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Abstract: The investigation of symmetric/asymmetric structures and their applications in
mathematics (in particular in operator theory and functional analysis) is useful and fruitful. A metric
space has the property of symmetry. By looking in the same direction and using the α-admissibility
with regard to η and θ-functions, we demonstrate some existence and uniqueness fixed point theorems.
The obtained results extend and generalize the main result of Isik et al. (2019). At the end, some
illustrated applications are presented.
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1. Introduction and Preliminaries

The known work in fixed point theory is the Banach contraction principle which ensured the
existence of a fixed point for a contractive self-mapping over a complete metric space. Numerous
researchers have built up the existence of fixed points in many directions, see [1–13].

In 2014, Jleli and Samet [14] presented a new type of contractive mappings, named as
θ-contractions.

Definition 1 ([14]). Let T be self-mapping on a complete metric space (Υ, ρ). Such a T is named as
a θ-contraction if there is k ∈ (0, 1) such that

ν, v ∈ Υ, ρ(Tν, Tv) > 0⇒ θ(ρ(Tν, Tv)) ≤ [θ(ρ(ν, v))]k, (1)

where Θ is the family of functions θ : (0, ∞)→ (1, ∞) verifying the following:

(θ1) θ is nondecreasing;
(θ2) for every sequence {νn} ⊂ (0, ∞), we have lim

n→∞
θ(νn) = 1 iff limn→∞ νn = 0;

(θ3) there are β ∈ (0, 1) and σ ∈ (0, ∞] such that lim
ν→0+

θ(ν)− 1
νβ

= σ.
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Theorem 1 ([14]). Let (Υ, ρ) be a complete metric space and T : Υ → Υ be a θ-contraction. Then T admits
a unique fixed point ν?. Moreover, for each ν ∈ Υ, the sequence {Tnν} converges to ν?.

Later, Ahmad et al. [15] introduced the following.

Definition 2 ([15]). Let Γ be the set of functions ξ : (0, ∞)→ (1, ∞) verifying:

(ξ1) ξ is nondecreasing,
(ξ2) for a sequence {νn} ⊆ (0, ∞), we have lim

n→∞
ξ(νn) = 1 if and only if lim

n→∞
νn = 0,

(ξ3) ξ is continuous on (0, ∞).

Lemma 1 ([15]). Let (Υ, ρ) be a complete metric space and ξ ∈ Γ. Then (Υ, ξ ◦ ρ) is also a complete
metric space.

Example 1. The following functions ξ1(ν) = eν, ξ2(ν) = e
√

ν, ξ3(ν) = e
√

νeν , ξ4(ν) = cosh ν, ξ5(ν) =

1 + ln(1 + ν) and ξ6(ν) = eνeν
, are elements in Γ.

The concept of α-admissibility is given as follows:

Definition 3 ([16]). Given f : Υ → Υ and α : Υ× Υ → [0, ∞). Such an f is designated α-admissible if
∀ν, v ∈ Υ with α(ν, v) ≥ 1 implies α( f ν, f v) ≥ 1.

The notion of α-admissibility in regards to a function η is given as follows:

Definition 4 ([17]). Given f : Υ→ Υ and α, η : Υ× Υ→ [0, ∞). Such an f is α-admissible with respect to η

if ν, v ∈ Υ with α(ν, v) ≥ η(ν, v) implies α( f ν, f v) ≥ η( f ν, f v).

Many fixed point results using the above notion appeared, see [18–22]. The perception of
triangular α-admissibility is stated in the following:

Definition 5 ([4]). Given S, T : Υ→ Υ and α, η : Υ× Υ→ [0, ∞) so that

1. if α(ν, v) ≥ η(ν, v), then α(Sν, Tv) ≥ η(Sν, Tv) and α(TSν, STv) ≥ η(TSν, STv);
2. if α(ν, z) ≥ η(ν, z) and α(z, v) ≥ η(z, v), then α(ν, v) ≥ η(ν, v).

Then we designate that the pair (S, T) is triangular α-admissible, appertaining to the function η.

Example 2 ([4]). Let Υ = [0, ∞). Define S, T : Υ → Υ by Sν = ν and Tν = ν2. Consider α, η : Υ× Υ →
[0, ∞) as α(ν, v) = eν+v and η(ν, v) = ev−ν. Clearly, the pair (S, T) is triangular α-admissible regarding η.

Samet et al. [16] initiated the concept of α-ψ-contractions and they demonstrated the existence and
uniqueness of common fixed points. Denote by Ψ the family of nondecreasing functions ψ : [0, ∞)→

[0, ∞) such that
∞

∑
n=1

ψn(ν) < ∞ for all ν > 0. If ψ ∈ Ψ, then ψ(ν) < ν for all ν > 0.

