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Abstract: In this paper, we extended Yennum et al.’s model, in which geometric distribution is used
as a randomization device for a population that consists of different-sized clusters, and clusters are
obtained by probability proportional to size (PPS) sampling. Estimators of a sensitive parameter,
their variances, and their variance estimators are derived under PPS sampling and equal probability
two-stage sampling, respectively. We also applied these sampling schemes to Yennum et al.’s
generalized model. Numerical studies were carried out to compare the efficiencies of the proposed
sampling methods for each case of Yennum et al.’s model and Yennum et al.’s generalized model.

Keywords: probability proportional to size (PPS) sampling; geometric distribution; sensitive attribute;
randomization device; Yennum et al.’s model

1. Introduction

The randomized response model (RRM) was suggested by [1] to estimate the true population
proportion of sensitive characteristics, such as illegal gambling, drug-abuse, tax evasion, the extent of
illegal income, and the experience of abortion, among others [2—4].

Since Warner’s work, many scholars have developed the RRM in various ways. In [5,6],
they arranged, summarized, and systemized various RRMs and emphasized their importance.
In [7], sampling survey of sensitive attributes applied two-stage cluster sampling to RRM for a
population consisting of equal-sized clusters, and [8] considered the cluster RRM for a population
consisting of different-sized clusters, where the clusters are selected by probability proportional to size
(PPS) sampling.

Recently, Yennum et al. [9] suggested a new randomization device to gather sensitive data in
two-stages under the assumption of geometric distribution and made a generalization of their model
encompassing generalized geometric distribution using [10] model.

Based on Yennum et al.’s work, it is assumed that the respondents are selected by simple random
sampling with replacements, but a real survey selects respondents from various sampling schemes.

Now, we can consider a large sample of clusters. For example, to estimate the true population
proportion of drug-abuse among high school students, it is possible to use a randomization device like
Yennum et al.’s model via proportional sampling by considering the primary sampling unit as the
school and the secondary sampling unit as the students.

From this point of view, we extend Yennum et al.’s model, in which geometric distribution is used
as a randomization device based on a population that consists of different-sized clusters, and the clusters
are selected by PPS sampling. Estimators of a sensitive parameter, their variances, and their variance
estimators are derived by PPS sampling and equal probability two-stage sampling, respectively.
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We also apply these methods to the case of Yennum et al.’s generalized model. Numerical studies
are carried out to compare the efficiencies of the suggested methods in each case of Yennum et al.’s
model and Yennum et al.’s generalized model.

2. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling under
Yennum et al.’s Model

In Section 2, we consider a new sampling scheme to estimate sensitive attributes using Yennum et
al.’s model, in which geometric distribution is used as a randomization device when 7 clusters are
selected with proportional to size (PPS) sampling or equal probability sampling from a population that
consists of N clusters of size, M;(i =1,2,--- ,N) and m;(i = 1,2,--- ,n) units are selected by simple
random sampling from each sampled cluster.

In Section 2.1, we consider the sampling method for the clusters via PPS sampling with
replacements. Clusters by PPS sampling without replacement are considered in Section 2.2, and
clusters by equal probability sampling are examined in Section 2.3.

2.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, the size of the n sample of the
first sampling units (FSU) is selected with replacement by the selection probability p; for the ith cluster.
In the second stage, m; second sampling units (SSU) are drawn by simple random sampling with
replacement (SRSWR) from each FSU and are guided to carry out Yennum et al.’s randomization device.

First of all, the randomization device consists of two elements. The first randomization device for
the ith cluster consists of two kinds of urns with white and black balls, where the selection probability
of a white ball is W;, and the selection probability of a black ball is 1 — W;.

On the other hand, the second randomization device is composed of two kinds of urns with balls.
The first device with balls contains a slip of paper including two statements, such as “I have a sensitive
attribute” with selection probability P;, and the other balls includes a statement such as “I do not have
a sensitive attribute” with selection probability 1 — P;. The second device with balls contains a slip of
paper with the statement “I do not have a sensitive attribute” with selection probability T; and balls
with the statement “I have a sensitive attribute” with selection probability 1 — T;.

In the first stage, for the ith cluster, each interviewee draws a ball from the first randomization
device, such as the urn with the white and black balls. When he or she selects a white ball, he or she is
guided to pick balls from the first urn of the second randomization device, one after another, with
replacement, until the first ball containing a statement matching his or her own status appears.

We assume that X;; is the total number of balls drawn before he or she obtains the first ball
including his or her own status in the ith cluster, and X, is the total number of balls drawn before he or
she obtains the first ball with his or her own status of not having a sensitive attribute in the ith cluster.
Similarly, when he or she draws a black ball, he or she is guided to pick balls from the second urn of
the second randomization device, one after another, with replacement, until the first ball containing a
statement matching his or her own status appears.

