
mathematics

Article

A Novel System Reliability Modeling of Hardware,
Software, and Interactions of Hardware and Software

Mengmeng Zhu 1,* and Hoang Pham 2

1 Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh,
NC 27606, USA

2 Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA;
hopham@soe.rutgers.edu

* Correspondence: mzhu7@ncsu.edu

Received: 10 September 2019; Accepted: 28 October 2019; Published: 4 November 2019
����������
�������

Abstract: In the past few decades, a great number of hardware and software reliability models have
been proposed to address hardware failures in hardware subsystems and software failures in software
subsystems, respectively. The interactions between hardware and software subsystems are often
neglected in order to simplify reliability modeling, and hence, most existing reliability models assumed
hardware subsystems and software subsystem are independent of each other. However, this may not
be true in reality. In this study, system failures are classified into three categories, which are hardware
failures, software failures, and hardware-software interaction failures. The main contribution of
our research is that we further classify hardware-software interaction failures into two groups:
software-induced hardware failures and hardware-induced software failures. A Markov-based
unified system reliability modeling incorporating all three categories of system failures is developed
in this research, which provides a novel and practical perspective to define system failures and further
improve reliability prediction accuracy. Comparison of system reliability estimation between the
reliability models with and without considering hardware-software interactions is elucidated in
the numerical example. The impacts on system reliability prediction as the changes of transition
parameters are also illustrated by the numerical examples.

Keywords: system reliability modeling; Markov process; software-induced hardware failures;
hardware-induced software failures; hardware-software interactions

1. Introduction

To model system reliability, most studies have considered partial of the system, hardware
subsystem or software subsystem [1–12]. In the past few decades, a great number of reliability
models in terms of hardware [1–7] and software [8–12] have been proposed in order to address
hardware failures in hardware subsystems and software failures in software subsystems from
various perspectives considering many critical applications, respectively. The interactions between
hardware and software subsystems are often neglected for the sake of simplifying mathematical
formulation, and hence, hardware and software subsystems are assumed as independent in most
studies. However, this assumption may not be true in reality.

Several studies have shown the existence of the interactions between these two subsystems,
hardware and software, in modern complex system applications [13–21]. The health status,
e.g., the degradation and failure, of hardware components is one of the critical factors affecting
the performance of software subsystems [16,19,20]. Accordingly, one of the significant reasons that
cause the failure of software is the malfunction/failure of hardware platform where software is located
in [21]. From the software error studies on the existing Multiple Virtual Storage operating system,

Mathematics 2019, 7, 1049; doi:10.3390/math7111049 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7111049
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/11/1049?type=check_update&version=2

Mathematics 2019, 7, 1049 2 of 14

Iyer and Velardi [13] discovered that nearly 35 percent of the observed software failures were related
with to the hardware platform. Their software errors analysis procedures demonstrated a new
methodology to evaluate the interactions between hardware subsystems and software subsystems,
which are related with system reliability. Reported by MessageOne [14], in any given 12-month time
period, 35 percent email outages were triggered by hardware failure of the server. They reported
that the average downtime due to the hardware failure was 18.1 h. Goswami and Iyer [20] studied
the software behaviors under hardware fault and introduced a simulation-based software model
that facilitated application-specific dependability analysis that can be applied in the early product
design stages.

On the other hand, given that software subsystems are embedded in the hardware platform,
the execution of software significantly increases the likelihood of hardware failures’ creation and further
propagation [15,18,19,21]. The input of hardware components is essentially a series of 0 and 1 signal
alternation from software execution. Such signal alternations will cause the voltage change and current
flows in microelectronic device, which act as electronic stresses on the hardware platform, and may
further result in the physical damage, e.g., degradation and failure, of hardware components [15].
Thus, Huang et al. [15] studied the manifestations of hardware failures because of the operational usage
resulting from various applications of software execution. Software operations on the semiconductor
devices are formed as voltage changes and current flows. Thus, the usage will steadily lead to
the degradation and failure of the materials of circuit device until the device cannot well-perform
its designed functionality. Therefore, the interactions between hardware and software need to be
addressed properly to model system reliability.

