py will arise, where y is the y-job for which s was activated.

If an activated substitution job s is non-stable and during a later call of PROCEDURE
ACTIVATE(s′), s′ 6= s, some y-job within the interval of the gaps in CG(s) is included, |CG(s)|
will be reduced. In this way, job s may eventually become stable.

For a substitution job s′ ∈ SB , we let Y(s′) be the set of all the newly included y-jobs in the
reconstructed bins after a call of PROCEDURE ACTIVATE(s′) (see Lemma 11).

Suppose a call of PROCEDURE ACTIVATE(s) (succeeding an earlier call of PROCEDURE
ACTIVATE(s′)) includes job s′ before all the y-jobs from set Y(s′). Then, job s′ is said to be inactivated.
The intuition behind this definition is that job s′ will not necessity remain in the state of activation for
all jobs from set Y(s′) in the case that the activation of a new substitution job s gives a sufficient room
for a proper accommodation of the jobs in set Y(s′) (this is rectified in more details in the proof below).
At the same time, we may note that job s′ may not be included in any of the newly reconstructed bins
and neither in bin B−(K) (then it eventually will be included within a succeeding bin of the secondary
block BK).

Lemma 14. At Phase 2, the current secondary block is kept compact given that for every occurrence of an
IA(b2-I) the corresponding sl-substitution job exists.

Proof. For the basic case, before the activation of the corresponding sl-substitution job, say s1, the
critical block BK is compact by Corollary 4. Since s1 is the sl-substitution job, block BK will remain
compact after the above activation. We are brought to the inductive case if an IA(b2) repeatedly arises
in the above block, the first occurrence of an IA(b2-I) with the number of the activated substitution
jobs k = 1.

Mathematics 2019, 7, 1104 38 of 42

We proceed with the proof using the induction on the number of the activated substitution jobs.
We now prove our claim for k = 2, in the case that the second substitution job s2 is activated in the
current secondary block. Consider the following possibilities. Originally, job s2 either: (i) succeeded
job s1; or (ii) preceded job s1.

In Case (i), if ps2 ≥ 2ps1 , all the y-jobs already included within CG(s1) together with jobs in set
Λy2 can be feasibly scheduled within CG(s2) as ps2 ≥ 2p(Λy2). Hence, after a call of PROCEDURE
ACTIVATE(s2) job s1 will be inactivated at Pass 3 (see Lemma 11). Hence, job s1 becomes stable and
we are left with a single substitution job s2 in the state of activation.

In Case (ii), note that no job from set Λy2 was included within CG(y1) after a call of PROCEDURE
ACTIVATE(s1). Hence, |CG(s1)| < p(Λy2). If job s2 is long enough and all jobs in Y(s1) are released
early enough and can fit within the newly released space by job s2 after a call of PROCEDURE
ACTIVATE(s2), once Pass 3 of the activation procedure completes, job s1 will again become stable and
we are again left with a single substitution job s2 in the state of activation.

Since in the above considered cases, the only non-stable substitution job is s2, our claim follows
from case k = 1 and the fact that s2 is the sl-substitution job. It only remains to consider the cases
when job s1 remains in the state of the activation after a call of PROCEDURE ACTIVATE(s2), i.e.,
both substitution jobs s1 and s2 remain in the state of activation. This happens in Case (i) if ps2 ≤ ps1

(note that in this case ps2 ≤ p(Λy2) also holds as otherwise job s2, instead of job s1, would have been
selected as the sl-substitution job for job y1). Either jobs in set Λy2 are not released early enough to be
included within CG(s1) or |CG(s1)| is not large enough. Hence, another substitution job needs to be
activated to include jobs in Λy2 (see Lemma 15 below). Since s2 is the sl-substitution job, |CG(s2)| is
the minimal possible. The lemma holds if job s1 again becomes stable. Otherwise, note that, since both
s1 and s2 are the sl-substitution jobs, the only remaining possibility to be considered is when a single
substitution job s with ps < ps1 + ps2 (instead of jobs s1 and s2) is activated.