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees Xj1, Xip, Yi1, Yo are distributed via generalized geometric distribution. Let 77; and 1 — 7;
be the true population proportion of persons who have a sensitive attribute A; and A7 for the ith cluster.
Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the ith cluster, the total number for each ball selected by interviewees through the proposed
two-stage device distributes one of the following random variables: X;; ~ Ge(P;), Xj» ~ Ge(1 - P)),
Yi ~ Ge(T;) and Y, ~ Ge(1 —T;), where Ge(-) represents the geometric distribution with a success
probability. Let r; and 1 — 71; be the true population proportions of persons who have a sensitive
attribute (A; and A7, respectively) for the ith cluster. Assume that each interviewee in the ith cluster is
drawn by SRSWR.
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Use LIRN —2(with probabulity 1 — W;) —I

URN-1 URN-2
TEA, 1€ A;
with probability P with probability T;
1 € A° Te4;
with probability 1 — F; with probability 1 —T;

Figure 1. Randomization device for the ith cluster

Let Z;; be the jth observed answer in the ith cluster; Z;; can be expressed as

Xi1, with probability Wim;
7. — Yip, with probability (1 - W;)m; 1)
g Xip, with probability W;(1 — ;)
i1, with probability (1 - W;)(1 - m;)

Then, we can find the expected value of Z;; as follows

— W (=W Wi (1-Wi)
B(zy) =l 3+ 5 |+ 0| oy + 45 @

Wi W) W (W) Wi (1-Wi)

= {3+ (o - oty ~ S o+

The expected value (2) can be expressed as follows
(1 T‘)P‘{E(Zij)(l -P)Ti - WT; — (1-W;)(1- ‘)} B T )
PiTi(1-P;)(1-Ty) - PTi(1-P)(1-T))’
where llll' = W,‘(l - ZPi)Ti(l - Ti) + (1 - Wl')(ZTI - 1)Pl’(1 - Pi)~
Now the estimator 7; for the true population proportion 7; in the ith cluster is given by
4)

~ Lpra-rya- lizij—winp,-a—n)—pi(1—W)(1 PY(1-Ty)

i

When the interviewees are drawn by SRSWR from the ith cluster selected with a replacement by

the sampling probability p;, the estimator 7tps,r of the true population proportion 7 for a sensitive

character is given by:
©)

: — 1y M

nppswr - HMO igl pPi
7”

Z Zij—WiTiPi(1-T;) = Pi(1 - W;) (1 - P;)(1 - T;) |,

= i L | PT-P) (=T

N
where My = }.;" ; M;.
Theorem 1: The estimator fuypswy of the true population proportion of a sensitive attribute 7 under PPS with a

replacement sampling scheme is an unbiased estimator.
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Proof:

n

~ M7
E1E2(7Tppswr) = ElEZ[nMO ) p:-[ ]
i=

M;E> (ft;
= E1|:nM0 Zl ;I(TI)]’

and since:

Ex(fi;) = g;|PiTi(1=P;) (1~ Ti)mli% Ez(Zij) - W TiPi(1-T;) —=Pi(1- W;)(1 - P;))(1-T;)

= T(;.

we can obtain:

n
N 1 M;mt
ErEo(fippsar) = El[mizl p_]
N
— L Mimi
- M ; pi l;i 1
i=1
=T

O

Theorem 2: The variance of fiypswy is obtained from a two-stage procedure, such that a sample of size n FSU is
selected by replacement with sampling probability p; for the unit i from the population of N clusters with size M;
elements in the ith cluster, and the SSUs with size m; are drawn by SRSWR from each FSU, as given by:

2

V (Ttppsr) :anZ [M" Mon] ©

M? . 1
an Z W[nl(l ﬂl) 1Ai + WBI],

2
i
where:

Aj =Wi(1-2P)(2-P; + P)TX(1-T;)* + (1- W;)(2T; - 1)(2 = T; + T)P>(1 - P;)°
+W2T2(1-T;)*(2P; — 1) + (1 - W;)*P2(1 - P;)*(1 - 2T;)
+2Wi(1 - Wi)PiTi(l - P,’) (1 — Tl'>(Pl' — Tl'),

Bi = (1=T;)*PH{Wi(1 - W) (P; + T; = 1)* + W;P,T? + (1 - W;)(1 - T;)(1 - P)?}.