Only a few studies established the whole system reliability model considering both the hardware
subsystem and software subsystem [22–27]. References [23–25] simply assumed that there is no
interaction between hardware and software subsystems; thus, the proposed system reliability model
considered these two subsystems to be independent of each other. Teng et al. [22] developed a
unified system reliability model including hardware, software and hardware-software interaction,
in which hardware-software interaction failures were identified by the Markov process. In particular,
hardware-software interaction failures are defined as the software failures resulting from the
degradation of hardware components. However, the impact of software execution on hardware
subsystems is not incorporated and properly addressed. Park et al. [26] proposed a software reliability
model, taking into account that some portion of software failures is hardware-related, in which the
Weibull-based model was used to represent hardware-related software failures. Recently, Zeng et al. [27]
proposed an analytical method to address reliability of non-repairable hardware-software co-design
systems on affecting system health status such as degradation and failure by incorporating the interaction
between these two subsystems. However, both references [26,27] considered hardware-software
interaction failures to be hardware-related software failure, as defined in Teng et al. [22]. Thus, the impact
of software execution on hardware needs to be considered as part of hardware-software interactions
and properly addressed. As a result, system failures are categorized into three groups: hardware
failures, software failures, and hardware-software interaction failures.

The main contribution of this paper is that we further classified one of the system failures,
hardware-software interaction failures, into two groups: software-induced hardware failures and
hardware-induced software failures. To the best of our knowledge, no other study has included
the above-defined failure categories: hardware failures, software failures, and hardware-software
interaction failures (software-induced hardware failures and hardware-induced software failures) to
establish a system reliability model.

This paper is organized as follows. Section 2 presents the classification and definitions of system
failures and then proposes a unified system reliability model based on the Markov process incorporating
three main categories of system failures. Through the numerical examples, Section 3 compares the
system reliability estimation between the system reliability models with and without considering
hardware-software interactions and illustrates the impacts on system reliability prediction by changing

Mathematics 2019, 7, 1049 3 of 14

one transition parameter at a time while keeps others as same. Section 4 concludes this research and
further discusses the future research direction.

2. Proposed Markov-Based Unified System Reliability Model

2.1. System Failures Classification

Complex system [28] refers to a system consists many components which may interact with each
other. Many critical modern applications, such as communication systems and computing systems,
are composed of many hardware and software components. In general, the failures of the whole
system may be caused by the failures of one or more components. In this study, system failures are
classified into three categories:

(1) Hardware failures [22,29,30] refer to a hardware component stops its designed function.
Hardware failures are not able to be recovered by, for example, restarting the system after a certain
period. Hardware failures are further classified as either total or partial hardware failures. In particular,
total hardware failures, or hard failures by some studies [29,31], are catastrophic failures that cause
complete cease of the designed function. Partial hardware failures, or soft failures [29,31], refer to the
partial loss of the designed function, in which the hardware component may continue performing its
designed function, but the system will under the degradation state. Overall, the system may continue
working in a degradation state with partial hardware failures, but not with total hardware failures.

(2) Software failures [32] refer to the occurrence of an incorrect output that is triggered by a specific
input because of the latent faults left in software program, e.g., design errors, that are unrelated with
hardware components.

(3) The main contribution of this paper is that we particularly classified hardware-software
interaction failures into two categories: software-induced hardware failures and hardware-induced
software failures. Software-induced hardware failures were defined as hardware failures induced
by the execution of embedded software system [15]. For example, the electronic stress induced by
software execution may lead to the physical damage of hardware components. Hardware-induced
software failures were defined as software failures resulting from a change in hardware configuration,
which causes software operates in a different operational environment compared with the testing
environment [22].

Transient hardware failures are also defined as one of the system failures in literature [15,22,29].
Generally, transient hardware failures are recovered by restarting the system since the disruption of the
function usually caused by operation environment, such as high temperature, strong electromagnetic
fluctuation. In this study, we did not incorporate transient hardware failures in reliability model.

2.2. Model Formulation

As discussed in the introduction, given that the interactions between hardware and software
subsystems are often neglected, the novel Markov-based unified system reliability model was developed
in this research by taking into account hardware failures, software failures, and hardware-software
interaction failures, including software-induced hardware failures and hardware-induced software
failures. The proposed Markov-based unified system reliability model has the following assumptions:

(1) System will fail if any of the failure happens, including hardware failures, software failures,
and hardware-software interaction failures.