Consider the following sub-cases: (1) |CG(s1)| ≥ p(Λy2); and (2) |CG(s1)| < p(Λy2). In Case (1).
jobs in Λy2 are not released early enough to be included within CG(s1) as otherwise they would have
been included by an earlier call of PROCEDURE ACTIVATE(s1). Hence, no job preceding originally
job s1 can be beneficially activated. At the same time, any substitution job succeeded originally job
s1 is longer than s1 (by the definition job s1 and PROCEDURE sl-SUBSTITUTION). Then, ps ≥ 2ps1

because of the divisibility of job processing times. In Case (2), ps ≥ 2ps1 must also hold as otherwise
all jobs in set Y(s1) together with jobs in set Λy2 would not fit within the time intervals that potentially
might be liberated by a call of PROCEDURE ACTIVATE(s).

Hence, in both Cases (1) and (2) above, ps < ps1 + ps2 is not possible and hence the activation of
job s will yield the critical gaps with a total length no less than our procedure yields, and the lemma
follows. The proof for the Case (ii) when the jobs in Y(s1) do not fit within CG(s2) or they are not
released early enough is quite similar to case (i) above (the roles of jobs s1 and s2 being interchanged).

For the inductive pass with k ≥ 3, let sk be the next activated sl-substitution job and let
SB = {s1, . . . , sk−1} be the substitution jobs in the state of activation in the current critical block
B). By the inductive assumption, block B was compact before job sk is activated. Now, we show that
the block remains compact once job sk is activated. This follows if sk, as before, remains the only
(non-stable) substitution job in the state of activation after a call of PROCEDURE ACTIVATE(sk).
Otherwise, originally, job sk: (i) succeeded all the jobs {s1, . . . , sk−1}; (ii) preceded these jobs; or (iii)
was scheduled in between their original positions. We use similar arguments as for k = 2. We give
a scratch.

In Case (ii), note that the time intervals released by a call of PROCEDURE ACTIVATE(sk) will be
available for the jobs from set Y(s1) ∪ · · · ∪Y(sk−1) during the execution of the procedure at Pass 2 of
Phase 1, and they may potentially be left-shifted to these intervals. Because of the mutual divisibility
of processing times of these jobs and by the construction of Pass 2, the total length of the remaining
idle-time intervals, if any, will be the minimal possible (this can be straightforwardly seen). It follows

Mathematics 2019, 7, 1104 39 of 42

that, at Pass 3, the corresponding jobs from SB will become inactivated and hence stable, whereas the
rest of them are to stay in the state of activation, and our claim follows from the inductive assumption.

In Case (i), all jobs from Y(s1) ∪ · · · ∪ Y(sk−1) are released early enough to be included within
the intervals newly released by a call of PROCEDURE ACTIVATE(sk). Again, because of the mutual
divisibility of processing times of these jobs and by the construction of Pass 2, the remaining idle-time
intervals, if any, will be the minimal possible, and at Pass 3 the corresponding substitution jobs will
be inactivated.

The proof of Case (iii) merely combines those for Cases (i) and (ii): at Pass 2, the intervals
released by a call of PROCEDURE ACTIVATE(sk) might be used by jobs from Y(s1) ∪ · · · ∪Y(sk−1)

preceding and also succeeding these intervals, and the corresponding jobs from {s1, . . . , sk−1} will
again become stable.

Lemma 15. Suppose an IA(b2)/IA(b2-I) with job y during the construction of preschedule PreS(K) arises and
there exists an L-schedule SL. Then, a substitution job is scheduled after kernel K− in schedule SL. That is, there
exists no L-schedule if there exists no substitution job.