Definition 6 ([23]). Let Υ = [0, ∞). Any ψ ∈ Ψ is said to be an altering distance function if

1. ψ is nondecreasing and continuous;
2. ψ(ν) = 0⇐⇒ ν = 0.

The results presented in [16] can be abstracted as follows.

Theorem 2 ([16]). Let (Υ, ρ) be a complete metric space and T : Υ → Υ be an α, ψ-admissible contraction.
Assume that the subsequent conditions are satisfied:
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(i) there is ν0 ∈ Υ such that α (x0, Tν0) ≥ 1;
(ii) either T is continuous, or
(ii)′ for each sequence {νn} in Υ such that νn → ν ∈ Υ and α (νn, νn+1) ≥ 1, then α (νn, ν) ≥ 1 for all n ∈ N.

Then T admits a fixed point. Furthermore, if in addition we assume that for every (u, v) ∈ Υ× Υ, there
exists z ∈ Υ so that α(u, z) ≥ 1 and α(v, z) ≥ 1, then we have a unique fixed point.

In this paper, we originate a new type of contraction by using the concepts of α-admissibility in
regards to a function η, and ξ-functions. We establish the existence and uniqueness of some common
fixed points results. Our obtained results improve and generalize Theorems 1 and 2 and many others
in the literature (by taking particular choices of ξ, ψ, α and η).

2. Main Results

To begin, we state some principal notations.

Definition 7. Let S, T be self-mappings on a complete metric space (Υ, ρ) and α, η : Υ× Υ→ [0, ∞) be given
functions. Define A ⊆ Υ× Υ as

A(S, T, α, η) = {(ν, v) : ρ(Tν, Tv) > 0 and α(ν, v) ≥ η(ν, v)} .

Then the pair (S, T) is named an (α, η, ξ, ψ)-contraction, if there are k ∈ (0, 1), ψ ∈ Ψ and ξ ∈ Γ or Θ such that

ξ(ρ(Sν, Tv)) ≤ [ξ(ψ(K(ν, v)))]k, for all (ν, v) ∈ A(S, T, α, η), (2)

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Tv)}.

Remark 1. Let (Υ, ρ) be a metric space. Let S, T : Υ → Υ be self-mappings. If the pair (S, T) is
an (α, η, ξ, ψ)-contraction, then by (2), we deduce

ln[ξ(ρ(Sν, Tv))] ≤ k ln(ξ(ψ(ρ(ν, v)))) < ln(ξ(ψ(ρ(ν, v)))),

which infers from (ξ1) that

ρ(Sν, Tv) < ψ(ρ(ν, v)), for all (ν, v) ∈ A(S, T, α, η).

It implies the following:

ν, v ∈ Υ, α(ν, v) ≥ η(ν, v) =⇒ ρ(Sν, Tv) ≤ ψ(ρ(ν, v)).

Theorem 3. Let (Υ, ρ) be a complete metric space. Let S, T : Υ → Υ be self-mappings. Suppose that the
following assumptions hold:

(i) the pair (S, T) is α-admissible regarding to the function η;
(ii) (S, T) is an (α, η, ξ, ψ)-contraction;
(iii) there exists ν0 ∈ Υ so that α (ν0, Sν0) ≥ η (ν0, Sν0) and α (ν0, Tν0) ≥ η (ν0, Tν0);
(iv) S and T are continuous.

Then S and T have a common fixed point.

Proof. In view of the condition (ii), there is ν0 ∈ Υ so that α (ν0, Sν0) ≥ ηη (ν0, Sν0) . Define the
sequence {νn} in Υ by νn = Sνn−1 = Snν0 and νn+1 = Tνn = Tnν0 for all n ≥ 1. If there is n0 ∈ N
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such that νn0 = νn0+1, then νn0 = Sνn0 = Tνn0 . Thus, S and T have a common fixed point. It completes
the proof. Thus, suppose that νn 6= νn+1, for all n, that is,

ρ(Sνn−1, Tνn) > 0, for all n ∈ N. (3)

Since α (ν0, ν1) = α (Sν1, Tν0) ≥ η (ν0, ν1) = η (Sν1, Tν0) and the pair (S, T) is α-admissible,
one writes

α(ν1, ν2) = α(Sν0, Tν1) ≥ η(Sν0, Tν1) = η(ν1, ν2).

Once more, by utilizing the α-admissible concept to the function η, we have

α(ν2, ν3) = α(Tν1, Sν2) ≥ η(Tν1, Sν2) = η(ν2, ν3).