Proof: Given Xj; ~ G(P;), Xip ~ G(1-P;), Yii ~ G(T}), Yio ~ G(1—T;), where G represents the
geometric distribution with a success probability. Since the expected values of Z;; and Z?-], are

wi  (1-W; Wi 1-W;
E(Zij) _ni[ﬁ—‘_ﬁ]—i_(l_m)[(l—P‘) + ( T, )], @)
then:
e = M|+ 0 om [ s aomae v SR oWl SR @

Based on (7) and (8), the variance of Z;; is:

ol = EZ) - [EZ], )
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and, since Z;; is independent, the variance of 7; can be expressed by:

V(fu) =V 1; M Z Zij = WiTiPi(1-T;) = Pi(1 - W;)(1 - P;)(1 - Ti)]}

_ emanranrn 10
= 22 P 1012 (10)
771'(1—771) A +

mj m,l/Jz

zlPZ

Since V(ftppswr) = ViEa(ftppswr) + E1Va(ftppswr), then the first and second terms are given,
respectively, as:

1 v My
VlEZ(ﬁppswr) = V1E2[M‘Z #]

and

n A
Elvz(ﬁppswr) - Ele[nMo Zl 1\/2’71,]
i
M2
~ i s £ Mo
m;

= ZE p‘Vz{IPPT,'(l—P)(l T)m 2 Zjj - WI-TZ-PZ-(l—Ti)—Pi(l—Wi)(l—Pi)(l—Ti)}]

=E nMOzZmp{ i(l—ﬂi)JF;—éAier—lg z}]

Then, we can obtain the variance (10).
Moreover, an unbiased estimator of V(ﬁppswr) is given by

2
V(ﬁppswr) Mz Z [ - Monppsw,]

(11)
nM2zlplm, )[ (1= #i) - ¢2A+¢2B]

If the FSUs are selected proportional to size with M;, then p; = M;/M. For this reason, we call
this method “probability proportional to size” (PPS) sampling. When a sample of the FSU is selected
by PPS sampling with replacement via sampling probability, p; = M;/ My for the ith cluster, and m;
SSU are selected by SRSWR from each FSU. The estimator s, of 7t is given by:

n
ﬁppswr = %Z i
R (12)
=k Wf[”i(l ~ )+ At wZB’]’
and the variance of ftyps,r and its estimator are as follows:
N
V(ﬁppswr) = ,1170 Y Mi(ni - 77)2
i=1
N (13)
+n_MOi>::17; 771’(1_771) IJ)ZA + IPZBZ ’
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n

V(ﬁppswr) = Y Mi(ﬁi - 7Azppswr)z
M;

1
HM(]
1
+ nMp
i

(14)

i
n

1
Zl ot | (1= 7) + ¢2A + lngBi]-

2.2. The PPS without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive character by applying Yennum et al.’s model, in which n FSUs are drawn by
PPS sampling without replacement from the population of N clusters with M; elementary units for the
ith cluster, and m; SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator ftypsuor Of 7 is:

4 1 M7
ppswor — M 0; 7

(15)

where 0; is the first inclusion probability for the ith cluster.
The variance of ftppswor is given by:

Mim; _ Mjm; 2
(6,6, - 03] "4 - “4|

V(ﬁppswor) = M ;

(SN

=
Itz
Mz

.
Y

(16)

|
™M=
QI%

1
N
3

[nl(l 771) l/)zA + ¢2Bz]/

Y

where 6;; is the second inclusion probability of the ith and jth clusters.
Furthermore, the variance estimator of 7typsqwor is as follows:

. n 99 -0:) [ Mz, MR, TP
V(ﬂppswor) M% Zl 0;j [ 0; _Q_]]

i=1j>i

n M2

(17)
+1\T§i§‘1 m[ﬁi(l — ;) + ¢2A + lngBi]-

2.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling design to estimate the
true population proportion of a sensitive characteristic by applying Yennum et al.’s model, in which #
FSUs are drawn by simple random sampling without replacement (SRSWOR) from a population of N
clusters with M; elementary units for the ith cluster, and m; SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator 7t of 7 is given by:

N n
Tlwr = TI_A/IO; M, (18)

where f; is an estimator of the true population proportion for a sensitive characteristic for the ith
cluster, which is the same as (4).
The variance of 7ty and its estimator are given as:

it (19)
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A~ 1 — 2
V(ﬁwr) = N22 l Y (Mznz Mﬁwr)
nMg (n 1>i:1
+NiM‘2[A(1 A)+ﬁ"A+1B] .
e K T S |

where M = M,/N.

3. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling Under
Yennum et al.’s Generalized Model

We consider Yennum et al.’s generalized model, in which generalized geometric distribution is used
as a randomization device when n clusters are sampled by PPS sampling or equal probability sampling
from the population, which consists of N clusters with size M;(i = 1,2,--- ,N),and m;(i = 1,2,--- ,n)
units are drawn by simple random sampling from each sampled cluster.

We develop the sampling schemes for PPS sampling with replacement in Section 3.1 and those for
PPS sampling without replacement in Section 3.2. Finally, equal probability sampling is presented in
Section 3.3.

3.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, a sample of n FSUs is drawn by
replacement with the sampling probability p; for the ith cluster. In the second stage, m; SSUs are selected
by SRSWR from each FSU and guided to apply Yennum et al.’s generalized randomization device.

If the interviewees in the ith cluster choose a white ball during the first stage, and if they have a
sensitive attribute A (or A°), then they are guided to pick replacement balls from the first urn of the
second stage device until they take kj, (or kj;) successive balls with their actual status for the first time
and are then asked to determine the total number of balls as X;; (or X)»).