(2) Three categories of systems failures are independent of each other.
(3) The Weibull model is employed to model hardware reliability [29,30].
(4) Software fault detection process follows non-homogeneous Poisson process [32]. We consider

the time to remove detected software faults to be negligible in this study.
(5) Three states are defined for hardware-software interactions: full working state (0), degradation

states {state (1a), (1b), and (1c)}, and failure states {state (2a), (2b), (2c), (2d)}.

Mathematics 2019, 7, 1049 4 of 14

Hence, the Markov-based unified system reliability model is proposed follows:

RSystem(t) = RHardware(t)RSo f tware(t)RH−S Interactions(t) (1)

where RHardware(t), RSo f tware(t), and RH−S Interactions(t) represent the reliability function of hardware
subsystems, software subsystems, and hardware-software interactions, respectively.

In this study, the main concentration is on the reliability model development of hardware-software
interactions. We employ the Markov process to represent the state transition of hardware-software
interactions, as illustrated in Figure 1. As stated in model assumptions, three main states, full working
state, degradation states, and failure states, and eight sub-states {0, 1a, 1b, 1c, 2a, 2b, 2c, 2d} are
defined for hardware-software interactions. State (0) represents full working state, which means the
system is under perfect working condition. Degradation state (1a) signifies that partial hardware
failure is detected but it cannot be recovered by software. Degradation state (1b) signifies that partial
hardware failure is detected and it can be recovered by software. Degradation state (1c) signifies
that partial hardware failure is not detected. Failure state (2a) signifies execution abortion. Failures
state (2b) signifies hardware failures. Failures state (2c) signifies software-induced hardware failures.
Failure state (2d) signifies hardware-induced software failures.

Mathematics 2019, 7, x 4 of 14

4

(5) Three states are defined for hardware-software interactions: full working state (0),
degradation states {state (1a), (1b), and (1c)}, and failure states {state (2a), (2b), (2c), (2d)}.

Hence, the Markov-based unified system reliability model is proposed follows: 𝑅ௌ௬௦௧௘௠(𝑡) = 𝑅ு௔௥ௗ௪௔௥௘(𝑡)𝑅ௌ௢௙௧௪௔௥௘(𝑡)𝑅ுିௌ ூ௡௧௘௥௔௖௧௜௢௡௦(𝑡) (1)

where 𝑅ு௔௥ௗ௪௔௥௘(𝑡) , 𝑅ௌ௢௙௧௪௔௥௘(𝑡) , and 𝑅ுିௌ ூ௡௧௘௥௔௖௧௜௢௡௦(𝑡) represent the reliability function of
hardware subsystems, software subsystems, and hardware-software interactions, respectively.

In this study, the main concentration is on the reliability model development of hardware-
software interactions. We employ the Markov process to represent the state transition of hardware-
software interactions, as illustrated in Figure 1. As stated in model assumptions, three main states,
full working state, degradation states, and failure states, and eight sub-states {0, 1a, 1b, 1c, 2a, 2b, 2c,
2d} are defined for hardware-software interactions. State (0) represents full working state, which
means the system is under perfect working condition. Degradation state (1a) signifies that partial
hardware failure is detected but it cannot be recovered by software. Degradation state (1b) signifies
that partial hardware failure is detected and it can be recovered by software. Degradation state (1c)
signifies that partial hardware failure is not detected. Failure state (2a) signifies execution abortion.
Failures state (2b) signifies hardware failures. Failures state (2c) signifies software-induced hardware
failures. Failure state (2d) signifies hardware-induced software failures.

Figure 1. State transition diagram of hardware-software interaction failures.

The transition parameters described in Figure 1 are stated as follows. Hardware components can
transit to degradation sate with degradation rate 𝜆ଵ. The probability of detecting the partial hardware
failures is 𝑝ଵ. Hence, the probability of not detecting the partially failed hardware is 𝑞ଵ, in which 𝑞ଵ =1 − 𝑝ଵ. The probability of fixing the partial hardware failures through software is 𝑝ଶ. Hence, the
probability that the partially failed hardware cannot be recovered through software is 𝑞ଶ, in which 𝑞ଶ = 1 − 𝑝ଶ.