Repeating this strategy n-times, we deduce

α(νn, νn+1) ≥ η(νn, νn+1), for all n ∈ N∪ {0} . (4)

Combining (3) and (4), we deduce that

(νn, νn+1) ∈ A(S, T, α, η), for all n ≥ 0∪ {0} . (5)

Taking (2) and (5) into consideration, we find that

ξ(ρ(νn, νn+1)) = ξ(ρ(Sνn−1, Tνn)) ≤ [ξ(ψ(K(νn−1, νn)))]
k, for all n ∈ N,

where

K(νn−1, νn) = max{ρ(νn−1, νn), ρ(νn−1, Sνn−1), ρ(νn, Tνn)}
= max{ρ(νn−1, νn), ρ(νn−1, νn), ρ(νn, νn)}
= ρ(νn−1, νn). (6)

Since ξ is nondecreasing, one writes that

ξ(ρ(νn, νn+1)) < [ξ(ρ(νn−1, νn))]
k, for all n ∈ N.

Letting νn = ρ(νn, νn+1) for all n ∈ N and from the over inequality, we infer

ξ(νn) < [ξ(tn−1)]
k < [ξ(tn−1)]

k2
< · · · < [ξ(t0)]

kn
.

Thus, for all n ∈ N, we deduce

1 < ξ(νn) < [ξ(t0)]
kn

. (7)

Carrying out the limit of term (7) as n tends to ∞,

lim
n→+∞

ξ(νn) = 1,

which implies by (ξ2) that
lim

n→+∞
νn = 0. (8)

To demonstrate that {νn} is a Cauchy sequence, we take two cases.
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Case I : Let us consider condition (ξ3) as it is defined in Definition 1. Then there are r ∈ (0, 1)
and λ ∈ (0, ∞] such that

lim
n→∞

ξ(νn)− 1
(νn)r = λ. (9)

Choose δ ∈ (0, λ). By the conception of limit, there involves n1 ∈ N so that

[νn]
r ≤ δ−1[ξ(νn)− 1], for all n > n1.

Using (7) and the over inequality, we deduce

n[νn]
r ≤ δ−1n([ξ(t0)]

kn − 1), for all n > n1.

This infers that

lim
n→+∞

n[νn]
r = lim

n→+∞
n[ρ(νn, νn+1)]

r = 0.

Hence there is n2 ∈ N so that

ρ(νn, νn+1) ≤
1

n1/r , for all n > n2. (10)

Given m > n > n2. At that point, utilizing the triangular inequality concept and (10), we deduce

ρ(νn, νm) ≤
m−1

∑
k=n

ρ(νk, νk+1) ≤
m−1

∑
k=n

1
k1/r ≤

∞

∑
k=n

1
k1/r

and hence {νn} is a Cauchy sequence in Υ.
Case II : Let us consider condition (ξ3) as it is defined in Definition 2. We proceed in the beginning

of proof as
lim

n→∞
νn = lim

n→+∞
ρ(νn, νn+1) = 0,

and

K(νn−1, νn) = max{ρ(νn−1, νn), ρ(νn−1, Sνn−1), ρ(νn, Tνn)}
= max{ρ(νn−1, νn), ρ(νn−1, νn), ρ(νn, νn)}
= ρ(νn−1, νn). (11)

Also, since ξ is non-decreasing, we deduce

ξ(ρ(νn, νn+1)) = ξ(ρ(Sνn−1, Tνn)) ≤ [ξ(ρ(νn−1, νn))]
k

≤ [ξ(ρ(νn−2, νn−1))]
k2

≤ [ξ(ρ(νn−3, νn−2))]
k3

...

≤ ξ(ρ(ν0, ν1))
kn

, (12)

for all n ∈ N.
Since ξ is continuous on (0, ∞) and by taking the limit as n→ ∞ in (12), we have again

lim
n→∞

ξ(ρ(νn, νn+1)) = 1⇐⇒ lim
n→∞

ρ(νn, νn+1) = 0,
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Now, we claim that the sequence {νn} is Cauchy. Suppose the contrary. Then there exist ε > 0
and two subsequences {νo(k)} and {νw(k)} of {νn} with ok > wk > k such that

ρ(νw(k), νo(k)) ≥ ε, ρ(νw(k)−1, νo(k)) < ε,

for all n ∈ N. By utilizing the triangular property,

ε ≤ ρ(νw(k), νo(k)) ≤ ρ(νw(k), νo(k)−1) + ρ(νo(k)−1, νo(k)) (13)

< ε + ρ(νo(k)−1, νo(k)). (14)

By taking k→ ∞ in (12), we have

lim
k→∞

ρ(νw(k), νo(k)) = ε. (15)

Since
| ρ(νw(k), νo(k)−1)− ρ(νw(k), νo(k)) |≤ ρ(νo(k), νo(k)−1)

we have limk→∞ ρ(Sνw(k)−1, Tνo(k)−2) = limk→∞ ρ(νw(k), νo(k)−1) = ε. Essentially, we get that

lim
k→∞

ρ(νw(k), νo(k)−1) = lim
k→∞

ρ(νw(k)−1, νo(k)−1) = lim
k→∞

ρ(Sνw(k)−2, Tνo(k)−2) = ε.