If the interviewee in the ith cluster draws a black ball in the first stage, and if they have a sensitive
attribute A (or A), then they are guided to take replacement balls from the second urn of the second
stage device until they take kj; (or k;j;) successive balls with their actual status for the first time and are
then asked to determine the total number of balls as Y;; (or Y}p).

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees X1, Xj, Yj1, and Y}, are distributed via generalized geometric distribution. Let 7t; and
1 — m; be the true population proportion of persons who have a sensitive attribute A and A for the ith
cluster. Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the jth surveyed answer in the ith cluster, Z;; can be expressed as:

Xj1 with probability Wim;,
7. — Y ;> with probability (1-Wi)m, 1)
7] Xjp with probability Wi(l-m;),

Y1 with probability (1 -W;)(1-m;),
The expected value of Z;; is given by:
E(Zij) = W,-T[,-E(Xill )PZ (1 - Wi)E,5Yi2) +(1- ni>WiE(Xii> + (11—;2;1-)(1 —1;)E(Yin)
=l - e - m{RE - ) -
{

+Wl{P,-u—P,-)kfz (=W (-T2 [
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Then, the formula (22) can be expressed as:

E(Zij) Wl{Pi(l_Pi)kiz (1 Wl){u_mffz
A -yt T
N n’[wl{ (-pP Pi(1-P)2 } s W’){ LO-T)R -y }]

The estimator 7t;; of the population proportion 7; for the ith cluster is given by:

(23)

1

ki +14kp+1 kin+1pkin+1 ( m;
1-T;)ftirietl(q - pketipa i
ftic = 1-1) L ) Zzij_(Pil , (24)
miQiz =
where:
a = Wi{1-(1-p)ela-T)katiThetl (1 p,)pha
(P 1 1 (25)
+ (=W (1 -T2)P " (1= Pt (1 - 7)Y,
and:
p =Wl -pyfap et (1 Tt - pyke _ {1 (1 p)Relpi (1 P TR (1 - Tyt
Pi [(1= PP (1= Tyt (1= P2 — {1 - (1 P)2 )P ( Z,lil()] 26)

+ (=Wt - =T (1= Ty (1 - PR T - (1= TP T (1 - Py (1 - Ty .

1

When the interviewees are sampled by SRSWR for the ith cluster selected with a replacement
by sampling probability p;, the estimator ftgyps,r Of the true population proportion 7 of a sensitive
attribute is:

£ _ 1 iMiﬁiG
Gppswr ~ — nMOi*l i
o aomine aonte T (0 &
- ”Mol.:1 pi miQip fe ij = i)l

where My = Zf\il M;.

Theorem 3: The estimator figypswr 0f the true population proportion 1t of a sensitive character is an unbiased
estimator.

Proof:
E1E2(T(Gppswr) = ElEZ WZ i ‘1 _ El - Z ; ‘ ; I
viE 03 Pi
and, since:
f (1—Ti)kf1“Tfi2H(1_Pi)ki2+1pi§i1+1 m;
Ex(ftic) =Ez miPi ‘Zl Zij - ¢in
j=
(1—Tl.)k11 +1 Tf.(’QH (1_p’_)k12+1pfil +1(m,
— mQp jgl E; (Zij) - i

= T4,

we can obtain:

n 1 . Ml'ﬂl' 1 N Ml'T(l'
ExEx(fpsur) = El[n—MoZ 7] “MLP, T
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Theorem 4: The variance of fiGppswy is obtained by a two-stage sampling scheme, such that a sample of n FSU
is selected with replacement by sampling probability p; for the ith cluster from the population of N clusters
consisting of M; elements for the ith cluster, and m; SSUs are drawn by SRSWR from each FSU, as given by:

V(figppsor) = %Mzglpi[ o M “]
7 L

N {1 Tt P)kiz+1pfﬂ“}2 (28)
+-Ly L M; ' o>
nMg =4 mzp, v iz |

where:
ar, :E(Zz)—(E(sz))z
_ni[w{ —~(2ky+1)(1-P;) Pt —p
(1-P;)? Pi kit

1= (2kiy +1)T;(1=T kit = (1=Tj) 21 (1— (1T, i)
+ (1 - W) [T )Tz(l(_n.)z)kn +(1-(1-T)"1) )]

L2
1- 2k +1)P;(1-P) 2 —(1-P) 2 (1-(1-P{1) )
P2(1-P;)*22

1-(2ky +1) (1-T) T2 -T2 1 (1-T}2)?
(1-T;)?T %2

1—Pf"1 1-(1-p;)k2 1-(1-T;)kn 1_1—»;‘1‘2
) [ni{ Wi(ﬂ-Pf)Pf"“ B Pz‘<1—Pz‘>k"2)Hl_wi)(n(l—n)kﬂ - (1_T,»>Tf"2)}