The rate of fixing the partially failed hardware components, from state (1a) to full working
status, state (0), through replacement is 𝑢ଵ . The rate of fixing the partially failed hardware
components, from state (1b) to full working status, state (0), through replacement is 𝑢ଶ . No
replacement will be performed if no failure is being detected.

The partially failed hardware can further transit from state (1a) to executing abortion, state (2a),
with rate 𝜆ଶ, hardware failures, state (2b), with rate 𝜆ଷ, and software-induced hardware failures, state
(2c), with rate 𝜆ସ . The partially failed hardware can further transit from state (1b) to hardware

Figure 1. State transition diagram of hardware-software interaction failures.

The transition parameters described in Figure 1 are stated as follows. Hardware components
can transit to degradation sate with degradation rate λ1. The probability of detecting the partial
hardware failures is p1. Hence, the probability of not detecting the partially failed hardware is q1,
in which q1 = 1 − p1. The probability of fixing the partial hardware failures through software is p2.
Hence, the probability that the partially failed hardware cannot be recovered through software is q2,
in which q2 = 1− p2.

The rate of fixing the partially failed hardware components, from state (1a) to full working status,
state (0), through replacement is u1. The rate of fixing the partially failed hardware components,
from state (1b) to full working status, state (0), through replacement is u2. No replacement will be
performed if no failure is being detected.

The partially failed hardware can further transit from state (1a) to executing abortion, state (2a),
with rate λ2, hardware failures, state (2b), with rate λ3, and software-induced hardware failures,
state (2c), with rate λ4. The partially failed hardware can further transit from state (1b) to hardware
failures, state (2b), with rate λ5, and software-induced hardware failures, state (2c), with rate λ6. If the
partially failed hardware is not being detected in the degradation states, it may further transit from

Mathematics 2019, 7, 1049 5 of 14

state (1c) to hardware failures, state (2b), with rate λ7, software-induced hardware failures, state (2c),
with rate λ8, and hardware-induced software failures, state (2d), with rate λ9.

According to the model assumptions, the differential equations based on the Markov
process [30,33,34] with Qi(t) denotes the probability of system being in the state i at time t are
obtained as follows:

Q′0(t) = −λ1Q0(t) + µ1Q1a(t) + µ2Q1b(t) (2)

Q′1a(t) = λ1p1q2Q0(t) − (µ1 + λ2 + λ3 + λ4)Q1a(t) (3)

Q′1b(t) = λ1p1p2Q0(t) − (µ2 + λ5 + λ6)Q1b(t) (4)

Q′1c(t) = λ1q1Q0(t) − (λ7 + λ8 + λ9)Q1c(t) (5)

Q′2a(t) = λ2Q1a(t) (6)

Q′2b(t) = λ3Q1a(t) + λ5Q1b(t) + λ7Q1c(t) (7)

Q′2c(t) = λ4Q1a(t) + λ6Q1b(t) + λ8Q1c(t) (8)

Q′2d(t) = λ9Q1c(t) (9)

We consider at time t = 0 the probability of system being in full working state (0) is 1 and in
degradation states {state (1a), (1b), and (1c)} and failure states {state (2a), (2b), (2c), and (2d)} are 0,
respectively. Thus, the initial condition of the above differential Equations (2)–(9) will be given as
Q0(0) = 1 and Qi(0) = 0, i = 1a, 1b, 1c, 2a, 2b, 2c, 2d; the solutions of the differential Equations (2)–(9)
of hardware-software interaction failures are obtained as follows:

Q0(t) =
(c1 + A2)(c1 + A1)

(c1 − c2)(c1 − c3)
ec1t +

(c2 + A2)(c2 + A1)

(c2 − c1)(c2 − c3)
ec2t +

(c3 + A2)(c3 + A1)

(c3 − c1)(c3 − c2)
ec3t

Q1a(t) = λ1p1q2

[
(c1 + A2)

(c1 − c2)(c1 − c3)
ec1t +

(c2 + A2)

(c2 − c1)(c2 − c3)
ec2t +

(c3 + A2)

(c3 − c1)(c3 − c2)
ec3t

]
Q1b(t) = λ1p1p2

[
(c1 + A1)