Then, by the above assumptions, we have

lim
n→+∞

ξ(ρ(Sνw(k), Tνo(k))) ≤ ξ(ψ(ρ(νw(k), νo(k))))
k. (16)

By taking k→ ∞ in (16), we have

ξ(ε) ≤ ξ(ψ(ε))k,

which is a contradiction since k ∈ (0, 1) and ψ(t) < t for all t > 0. Therefore, {νn} is a Cauchy sequence.
By the completeness of (Υ, ρ), there is u ∈ Υ so that νn → u as n → ∞. If S, T are continuous,

then νn = Sνn−1 → Su and νn+1 = Tνn → Tu. The uniqueness of the limit implies that u = Su = Tu.
Assume that there exists another common fixed point z of S, T distinct from u, that is, u 6= z.

At that point, it follows from the above assumptions that

ξ(ρ(u, z)) = ξ(ρ(Su, Tz)) ≤ ξ(ψ(ρ(u, z)))k,

which is a contradiction with respect to k ∈ (0, 1) and ψ(t) < t for all t > 0. Thus u is the unique
common fixed point of S and T.

The continuity of mappings in Theorem 3 can be replaced by a reasonable condition.

Theorem 4. Let (Υ, ρ) be a complete metric space and S, T : Υ → Υ be self-mappings. Assume that the
following assumptions hold:

(i) the pair (S, T) is α-admissible regarding to the function η;
(ii) the pair (S, T) is an (α, η, ξ, ψ)-contraction;
(iii) there exists ν0 ∈ Υ so that α (ν0, Sν0) ≥ η (ν0, Sν0);
(iv) for every {νn}n∈N ⊂ Υ such that νn → ν ∈ Υ and α (νn, νn+1) ≥ η (νn, νn+1) for all n ∈ N,

then α (νn, ν) ≥ η (νn, ν) for all n ∈ N.

Then S and T have a common fixed point.
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Proof. Let us consider condition (ξ3) as it is defined in Definition 1 and by using the full proof of
Theorem 3, define {νn} as νn = Sνn−1 = Snν0 and νn+1 = Tνn = Tnν0 for all n ∈ N. Assume that the
sequence {νn} such that α(νn, νn+1) ≥ η(νn, νn+1) for all n ∈ N, is converging to u ∈ Υ .

In the case that (iv) holds, we have α(νn, u) ≥ η(νn, u) for all n ≥ 0. If there is k ∈ N so
that ρ(νk+1, Tu) = 0 and ρ(Su, νk+1) = 0, then clearly, Su = Tu = u. So the proof is completed.
Hence, there is n3 ∈ N so that ρ(Sνn, Tu) > 0 for all n > n3. Thus, (νn, u) ∈ A(S, T, α, η) for all n > n3.
Using Remark 1, we get

ρ(νn+1, Tu) = ρ(Sνn, Tu) ≤ ψ(ρ(νn, u)),

and so

0 < ρ(νn+1, Tu) < ρ(νn, u) and 0 < ρ(Su, νn+1) < ρ(u, νn) for all n > n3.

By carrying the limit as n goes to ∞, we obtain ρ(u, Tu) = 0⇒ u = Tu and ρ(Su, u) = 0⇒ Su = u.
Hence, Su = Tu = u.

To demonstrate the uniqueness of the common fixed point, suppose that p, q are two common fixed
points of S and T such that ρ(p, q) > 0. Then ρ(Sp, Tq) > 0 and by the hypothesis α(p, q) ≥ η(p, q),
(p, q) ∈ A(S, T, α, η). Regarding Remark 1, we get

ρ(p, q) = ρ(Sp, Tq) ≤ ψ(ρ(p, q)) < ρ(p, q),

which infers that p = q.

Example 3. Let Υ = [0, ∞) be endowed with the complete metric ρ defined by

ρ (ν, v) = |ν−v|,

for all ν, v ∈ Υ. Define S, T : Υ→ Υ and α, η : Υ× Υ→ [0, ∞) by

Sν =


1
3

e−4ν, if ν ∈ [0, 4] ,

2ν, if ν > 4,

and Tν =


1
2

e−4ν, if ν ∈ [0, 4] ,

3ν, if ν > 4.

α (ν, v) =


eν+v, if ν, v ∈ [0, 4] ,

0, if ν > 4 or v > 4,
and η (ν, v) =


eν, if ν, v ∈ [0, 4] ,

0, if ν > 4 or v > 4.