1-(1-Py)i2 e ||
+(1- ”i){ W(W) t- W")(a—nﬂf’? )}] '

Proof: The total number of balls taken by interviewees for the ith cluster, X;;, Xj», Yj; and Yj, are

L2
2k11+1+(1—P§C11 )

“r(l - ﬂi)[wi[

+ (1_Wi)

(29)

random variables with variances:

— (2kiy +1)(1 - P;) P — Pt
o , (30)
(1-P;)*p¥n

V(Xi) =

(k) = LGt DR 1Ry o
i2) — P2(1 _ P‘)Zk,'z s
i 1

— (2kp +1)(1 - T;) T/ — 722"

V(Yy) = TR i (32)

— (2kn + DTi(1- T = (1= T !
T?(1-T;)%

V(Yn) = (33)

From (21), to drive the variance of fiGpysyr We can obtain the expected values of Z;; and Z?j

1-Pjil 1-(1-T)kit
E(ZU) = ﬂi[Wi( (l—Pl‘)P;(il ) + (1 - Wl)( Ti(l—T,')kﬂ )]
—(1=P;\ki 1-7'2
(=) W)+ 1w )|

as follows:

(34)
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E(Z}) = T WiE(X2) + (1= W)E(YZ)] + (1 - m) [WiE(X3) + (1 - W) E(Y3)]

= 7; W 1-(2k;1+1)(1-P;)P, kit P2k’1+1+(l—Pfi1 )2
i i (1-p;) P2k”
(1 - | R Tkt -(1-T) % f1- (11, |
l T2(1-T;) %0
| o 2 (35)
-2kt l)Pi(l_Pi)kiz_(1—Pi)2ki2+1+{1_(1—171i2) }
+(1- ﬂi)[ W; P?(l_pi)Zkiz
1-(2kpp+1) (1-T; Tkiz TZki2+1+(l—Tj,(i2)2
+{1-W) ok : .
(1-T))*T, 2
Since V(ﬁcppswr) - VlEZ(ﬁGPPSwr) + ElVZ(ﬁGPPSwr)/
N M
V1E2(T(Gppswr) = VlEz[nMO Zl > G]
n
= 1 M;m;
= Vl[m’z T]
i=1 ,
N
1 M;m;
= e Z pl[ TIG M()T(]
0i=1
and:
5 Mg
Eq1 VZ(T(Gppswr) =E{V, nMO lgl =
noM?
=E ; z Vo (i
1=(nM0) P p 2( zG)]
n AR (1-T)) ,1+1TJ<12+1 1-P)) 12+1P’1H e
—FE |1y % )
=E; (nMo)Zizl r; VZ{ mipip ]§ Z,] Qi
_rakip 1 kip+1 _pakptl kg +1 2
=FE 1 n M12 1 {(1 T;) T, (1-P)) P, } o
o=V 7 iz
_ 2
1 N Mzz {(1—Ti)ki1+lei2+l(1_Pi)ki2+lpfi1+1} ,
=N ¢ iz
We can then obtain the variance (28). Also, an unbiased estimator of V(figypswr) is given by:
N M ,
V(ﬁcppsw,) - M3 Z pi| =5HC Moﬁcppsm]
L M? {(1_T‘)ki1+lﬁi2+l(1_P)ki2+lplfi1+l}2 (36)
1 i i i 1 "
T El it 92 Oiz|

3.2. PPS Sampling Without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive characteristic by applying Yennum et al.’s generalized model, in which n FSUs
are drawn by PPS sampling without replacement from a population of N clusters with M; elementary
units for the ith cluster, and m; SSUs are drawn by SRSWR from each FSU.
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From this procedure, the estimator fiGppswor Of 7 is given by:

A 1 M;Ti MiTtiG
= , 37
T Gppswor M 9 (37)

where 0; is the first inclusion probability for the ith cluster.
The variance of 7tGppswor iS given by:

N N M T2
V(ﬁGppswar) Nllz Z Z (6 Q 61])[M671 - 6]_71]]

0i=1 j>i J
2
N e [ {ammpanre g op ) )
1 1 2
+ 22 o V) o;
Mg /=y mi0i P iz

where 6;; is the second inclusion probability for ith and jth clusters.
Also, the variance estimator of 7tgypswor i8:

A 2
7~ (69 91]) M;fic Mjan
V(nGppswur) Mz Z Z 19.1 -0
0i=1j>i % ! I
: R {(1_Ti)ki1+1]—}fi2+1(1_p)ki2+1plfil+1}2 (39)
1 i i i) g2
iz El X ) P Oiz |

3.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling scheme to estimate the
true population proportion of a sensitive attribute by applying Yennum et al.’s generalized model, in
which n FSUs are drawn by SRSWOR from a population of N clusters consisting of M; elementary
units for the ith cluster, and m; SSUs are drawn by SRSWR from each FSU.