Proof. The lemma is a kind of reformulation of Proposition 16. For the basic case, before the activation
of the sl-substitution job s1, the secondary block BK is compact by Corollary 4. Similar to in the proof
of Proposition 16, we can see that the current starting time of job y cannot be reduced by any job
rearrangement that leaves the same set of jobs scheduled before job y. Hence, some emerging x-job s
from one of the bins from the secondary block BK pushing job y is included behind job y in schedule
SL (recall that ds > dy must hold as, otherwise, once rescheduled after kernel K−, job s will surpass
the L-boundary or will force another y-job to surpass it). Job s cannot be from bin B−(K) since no
x-job can be included ahead of job y during the construction of PreS(K) as job y is released from the
beginning of that construction (and it would have been included at Pass 1 of Phase 1 before any x-job
is considered at Pass 2). Therefore, job s belongs to one of the bins preceding bin B−(K) in block BK.
The proof for the inductive case is similar except that it uses Lemma 14 instead of Corollary 4.

Lemma 16. If there exists no sl-substitution job, then no L-schedule exists.

Proof. If there exists no substitution job at all, then the statement follows from Lemma 15. Otherwise,
the outcome of the activation of every tried substitution is the failure. We claim that there exists no
L-preschedule that contains the jobs from problem instance PI(current,+y, [s]) together with all the
jobs from all the (intermediate) kernels between the bins B{(s)} and B−(K−). Let s be the earliest
tried substitution job by PROCEDURE sl-SUBSTITUTION(K). If job s becomes non-stable after a
call of PROCEDURE ACTIVATE(s), then, due to the failure outcome, it must be the case that the
corresponding y-job(s) (see Proposition 16) cannot be left-shifted within the time intervals liberated
by job s (because of their release times). Hence, neither they can be left-shifted by activation of any
substitution job preceding job s (Lemma 12). Otherwise, it must have been stable once activated,
but the interval released by job s is not long enough (again, due to the failure outcome). Hence, only
another longer substitution job may be of a potential benefit, whereas the latest scheduled one, again,
provides the maximum potential left-shift for the above y-job(s). We continue applying this argument
to every next tried substitution job. Our claim and hence the lemma follow due to the failure outcome
for the latest tried (the longest) substitution job.

Now, we immediately obtain the following corollary that already shows the correctness of
PROCEDURE MAIN for divisible processing times:

Corollary 5. For every trial δ, PROCEDURE MAIN generates an Lδ-schedule if the outcome of every call of
PROCEDURE sl-SUBSTITUTION(K) for an IA(b2) is successful (or no IA(b2) arises at all); otherwise (there
exists no sl-substitution job for some IA(b2)), no Lδ-schedule exists.

Mathematics 2019, 7, 1104 40 of 42

Theorem 6. PROCEDURE MAIN optimally solves problem 1|pj : divisible, rj|Lmax in time
O(n3 log n log2 pmax).

Proof. The soundness part immediately follows from Corollary 5 and the definition of the binary
search in Section 5 (see Proposition 8). We show the time complexity. Due to Theorem 3, it remains to
estimate an additional cost yielded by Phase 2 for instances of alternative (b2). Recall from Theorem 2
that, for every arisen kernel K, the cost of the generation of Lδ-augmented schedule SLδ [K] for a given
δ is O(ν2 log ν), where ν is the total number of jobs in bin B−(K). Recall also that this cost includes the
cost of all the embedded recursive calls for all the kernels which may arise within bin B−(K). Similar to
in the proof of Theorem 3, it suffices to distinguish the calls of PROCEDURE AUGMENTED(K, δ) and
PROCEDURE AUGMENTED(M, δ) for two distinct kernels K and M such that bins B−(K) and B−(M)

have no jobs in common. Now, we count the number of such calls of PROCEDURE AUGMENTED(K, δ)

from Phase 2 by PROCEDURE sl-SUBSTITUTION(K). The number of times, an IA(b2) at Phase 1
may arise is bounded by υ1, the number of Type (b) y-jobs (note that any Type (b) y-job may yield
at most one IA(b2)). Hence, for any bin B−(K), PROCEDURE AUGMENTED(K, δ) may be called
less than υ1 times for different instances of Alternative (b2), whereas for the same IA(b2) no more
than pmax different substitution jobs might be tried (Lemma 13). Hence, the total number of calls of
PROCEDURE AUGMENTED(K, δ) is bounded above by O(υ1 + pmax), which easily yields the overall
bound O(n3 log n log2 pmax).