(c1 − c2)(c1 − c3)
ec1t +

(c2 + A1)

(c2 − c1)(c2 − c3)
ec2t +

(c3 + A1)

(c3 − c1)(c3 − c2)
ec3t

]
Q1c(t) = λ1q1

[
(c1+A2)(c1+A1)

(c1−c2)(c1−c3)(c1+A3)
ec1t +

(c2+A2)(c2+A1)
(c2−c1)(c2−c3)(c2+A3)

ec2t

+
(c3+A2)(c3+A1)

(c3−c1)(c3−c2)(c3+A3)
ec3t
−

(A3−A2)(A3−A1)
(A3+c1)(A3+c2)(A3+c3)

e−A3t
]

Q2a(t) = λ1λ2p1q2

[
−A2

c1c2c3
+

(c1+A2)
c1(c1−c2)(c1−c3)

ec1t +
(c2+A2)

c2(c2−c1)(c2−c3)
ec2t

+
(c3+A2)

c3(c3−c1)(c3−c2)
ec3t

]

Mathematics 2019, 7, 1049 6 of 14

Q2b(t) =
λ1λ3p1q2(c1+A2)+λ1λ5p1p2(c1+A1)

c1(c1−c2)(c1−c3)
ec1t

+
λ1λ3p1q2(c2+A2)+λ1λ5p1p2(c1+A1)

c2(c2−c1)(c2−c3)
ec2t

+
λ1λ3p1q2(c3+A2)+λ1λ5p1p2(c3+A1)

c3(c3−c1)(c3−c2)
ec3t

−
λ1λ3p1q2A2+λ1λ5p1p2A1

c1c2c3

+λ1λ7q1

[
−

A1A2
c1c2c3A3

+
(c1+A2)(c1+A1)

c1(c1−c2)(c1−c3)(c1+A3)
ec1t

+
(c2+A2)(c2+A1)

c2(c2−c1)(c2−c3)(c2+A3)
ec2t +

(c3+A2)(c3+A1)
c3(c3−c1)(c3−c2)(c3+A3)

ec3t

+
(A3−A2)(A3−A1)

A3(A3+c1)(A3+c2)(A3+c3)
e−A3t

]
Q2c(t) =

λ1λ4p1q2(c1+A2)+λ1λ6p1p2(c1+A1)

c1(c1−c2)(c1−c3)
ec1t

+
λ1λ4p1q2(c2+A2)+λ1λ6p1p2(c2+A1)

c2(c2−c1)(c2−c3)
ec2t

+
λ1λ4p1q2(c3+A2)+λ1λ6p1p2(c3+A1)

c3(c3−c1)(c3−c2)
ec3t

−
λ1λ4p1q2A2+λ1λ6p1p2A1

c1c2c3

+λ1λ8q1

[
−

A1A2
c1c2c3A3

+
(c1+A2)(c1+A1)

c1(c1−c2)(c1−c3)(c1+A3)
ec1t

+
(c2+A2)(c2+A1)

c2(c2−c1)(c2−c3)(c2+A3)
ec2t +

(c3+A2)(c3+A1)
c3(c3−c1)(c3−c2)(c3+A3)

ec3t

+
(A3−A2)(A3−A1)

A3(A3+c1)(A3+c2)(A3+c3)
e−A3t

]
Q2d(t) = λ1λ9q1

[
−

A1A2
c1c2c3A3

+
(c1+A2)(c1+A1)

c1(c1−c2)(c1−c3)(c1+A3)
ec1t

+
(c2+A2)(c2+A1)

c2(c2−c1)(c2−c3)(c2+A3)
ec2t

+
(c3+A2)(c3+A1)

c3(c3−c1)(c3−c2)(c3+A3)
ec3t

+
(A3−A2)(A3−A1)

A3(A3+c1)(A3+c2)(A3+c3)
e−A3t

]
(10)

where A1 = µ1 + λ2 + λ3 + λ4, A2 = µ2 + λ5 + λ6, A3 = λ7 + λ8 + λ9. c1, c2, and c3 are the roots of
equation (s + λ1)(s + A1)(s + A2) − µ1λ1p1q2(s + A2) − µ2λ1p1p2(s + A1) = 0.