From this procedure, the estimator figy, of the true population proportion 7 for a sensitive
attribute is given by:

N n
AiGar = —— Y MiftiG, 40
Guwr n MO ‘ i’tiG ( )
=1
where the estimator 7t;g is the estimator of a sensitive characteristic of the ith cluster, which is the same

as (24).
The variance and variance estimator of 7, are:

2
N
~ 2 1 7
V(figer) = 21z L N—[M T — Mﬂ]
0i=1 )
N a2 {(1—T1-)"i1“71.‘i2“(1—P)"i2+1p’.‘““} (41)
N i ! ! 2
+=m L 0;
W 7 iz
and:
5 N? v 1 2
V<ﬁGwr) = ME Y — 1(M GG — MnGwr)
0i=1
N 2 {(1—Ti)ki1+lTJ.(i2+l(1—P)ki2+1Pl.(“H}2 (42)
N i i i A2
+Ly o
i &y T T s

respectively, where M = My /N.
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4. Efficiency Comparisons

4.1. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Model

If we assume N — 1 = N, then the difference between the variance of equal probability two-stage
sampling, (19), and the variance of PPS with replacement sampling, (6), is given by

N — 2 —( N —
V(ﬁwr) - V(ﬁppswr) = ”MlOMLg‘l (Mi —M) 7'[12 + M{ig‘l (Mi —M)(T[% - 712)}
N —2 .
+ .Zl (M; — M) mll_(ni(l -7) + %Ai - #B) (43)
1= 1 1

__ (N — .
+ M{ Y (M; —M)%(ni(l -1) + %Ai + #B)}]
i=1 ! i i
In (43), we can see that V(ftyy) = V(fippswr) under the condition M; = M = My/N; ie., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N~! and
equal to those of equal probability two-stage replacement sampling.

If the size of a cluster, M, is significantly different, then Zfi 1 (M; - ]\_/I)an.z, the first term on the

right side of (43), has large values, and the second term, Zg\i 1 (M; — M)z (7'(12 - 7'52), has relatively small
values. Hence, the estimation by PPS with replacement sampling is more efficient than that by equal
probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling methods—PPS
with replacement sampling and equal probability two-stage replacement sampling:

V (ftwr)

RE| =
" V(Rppsar)

x100(%).

Values of RE; over 100% indicate that the estimator obtained by the PPS with the replacement
sampling method was more efficient than the estimator obtained by the equal probability two-stage
replacement sampling.

In calculating REs, we set the parameters as follows:

My = 10,000, M; = 1,000, M, = 2,000, M3 = 3,000, My = 4,000
mo = 1,000, m; = 100, m = 200, m3 = 300, my = 400,
p1 = 0.235,p; = 0.441,p3 = 0.609, py = 0.715.

From Table 1, when the selection probability W for the first-stage randomization device increased
from 0.1 to 0.9 by 0.2 and the second stage randomization devices T increased from 0.6 to 0.8 by 0.1 and
P from 0.65 to 0.90 by 0.05, REs increase under the fixed proportion of a sensitive attribute (particularly
when the selection probability of the second randomization device T increased), and the RE increased
according to the conditions of P and m;.
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Table 1. The relative efficiencies (REs) of a sensitive estimator between the probability proportional to
size (PPS) sampling with replacement and the equal probability two-stage sampling with replacement
in Yennum et al.’s model to change m; and W.