12. Possible Extensions and Applications

We describe our framework for the single-machine environment and with a due-date oriented
objective function Lmax. It might be a subject of a future research to adopt and extend the proposed
framework for other machine environments with this or another due-date oriented objective function.
Both the recurrence substructure properties and the schedule partitioning into kernel and bin intervals
can be extended for the identical machine environment and shop scheduling problems with job
due-dates. Less straightforward would be its adaptation for the uniform machine environment, and,
unlikely, the approach can be extended to the unrelated machine environment.

The framework can obviously be converted to a powerful heuristic algorithm, as well as to an
exact implicit enumeration scheme for a general setting with arbitrary job processing times. For both
heuristic and enumerative approaches, it will clearly suffice to augment the framework with an
additional search procedure invoked for the case when the condition of Theorem 3 is not satisfied.

Based on the constructed framework, we have obtained an exact polynomial-time algorithm for
problem 1|pj : divisible, rj|Lmax. A natural question is whether, besides the scheduling and bin packing
problems ([4]), there are other NP-hard combinatorial optimization problems for which restrictions
with divisible item sizes are polynomially solvable (the properties of mutually divisible numbers
exploited in reference [4] and here could obviously be helpful).

Finally, we argue that scheduling problems with divisible job processing times may naturally arise
in practice. As an example, consider the problem of distribution of the CPU time and the computer
memory, the basic functions of the operating systems. In Linux operating systems buddy memory
allocation is used, in which memory blocks of sizes of powers of 2 are allocated. To a request for
memory of size K, the system allocates a block of size 2k where 2k−1 < K ≤ 2k (if currently there is no
available block of size 2k, it splits the shortest available block of size 2k+1 or more). In buddy systems,
memory allocation and deallocation operations are naturally simplified, as an O(n) time search is
reduced to O(log n) time using binary tree representation for blocks.

A similar “buddy” approach for the CPU time sharing in operating systems would assume the
“rounding” of the arriving requests with arbitrary processing times within the allowable patterns of
processing times—the powers of 2. In the CPU time sharing, the system must decide which of the
arriving requests to assign to the processor and when. The request may arrive over time or, in the case
of the scheduled maintenance and other scheduled computer services (for example, operating system

Mathematics 2019, 7, 1104 41 of 42

updates), the arrival time of the requests and their processing times are known in advance. The latter
scenario fits into our model. One may think on the rounding of a processing time of a request up or
down to a closer power of 2. Alternatively, to avoid unnecessary waste of the processor time, one
may always round down and process the remaining small part in a parallel or sequential manner
immediately upon the completion of the main part or later on. Possible efficient and practical strategies
for “completing” the solution with divisible processing times in a single-processor or multiprocessor
environment deserves an independent study.

The “buddy” approach for the CPU time sharing in operating systems is justified by our results,
as we show that the scheduling problems with mutually divisible processing times can be solved
essentially more efficiently than with arbitrary job processing times. The degree of the “waste” during
the rounding of the memory blocks and processing requirements is somewhat similar and comparable
in both the memory allocation and the CPU time sharing methods. In the case of the memory allocation
we may waste an extra memory, and in the case of the time sharing we waste an extra time (which
would influence on the quality of the solution of course). It is important and not trivial how an input
with arbitrary job processing times can be converted to an input with divisible processing times, and
how close the obtained optimal solution for the instance with divisible times will be from an optimal
solution for the original instance. This interesting topic can be a subject of a future independent study.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman:
San Francisco, CA, USA, 1979.