We have

A(S, T, α, η) = {(ν, v) ∈ Υ× Υ : ρ(Sν, Tv) > 0 and α(ν, v) ≥ η(ν, v)}
= {(ν, v) ∈ Υ× Υ : ν 6= v and ν, v ∈ [0, 4]} .
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Firstly, (S, T) is an (α, η, ξ, ψ)-contraction with k = e−2, ψ(t) = t
3 and ξ(t) = e

√
tet . Let ν, v ∈ A(T, α),

then ν, v ∈ [0, 4] with ν 6= v,

ξ (d (Tν, Tv)) = ξ

(
e−4 |ν−v|

3

)

= e

√
e−4 |ν−v|

3 ee−4 |ν−v|
3

≤ ee−2

√
|ν−v|

3 e
|ν−v|

3

= ee−2
√

ψ(K(ν,v))eψ(ρ(ν,v))

= [ξ(ψ(K(ν, v)))]k.

This means that (S, T) is an (α, η, ξ, ψ)-contraction .
Now, let ν, v ∈ Υ be such that α (ν, v) ≥ η (ν, v) . Here, ν, v ∈ [0, 4]. Then Sν, Tv ∈ [0, 4] and so

α (Sν, Tv) ≥ η (Sν, Tv) . Hence, the pair (S, T) is α-admissible regarding η. Moreover, there exists ν0 = 4 so
that α (ν0, Tν0) ≥ η (ν0, Tν0) and α (Sν0, ν0) ≥ η (Sν0, ν0) .

Let {νn} be a sequence in Υ so that νn → ν and α (νn, νn+1) ≥ η (νn, νn+1) for all n. Then, νn ∈ [0, 4]
and so ν ∈ [0, 4] as νn → ν. Thus, α (νn, ν) ≥ η (νn, ν).

Finally, all conditions of Theorems 3 and 4 are fulfilled, and so S and T have a unique common fixed point,
which is 0.

Furthermore, for ν = v = 0, we have

ξ (d (Sν, Tv)) = ξ (ρ (S0, T0)) = ξ (0) ≤ [ξ (0)]k = [ξ (ρ(ν, v))]k.

For ν = v = 4, we have

ξ (d (Sν, Tv)) = ξ (ρ (S4, T4)) = ξ (0) ≤ [ξ (0)]k = [ξ (ρ(ν, v))]k.

Also, for ν = 0 and v = 4, we have

ξ (d (Sν, Tv)) = ξ (d (S0, T4)) = ξ

(
1
3

e−44
)
≤ [ξ (4)]k = [ξ (ρ(ν, v))]k,

for all ξ ∈ Γ and k ∈ (0, 1). Therefore, Theorem 3 can applied to this example.

Corollary 1. Let (Υ, ρ) be a complete metric space and S, T : Υ → Υ be self-mappings. Then the pair (S, T)
has a unique common fixed point if the following assumptions hold:

(i) the pair (S, T) is α-admissible;
(ii) there exists ν0 ∈ Υ in which α (ν0, Sν0) ≥ 1 and α (ν0, Tν0) ≥ 1;
(iii) S and T are continuous;
(iv) there are k ∈ (0, 1), ψ ∈ Ψ and ξ ∈ Γ or Θ so that

ν, v ∈ Υ, ρ(Sν, Tv) > 0 =⇒ ξ(α(ν, v)ρ(Sν, Tv)) ≤ [ξ(ψ(K(ν, v)))]k, (17)

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Tv)}.

Proof. It follows from Theorem 3 by considering η : Υ× Υ→ R via η(ν, v) = 1.

Corollary 2. Let (Υ, ρ) be a complete metric space and S, T : Υ→ Υ be given mappings. Then the pair (S, T)
has a unique common fixed point if the following assumptions hold:
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(i) the pair (S, T) is α-admissible;
(ii) there exists ν0 ∈ Υ so that α (ν0, Sν0) ≥ 1 and α (ν0, Tν0) ≥ 1;
(iii) for every {νn}n∈N ⊂ Υ such that νn → ν ∈ Υ and α (νn, νn+1) ≥ 1 for all n ∈ N, then α (νn, ν) ≥ 1 for

all n ∈ N;
(iv) there are k ∈ (0, 1), ψ ∈ Ψ and ξ ∈ Γ or Θ so that

ν, v ∈ Υ, ρ(Sν, Tv) > 0 =⇒ ξ(α(ν, v)ρ(Sν, Tv)) ≤ [ξ(ψ(K(ν, v)))]k, (18)

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Tv)}.

Proof. The rest of proof follows from Theorem 4 by considering η : Υ× Υ→ R via η(ν, v) = 1.

Corollary 3. Let S : Υ→ Υ be defined on a complete metric space (Υ, ρ). Assume there are k ∈ (0, 1), ψ ∈ Ψ
and ξ ∈ Γ or Θ such that

ν, v ∈ Υ, ρ(Sν, Sv) > 0 =⇒ ξ(ρ(Sν, Sv)) ≤ [ξ(ψ(K(ν, v)))]k.

K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Sv)}.