W
e
T 0.1 0.3 0.5 0.7 0.9
P o6 07 08 06 07 08 06 07 08 06 07 08 06 0.7 0.8
0.65 56.59 95.07 123.5 48.08 61.06 91.71 52.73 46.18 55.97 63.18 52.59 39.63 75.51 71.08 61.88
0.7 5442 89.17 120 50 54.61 81.69 58.65 48.28 48.17 71.01 60.85 45.08 83.88 80.2 72.61
01 0.75 5293 81.67 114.8 53.61 51.26 70.48 64.76 53.56 45.34 77.67 69.08 54.13 90.33 87.46 81.68
’ 0.8 5261 72.72 106.4 58.15 51.63 59.9 70.32 60.37 48.28 83.01 76.38 64.29 95.2 93.08 88.97
0.85 53.84 63.67 93.17 62.84 55.3 53.48 75.02 67.37 55.79 87.17 82.48 73.91 98.87 97.41 94.69
09 5657 57.65 7427 67.15 61.05 54.47 78.79 73.8 65.52 90.32 87.41 8223 101.6 100.7 99.15
0.65 82.74 1344 153.1 50.22 92.87 130.8 60.29 48.44 86.05 90.64 61.69 34.18 117.4 108.9 89.02
0.7 75.82 129.7 1514 51.78 76.68 121.8 77.73 48.28 65.5 108.7 84.97 43.35 130.7 125.1 111.8
02 0.75 68.56 122.7 148.7 60.97 61.93 108.4 94.15 62.33 48.62 121.2 104.6 6795 139 1354 127
’ 0.8 6259 111.6 144.1 7434 56.05 88.85 107.2 82.13 48.28 129.7 1189 94 1444 1421 137
0.85 61.04 9457 135 87.93 64.32 66.55 116.7 100.4 68.61 1354 1289 1144 148 146.5 143.6
09 66.6 7423 1143 994 82.02 61.52 1235 1144 9572 139.3 135.8 128.5 1504 149.6 148.1
0.65 106.8 152.4 1649 54.34 117.7 149.2 70.41 53.88 1099 119 7413 31.19 1481 139.5 1159
0.7 9824 1494 1639 53.64 99.37 142.7 100.6 48.28 85.26 1399 111.1 4292 159 1544 1415
03 0.75 87.63 144.7 1624 7027 76.57 1323 124 7392 559 151.7 135.4 85.58 164.8 162.2 155.2
’ 0.8 76.17 136.6 159.9 94.79 61.53 114 139.2 107.4 48.28 158.6 149.6 122.7 168.2 166.6 162.8
085 699 121.6 154.7 116.5 7547 83.46 148.7 1319 85.14 162.8 158 1452 170.2 1694 167.4
09  78.83 94.88 140.8 131.9 107.7 69.61 154.7 1469 1264 165.4 163.1 157.6 171.6 171.1 170.2
0.65 124.6 162.1 171.2 59.97 1344 1593 8229 61.29 126.3 141.7 88.14 30.06 166.3 159.3 136.7
0.7 1165 160 170.5 55.58 117.6 154.6 122.6 48.28 102.2 160.3 133.3 43.6 173.7 170.4 159.7
04 0.75 1054 1569 169.6 81.25 91.92 146.7 1474 8735 65.18 169.2 156.3 103.3 1773 175.5 170.3

0.8 91.07 1515 168 116.6 67.99 131.8 160.8 130.8 48.28 173.8 167.6 144.2 179.1 178.2 1755
0.85 80.35 140.6 164.9 142.3 88.79 100.6 168.2 155.2 1032 176.4 1735 164 180.2 179.7 178.4
09 9387 116 156.4 157 133.7 7899 172.3 167.2 150.6 178 176.6 173.2 180.9 180.6 180.1

On the other hand, RE increased when the first-stage selection probability W was less than 0.5,
and the values of T, P, and 7t; (from 0.1 to 0.4) decreased, but the RE decreased when the value of W
was greater than 0.5 under a fixed value for T, P, and ;.

Furthermore, the greater the true population proportion of a sensitive attribute 7;, the higher the
overall efficiency of Yennum et al.’s model, as shown by the values of the bottom cells in Table 1. This
result agrees with the typical sampling survey methodology as the true population proportion of a
sensitive attribute 7t; increases.

4.2. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Generalized Model

If we assume N — 1 = N, then the difference between the variance of equal probability two-stage
sampling scheme (41) and the variance of the PPS with replacement sampling scheme (28) is given by:

S —2 ., —(N B
V(icur) = V(icmer) = ] & (i~ W07+ 8] £ (- F0) 2 - )
1= =
N —.2 {(1—Ti)kf1“T]fi2H(1_P)ki2+1plfi1+1}
WL l , .
' El =M P iz (44)

, 12
N — {(1—Ti)kf1+1Tf12+1(1—P)ki2“Pi.<11“} )
+M{ Y (M; - M) = %
i=1 2
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In (44), we can see that V(figy,) = V(ftgppswr) under the condition M; = M = My/N, i.e., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N~! and
equal to those of the equal probability two-stage replacement sampling.

—2
If cluster sizes, M;, were significantly different, then Zfi 1 (M; = M) 7'(1,2, the first term of the

right-hand side in (44), had large values, and the second term, Zﬁi 1 (M = ]\_/[)2(7?1.2 — %), had relatively
small values. Hence, the estimation by PPS with replacement sampling is more efficient than that by
equal probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling designs (PPS
with replacement sampling and equal probability two-stage replacement sampling):

V( f Gwr)

RE; = ——
V(“Gppswr)

X 100((70)

Values of RE; over 100% indicate that the estimator obtained by PPS with the replacement
sampling method was more efficient than the estimator obtained by equal probability two-stage
replacement sampling.

Table 2 shows the results of the REs obtained by increasing the true population proportion 7; from
0.1to 0.4 by 0.1. The selection probabilities of the randomized response model (W, T and P) are shown
in Section 4.1.

Table 2. The REs for a sensitive estimator between the PPS with replacement sampling and equal
probability two-stage sampling with replacement in Yennum et al.’s generalized model for changing m;
and W.