The working states include full working state (0) and degradation states (1a), (1b), and (1c).
Hence, the reliability of hardware-software interactions is obtained as follows:

RH−S Interactions(t) = Q0(t) + Q1a(t) + Q1b(t) + Q1c(t) (11)

where Q0(t), Q1a(t), Q1b(t), and Q1c(t) are illustrated in Equation (10).

Mathematics 2019, 7, 1049 7 of 14

According to model assumptions, hardware reliability is elucidated by the Weibull model:

RHardware(t) = e−λtβ (12)

where λ and β are the parameters of Weibull distribution.
Software fault detection and removal process are considered as a nonhomogeneous Poisson

process. We also consider the time that software tester spent on removing detected software faults is
negligible. In particular, software fault detection rate and the total number of software faults in the
software program are considered as constants in this study; thus, G-O model [32,35] will be employed
to estimate the expected number of detected software failures up to time t. G-O model [32,35] is shown
below:

m(t) = a
(
1− e−bt

)
(13)

where m(t) denotes the expected number of software failures up to time t. The constants a and b denote
software fault detection rate and total number of software faults in the program, respectively.

Applying the G-O model given in Equation (13), the software reliability can be estimated for a
time period t given software startup time x as follows:

RSo f tware(t|x) = e−[m(t+x)−m(x)] = eae−bx(e−bt
−1) (14)

By substituting Equations (11), (12) and (14) to Equation (1), the proposed Markov-based unified
system reliability model is obtained as follows:

RSystem(t) = e−λtβeae−bx(e−bt
−1)[Q0(t) + Q1a(t) + Q1b(t) + Q1c(t)] (15)

Note that this research mainly contributes on the reliability model development for
hardware–software interactions. We do not develop new reliability model of hardware and software
subsystems in this study. Hence, as an example, Weibull distribution and G-O model are, respectively,
employed for modeling hardware reliability and software reliability to compare the entire system
reliability with and without considering hardware-software interactions.

3. Numerical Examples

The state transition diagram of hardware-software interaction failures is shown in Figure 1. We are
expecting the transitions from degradation states to execution abortion and hardware failures states
can be neglected by considering min {λi} � λ j, i = 1, 4, 6, 8, 9, j = 2, 3, 5, 7. Hence, we simplify the
problem by taking λ j = 0. The transition parameters shown in Figure 1 are unknown. In practice,
after collecting the testing/operation failure data, the parameter estimation methodologies, such as
the maximum likelihood estimation and least squares method, can be employed to estimate these
unknown parameters. However, we do not have the failure data from practice, since the proposed
transaction diagram includes many degradation and failure states, which cause the transition rates to
be very complicated to measure in the industry. It is vital to demonstrate the importance of considering
such interactions between hardware and software subsystems (software-induced hardware failures and
hardware-induced software failures) and the impacts on system reliability prediction as the changes of
transition parameters. By taking the numerical examples illustrated in references [1,22,27] as references,
we initially set up the transition parameters for the proposed Markov-based unified system reliability
model as: λ = 0.006, β = 1.09, a = 30, b = 0.001, x = 10, λ1 = 0.07, λ4 = 0.02, λ6 = 0.01, λ8 = 0.03,
λ9 = 0.04, µ1 = 0.05, µ2 = 0.06, p1 = 0.3, and p2 = 0.2, and then obtain the numerical values of
A1, A2, A3, c1, c2, and c3 stated in Qi(t), as described in Equation (10).

Given the initial parameter set, we are interested in the impacts on system reliability prediction
as the transition parameters change. Time t is set up as 100 in the numerical examples. The initial
parameter set is Θ0, as seen in Table 1. The model proposed by Teng et al. [22] was the basis of

Mathematics 2019, 7, 1049 8 of 14

the proposed Markov-based unified system reliability model in this study. Therefore, we first
presented the comparison of system reliability prediction results obtained from the proposed model
and Teng et al. [22], as seen in Figure 2. The proposed model is prone to have higher reliability
prediction in the early operation stage and have slightly lower reliability prediction in the late operation
stage, compared with the model proposed by Teng et al. [22]. Figure 3 illustrates the system reliability
prediction with and without considering hardware-software interactions. The system reliability
model, without considering hardware-software interactions, tends to have higher reliability prediction
compared with the proposed model considering hardware-software interactions.