Then S has a unique fixed point if:

(i) S is α-admissible;
(ii) there exists ν0 ∈ Υ so that α (ν0, Sν0) ≥ 1;
(iii) S is continuous.

Proof. It follows from Corollary 1 by regarding S = T and α(ν, v) = 1.

Corollary 4. Let S : Υ→ Υ be defined on a complete metric space (Υ, ρ). Assume there are k ∈ (0, 1), ψ ∈ Ψ
and ξ ∈ Γ or Θ such that

ν, v ∈ Υ, ρ(Sν, Sv) > 0 =⇒ ξ(ρ(Sν, Sv)) ≤ [ξ(ψ(K(ν, v)))]k,

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Sv)}.

Then S has a unique fixed point if the following assumptions hold:

(i) S is α-admissible;
(ii) there exists ν0 ∈ Υ so that α (ν0, Sν0) ≥ 1;
(iii) for every {νn}n∈N ⊂ Υ such that νn → ν ∈ Υ and α (νn, νn+1) ≥ 1 for all n ∈ N, then α (νn, ν) ≥ 1 for

all n ∈ N.

Proof. It follows from Corollary 2 by regarding S = T and α(ν, v) = 1.

Corollary 5. Let S : Υ→ Υ be defined on a complete metric space (Υ, ρ). Assume there exist k ∈ (0, 1) and
ξ ∈ Γ or Θ such that

ν, v ∈ Υ, ρ(Sν, Sv) > 0 =⇒ ξ(ρ(Sν, Sv)) ≤ [ξ(ρ(ν, v))]k.

Then S has a unique fixed point if the following assumptions hold:

(i) S is α-admissible;
(ii) there is ν0 ∈ Υ so that α (ν0, Sν0) ≥ 1;



Mathematics 2019, 7, 1082 10 of 16

(iii) S is continuous.

Proof. It follows from Corollary 3 and the fact that ρ(ν, v) ≤ K(ν, v).

Corollary 6. Let S : Υ → Υ be a mapping on a complete metric space (Υ, ρ). Assume there exist k ∈ (0, 1)
and ξ ∈ Γ or Θ so that

ν, v ∈ Υ, ρ(Sν, Sv) > 0 =⇒ ξ(ρ(Sν, Sv)) ≤ [ξ(ρ(ν, v))]k.

Then S has a unique fixed point if the following assumptions hold:

(i) S is α-admissible;
(ii) there exists ν0 ∈ Υ in order that α (ν0, Sν0) ≥ 1;
(iii) for every {νn}n∈N ⊂ Υ such that νn → ν ∈ Υ and α (νn, νn+1) ≥ 1 for all n ∈ N, then α (νn, ν) ≥ 1 for

all n ∈ N.

Proof. It comes from Corollary 4 and the fact that ρ(ν, v) ≤ K(ν, v).

3. Applications

We start with giving some fixed point results on a metric space endowed with a graph. We also
ensure the existence of a solution for a functional equation originating in dynamic programming.

3.1. Graphic Contractions

In view of the paper of Jachymski [24], we consider the following assumptions:

(a) (Υ, ρ) is a metric space;
(b) ∆ := {(ν, ν) : x ∈ Υ} is the diagonal of the Cartesian product Υ× Υ;
(c) G is a graph of the set of its vertices V (G) and the set of its edges contains all loops E (G) such that

each edge of graph G represents the distance between two vertices or a loop of the same vertex.

(For more details, see [25–28]).

Now, we give some notions and definitions related to a metric space endowed with a graph.

Definition 8 ([24]). A map T : Υ→ Υ is a G-contractive map, if T preserves edges of G, that is,

∀ν, v ∈ Υ, (ν, v) ∈ E (G)⇒ (Tν, Tv) ∈ E (G) , (19)

and T relates with weights of edges of G as the subsequent way:

∃k ∈ (0, 1), ∀ν, v ∈ Υ, (ν, v) ∈ E (G)⇒ d (Tν, Tv) ≤ kρ(ν, v). (20)

Definition 9 ([24]). A map T : Υ→ Υ is G-continuous if given ν ∈ Υ and a sequence {νn} with νn → ν as
n→ +∞ and (νn, νn+1) ∈ E(G) for all n ∈ N, we have Tνn → Tν as n→ +∞.

The G-continuity implies the continuity. Whereas generally, the contrary of this explanation is
not true.

Definition 10. Let (Υ, ρ) be a metric space provided with a graph G and S, T : Υ → Υ be self-mappings.
Let E(G) ⊆ G ⊆ Υ× Υ be defined by

G(S, T) = {(ν, v) : ρ(Sν, Tv) > 0 and (ν, v) ∈ E (G)} .
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Then the pair (S, T) is an (α-ξ-ψ)-G-contraction if there are k ∈ (0, 1), ψ ∈ Ψ and ξ ∈ Γ or Θ so that

ξ(ρ(Sν, Tv)) ≤ [ξ(ψ(K(ν, v)))]k, for all (ν, v) ∈ G(S, T, G), (21)

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Tv)}.