T
T 0.1 0.3 0.5 0.7 0.9

P 06 07 08 06 07 08 06 07 08 06 07 08 06 0.7 0.8

0.65 1715 172.8 172.8 163 1669 1679 1454 1554 159.1 104.1 126.5 138.8 48.17 52.15 68.27
0.7 167.5 169.7 170.1 152.7 160.2 163.1 119.1 139.1 148.9 57.85 83.09 111 7898 76.63 58.68
0.75 1622 1659 167 135.6 150.2 156.7 79 111 133.1 54.18 4822 69.55 116.3 1244 117.6

0.1 0.8 1542 1609 163.3 106.2 133.1 147.2 48.74 68.09 105.6 88.1 76.9 50.14 136.5 148.1 152.8
0.85 139.8 153.1 158.5 64.63 99.62 130.1 64.15 50.65 60.85 116.4 120.1 102.3 147 159.4 168.3
09 1084 136 150.3 49.94 515 89.01 96.84 95.38 69.51 133 144.7 150.1 152.7 165.1 175.3
0.65 1809 181.1 181 177 178.1 1783 1684 172 173.1 140.7 1542 160 48.39 59.25 87.17
0.7 1789 1795 1795 1721 174.6 1755 1524 1624 166.8 75.03 112.8 137.8 120.5 111 71.17
0.2 075 176.4 1775 177.8 163.1 169.2 171.8 113.3 142.1 156.1 67.28 48.47 88.43 159.6 161.5 149
’ 0.8 172.6 1749 175.8 1434 159.1 166.1 50.3 91.74 133.4 1329 110.7 52.83 171.6 1754 173.9
085 1658 171 173.1 91.83 133.9 154.7 94.45 55.74 74.87 160 159 1354 1764 180.4 182.1
09 1473 1623 168.5 55.09 585 1184 1452 139.7 94.09 1703 174.6 173.7 178.6 182.6 185.2
0.65 184 184 1839 181.6 182 182 1762 178 178.5 157.3 165.5 168.9 48.68 66.76 101.4
0.7 1828 183 1829 1785 179.7 180.2 165.6 1714 174 9145 130.8 151.3 145.6 1329 81.96
03 0.75 181.2 181.7 181.8 1729 176.1 177.6 1345 156.5 166.1 81.89 48.76 102.6 174.4 1739 161.9
' 0.8 1789 180 180.4 159.7 169.3 173.6 52.38 109.5 1479 1559 132.1 55.54 181.2 182.4 180.1
085 174.8 177.5 178.6 114.3 1509 165.5 120.4 61.6 86.84 1749 172.4 151.2 183.6 1853 185.4
09 163.6 1721 175.6 62.66 66.66 135.6 166.4 160.1 112.1 180.7 182.3 180.3 184.7 186.4 187.3
0.65 1855 185.5 1854 1839 184.1 184 180 181 181.3 166.1 171.6 173.8 49.04 74.03 112.4
0.7 1847 184.8 184.7 181.7 182.4 182.6 172.3 176.1 177.9 105.3 1425 159.4 159.6 146.4 91.15
04 0.75 183.5 183.8 183.9 177.7 179.7 180.7 147.7 164.5 171.7 9548 49.07 113.7 180.5 179.2 168.8

0.8 1819 1826 1829 1682 1747 177.7 5479 122.6 156.8 167.6 1454 5824 184.8 1852 182.8
0.85 179.2 180.8 181.6 130.6 160.5 171.4 138.7 67.61 97.01 181 1783 160.1 186.3 187 186.7
09 1717 1771 1793 7176 75 1468 176 170.1 125 184.7 1853 183.2 186.9 187.8 188.1




Mathematics 2019, 7, 1102 15 of 16

In calculating the REs, we set the parameters as follows:

My = 10,000, M; = 1,000, M, = 2,000, M3 = 3,000, M, = 4,000
mo = 1,000, m; = 100, m = 200, m3 = 300, my = 400,

p1 = 0.235,p; = 0.441,p3 = 0.609, py = 0.715,

ki =2,k = 1.

From the results of Table 2, the efficiencies vary according to changes in the probabilities of
selection during the first stage W and the second stage T and P in the randomization device, but when
the first-stage selection probability W is fixed, and the second-stage selection probabilities T and P
increase, then the relative efficiency of the PPS sampling is better than that of the equal probability
two-stage sampling in Yennum et al.’s model.

5. Conclusions

We extended Yennum et al.’s model, in which geometric distribution is used as a randomization
device for a population consisting of different-sized clusters, and clusters are selected by PPS sampling.
Estimators for the true population proportion of a sensitive attribute, their variances, and their variance
estimators are derived under PPS sampling and equal probability two-stage sampling.

We also applied these sampling designs to the case of Yennum et al.’s generalized model.
Numerical studies were carried out to compare the efficiencies of the proposed methods in each case of
Yennum et al.’s model and Yennum et al.’s generalized model in cases with a replacement.

Although the experiments were assumed to use a replacement, we expected similar results for a
case without replacement, as per typical sampling theory.

From the numerical study, we found that the efficiency of the two-stage sampling for probability
proportional to size depends on the given parameter values, but the efficiency of Yennum et al.’s
generalized model is preferred for most combinations of parameters over around 80%.
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