2. Vakhania, N.; Werner, F. Minimizing maximum lateness of jobs with naturally bounded job data on a single
machine in polynomial time. Theor. Comput. Sci. 2013, 501, 72–81, doi:10.1016/j.tcs.2013.07.001. [CrossRef]

3. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and approximation in deterministic
sequencing and scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–328.

4. Coffman, E.G., Jr.; Garey, M.R.; Johnson, D.S. Bin packing with divisible item sizes. J. Complex. 1987, 3,
406–428. [CrossRef]

5. McMahon, G.; Florian, M. On scheduling with ready times and due-dates to minimize maximum lateness.
Oper. Res. 1975, 23, 475–482. [CrossRef]

6. Carlier, J. The one-machine sequencing problem. Eur. J. Oper. Res. 1982, 11, 42–47. [CrossRef]
7. Jackson, J.R. Scheduling a production line to minimize the maximum lateness. In Management Science Research

Report 43; University of California: Los Angeles, CA, USA, 1955.
8. Horn, W.A. Some simple scheduling algorithms. Naval Res. Logist. Q. 1974, 21, 177–185. [CrossRef]
9. Garey, M.R.; Johnson, D.S.; Simons, B.B.; Tarjan, R.E. Scheduling unit-time tasks with arbitrary release times

and deadlines. SIAM J. Comput. 1981, 10, 256–269. [CrossRef]
10. Vakhania, N. Single-Machine Scheduling with Release Times and Tails. Ann. Oper. Res. 2004, 129, 253–271.

[CrossRef]
11. Lazarev, A.A.; Arkhipov, D.I. Minimization of the Maximal Lateness for a Single Machine.

Autom. Remote Control. 2016, 77, 656–671. [CrossRef]
12. Vakhania, N. Fast solution of single-machine scheduling problem with embedded jobs. Theor. Comput. Sci.

2019. [CrossRef]

http://dx.doi.org/10.1016/j.tcs.2013.07.001
http://dx.doi.org/10.1016/0885-064X(87)90009-4
http://dx.doi.org/10.1287/opre.23.3.475
http://dx.doi.org/10.1016/S0377-2217(82)80007-6
http://dx.doi.org/10.1002/nav.3800210113
http://dx.doi.org/10.1137/0210018
http://dx.doi.org/10.1023/B:ANOR.0000030692.69147.e2
http://dx.doi.org/10.1134/S000511791604010X
http://dx.doi.org/10.1016/j.tcs.2019.03.001

Mathematics 2019, 7, 1104 42 of 42

13. Vakhania, N. A better algorithm for sequencing with release and delivery times on identical processors.
J. Algorithms 2003, 48, 273–293. [CrossRef]

14. Schrage, L. Obtaining optimal solutions to resource constrained network scheduling problems, March 1971.
Unpublished manuscript.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0196-6774(03)00072-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Informal Description of the General Framework
	Basic Definitions
	Structural Components in an ED-Schedule
	Examples

	Recurrent Substructures for Kernel Jobs
	Binary Search
	The General Framework for Problem 1|rj|Lmax
	Partitioning the Scheduling Horizon into the Bin and Kernel Segments
	The Main Partitioning Procedure
	PROCEDURE AUGMENTED(K,), Rise of New Kernels and Bin Split
	Formal Description of PROCEDURE MAIN

	Construction of Kernel Preschedules at Phase 1
	Pass 1
	Pass 2: DEF-Heuristics

	Construction of Compact Preschedules for Problem 1|pj:divisible,rj|Lmax
	Phase 2: Search for an L-preschedule When an IA(b2) at Phase 1 Arises
	The Activation of a Substitution Job
	Selecting a Substitution Job

	More Examples
	Correctness of the Framework for Jobs with Divisible Processing Times
	Possible Extensions and Applications
	References