Theorem 5. Let (Υ, ρ) be a complete metric space endowed with a graph G and S, T : Υ→ Υ be self-mappings.
Suppose that the pair (S, T) is an (α-ξ-ψ)-G-contraction. Then S and T have a common fixed point if the
following conditions are fulfilled:

(i) S and T preserve the edges of G;
(ii) there exists ν0 ∈ Υ so that (ν0, Sν0) , (ν0, Tν0) ∈ E(G);
(iii) S and T are G-continuous.

Moreover, if (ν, v) ∈ E(G) for all ν, v ∈ Fix(T), then the common fixed point is unique .

Proof. Define α : Υ× Υ→ [0, ∞) by

α (ν, v) =

{
1, if (ν, v) ∈ E (G) ,

0, otherwise.

Let (ν, v) ∈ A(S, T, α). Then ρ(Sν, Tv) > 0 and α (ν, v) ≥ 1. By definition of α, ρ(Sν, Tv) > 0
and (ν, v) ∈ E(G), that is, (ν, v) ∈ G(S, T). Since (S, T) is an (α-ξ-ψ)-G-contraction, we get

ξ(ρ(Sν, Tv)) ≤ [ξ(ψ(K(ν, v)))]k,

then for

(νn, νn+1) ∈ A(S, T,G, α), for all n ∈ N∪ {0} ,

we get

ξ(ρ(νn, νn+1)) = ξ(ρ(Sνn−1, Tνn)) ≤ [ξ(ψ(K(νn−1, νn)))]
k, for all n ∈ N,

where

K(νn−1, νn) = max{ρ(νn−1, νn), ρ(νn−1, Sνn−1), ρ(νn, Tνn)}
= max{ρ(νn−1, νn), ρ(νn−1, νn), ρ(νn, νn)}
= ρ(νn−1, νn). (22)

Therefore,
ξ(ρ(Sν, Tv)) ≤ [ξ(ψ(ρ(ν, v)))]k, for all (ν, v) ∈ A(S, T,G, α).

Now, we demonstrate that (S, T) is α-admissible. Let α (ν, v) ≥ 1 for all ν, v ∈ Υ. Then (ν, v) ∈
E (G) . By the virtue of (i), we get (Sν, Tv) ∈ E(G), and hence α(Sν, Tv) ≥ 1. This proves that the
pair (S, T) is α-admissible. Also, it is easy to see that the condition (iii) implies the condition (iii) of
Theorem 3. Thus, since all conditions of Theorem 3 hold, S and T have a common fixed point. Also,
we show that S and T have a unique common fixed point. On the contrary, suppose that ν, v ∈ Fix(T).
Then, by the hypothesis (ν, v) ∈ E (G) and so α (ν, v) ≥ 1. By Theorem 3, S and T have a unique
common fixed point.
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Example 4. Following Example 2.8 in [28], let Υ = [0, 1] be endowed with the usual metric. Let G be a graph
with V(G) = Υ and E(G) = ∆ ∪

{(
1
n , 1

n+1

)
: n ∈ N

}
∪
{(

1
8 , 1

4

)}
∪
{(

1
n , 0
)

: n ∈ N
}

. Define T : Υ →
Υ by

Sν =


1
2

, if 0 ≤ ν < 1,

1
3

, if ν = 1.

and Tν =


1
2

, if 0 ≤ ν < 1,

1
8

, if ν = 1.

Now, we demonstrate that S, T are (α,ξ,ψ)-G-contractive maps with k = 1
3 , ψ(t) = t and ξ(t) = et. Note that

(ν, v) ∈ G(S, T) if and only if ν = 1 and v ∈ {0, 1
3 , 1

2}. Then, we need to check the subsequent cases:
Case 1. If ν = 1 and v = 0, we have

ξ (ρ (S1, T0)) = ξ

(∣∣∣∣13 − 1
2

∣∣∣∣) = ξ

(
1
6

)
= e

1
6 = 1.181

[ξ (ψ (ρ (1, 0)))]k = [ξ (1)]
1
3 =

(
e1) 1

3 = 1.396


=⇒ ξ (ρ (S1, T0)) ≤ [ξ (ψ (ρ (1, 0)))]k .

Case 2. If ν = 1 and v = 1
3 , we have

ξ
(

ρ
(

S1, T 1
3

))
= ξ

(∣∣∣∣13 − 1
2

∣∣∣∣) = ξ

(
1
6

)
= e

1
6 = 1.181

[
ξ
(

ψ
(

ρ
(

1, 1
3

)))]k
=

[
ξ

(
2
3

)] 1
3
=

e
2
3


1
3

= 1.249


=⇒ ξ

(
ρ

(
S1, T

1
3

))
≤
[

ξ

(
ψ

(
ρ

(
1,

1
3

)))]k
.

Case 3. If ν = 1 and v = 1
2 , we have

ξ
(

ρ
(

S1, T 1
2

))
= ξ

(∣∣∣∣13 − 1
2

∣∣∣∣) = ξ

(
1
6

)
= e

1
6 = 1.181

[
ξ
(

ψ
(

ρ
(

1, 1
2

)))]k
=

[
ξ

(
1
2

)] 1
3
=

e
1
2


1
3

= 1.181


=⇒ ξ

(
ρ

(
S1, T

1
2

))
≤
[

ξ

(
ψ

(
ρ

(
1,

1
2

)))]k
.

Now, as we suppose a = 0, b = 1
3 , c = 1

2 , d = 1, we can represent these results by the two following matrices
(see Table 1 and Table 2) and graphs (see Figure 1) :

Table 1. A metric indicated by distances between vertices.

a b c d

a 0 1
3

1
3 1

b 0 1
6

2
3

c 0 1
2

d 0
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Table 2. A metric indicated by distances between images of vertices under ξ-contractions.

Ta Tb Tc Td

Sa 1 1 1 1.181
Sb 1 1 1.249
Sc 1 1.181
Sd 1.232

a

b

c

d

1
3

1
3

1

1
6

2
3

1
2

Sa

Sb

Sc

Sd

Ta

Tb

Tc

Td

1

1
1

1.181
1

1

1.249

1

1.181

1.232

Figure 1. A graph indicated by distances and ξ-contractions of distances between the vertices.

Thus, the pair (S, T) is an (α-ξ-ψ)-G-contraction in all possible cases. Also, all conditions of Theorem 5
are satisfied.

3.2. Existence Theorem for a Solution of a Functional Equation

In this subsection, as an application, we utilize the fixed point results proved in Section 3 to
demonstrate the existence and uniqueness solutions for some nonlinear integral equations by regarding
Corollary 3.

Let Υ = C([a, b],R) denote to the set of all continuous functions specified on the interval [a, b].
We endow on Υ the metric ρ : Υ× Υ→ [0, ∞) defined by

ρ(ν, v) = sup
t∈[a,b]

| ν(t)−v(t) |,

for all ν, v ∈ Υ. Here, (Υ, ρ) is a complete metric space. Let � be a partial order on Υ given as

ν � v ⇐⇒ ν(r) ≤ v(r), r ∈ [a, b].

We consider the following integral equation:

ν(t) = h(t) +
∫ t

0
P(t, r) f (r, ν(r))dr, (23)

where h : [a, b]→ R, P : [a, b]× [a, b]→ [0, ∞) and f : [a, b]×R→ R are continuous functions.

Also, we define the operator S : Υ→ Υ by

Sν(t) = h(t) +
∫ b

a
P(t, r) f (r, ν(r))dr. (24)
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Note that a solution of the integral Equation (23) is identical to that where the operator S has a
fixed point.

Consider the following assumptions:

(A1) there exists t0 ∈ [a, b] such that ν(t0) ≤ Sν(t0);
(A2) for all ν, v ∈ Υ with ν � v, there exists α ∈ (0, 1) such that

| f (r, ν (r))− f (r, v (r))| ≤ α |ν(r)−v(r)| , r ∈ [a, b];

(A3) sup
r∈[a,b]

| P(t, r) |≤ 1 for all t ∈ [a, b];

(A4) S is nondecreasing and continuous on [a, b].

Theorem 6. Assume the assumptions (A1)–(A4) are fulfilled. Then the nonlinear integral Equation (23) has
a unique solution.

Proof. Let ν, v ∈ Υ be such that ν � v. For all t ∈ [a, b], we have

|Sν(t)− Sv(t)| =
∣∣∣∣∫ b

a
P(t, r)( f (r, ν(r))− f (r, v(r)))dr

∣∣∣∣
≤
∫ b

a
P(t, r) |( f (r, ν(r))− f (r, v(r)))| dr

≤
∫ b

a
α|ν(r)−v(r)|dr

≤ αK(ν, v),

where
K(ν, v) = max{ρ(ν, v), ρ(ν, Sν), ρ(v, Sv)}.

This implicates that
ρ(Sν, Sv) ≤ αK(ν, v).

By defining ξ(t) = e
√

t (t > 0) and ψ(t) = α
1
2 t, we get

e
√

ρ(Sν,Sv) ≤ eα
1
4

√
α

1
2 K(ν,v) = [e

√
ψ(K(ν,v))]k,

where k = α
1
4 . Therefore, by Corollary 3 (by endowing on the function α, the partial order on Υ), S has

a unique fixed point. Hence, the nonlinear integral Equation (23) has a unique solution.
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