Table 1 lists different parameter set, ΘSi−k, where si =
{
λ1,λ4,λ6,λ8, λ9, µ1, µ2, p1, p2

}
, k = {1, 2}.

Compared with the initial parameter set Θ0, each parameter set ΘSi−k represents the increase or
decrease of transition parameter si, while as the others are kept the same. For example, parameter sets
Θλ11 and Θλ12, respectively, represent the increase and decrease of degradation rate λ1, while other
transition parameters stay unchanged.

Table 1. Different transition parameter sets ΘSi−k.

Set λ1 λ4 λ6 λ8 λ9 µ1 µ2 p1 p2

Θ0 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2
Θλ11 0.7 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2
Θλ12 0.01 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2
Θλ41 0.07 0.1 0.01 0.03 0.04 0.05 0.06 0.3 0.2
Θλ42 0.07 0.01 0.01 0.03 0.04 0.05 0.06 0.3 0.2
Θλ61 0.07 0.02 0.1 0.03 0.04 0.05 0.06 0.3 0.2
Θλ62 0.07 0.02 0.001 0.03 0.04 0.05 0.06 0.3 0.2
Θλ81 0.07 0.02 0.01 0.3 0.04 0.05 0.06 0.3 0.2
Θλ82 0.07 0.02 0.01 0.01 0.04 0.05 0.06 0.3 0.2
Θλ91 0.07 0.02 0.01 0.03 0.4 0.05 0.06 0.3 0.2
Θλ92 0.07 0.02 0.01 0.03 0.01 0.05 0.06 0.3 0.2
Θµ11 0.07 0.02 0.01 0.03 0.04 0.5 0.06 0.3 0.2
Θµ12 0.07 0.02 0.01 0.03 0.04 0.005 0.06 0.3 0.2
Θµ21 0.07 0.02 0.01 0.03 0.04 0.05 0.6 0.3 0.2
Θµ22 0.07 0.02 0.01 0.03 0.04 0.05 0.006 0.3 0.2
Θp11 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.8 0.2
Θp12 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.03 0.2
Θp21 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.8
Θp22 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.05

Mathematics 2019, 7, x 8 of 14

8

the comparison of system reliability prediction results obtained from the proposed model and Teng
et al. [22], as seen in Figure 2. The proposed model is prone to have higher reliability prediction in
the early operation stage and have slightly lower reliability prediction in the late operation stage,
compared with the model proposed by Teng et al. [22]. Figure 3 illustrates the system reliability
prediction with and without considering hardware-software interactions. The system reliability
model, without considering hardware-software interactions, tends to have higher reliability
prediction compared with the proposed model considering hardware-software interactions.

Table 1 lists different parameter set, Θௌ೔ି௞ , where 𝑠௜ = {𝜆ଵ, 𝜆ସ, 𝜆଺, 𝜆଼, 𝜆ଽ, 𝜇ଵ, 𝜇ଶ, 𝑝ଵ, 𝑝ଶ}, 𝑘 = {1, 2}.
Compared with the initial parameter set Θ଴ , each parameter set Θௌ೔ି௞ represents the increase or
decrease of transition parameter 𝑠௜, while as the others are kept the same. For example, parameter
sets Θఒభଵ and Θఒభଶ, respectively, represent the increase and decrease of degradation rate 𝜆ଵ, while
other transition parameters stay unchanged.

Table 1. Different transition parameter sets Θௌ೔ି௞

Set 𝝀𝟏 𝝀𝟒 𝝀𝟔 𝝀𝟖 𝝀𝟗 𝝁𝟏 𝝁𝟐 𝒑𝟏 𝒑𝟐 Θ଴ 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2 Θఒభଵ 0.7 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2 Θఒభଶ 0.01 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.2 Θఒరଵ 0.07 0.1 0.01 0.03 0.04 0.05 0.06 0.3 0.2 Θఒరଶ 0.07 0.01 0.01 0.03 0.04 0.05 0.06 0.3 0.2 Θఒలଵ 0.07 0.02 0.1 0.03 0.04 0.05 0.06 0.3 0.2 Θఒలଶ 0.07 0.02 0.001 0.03 0.04 0.05 0.06 0.3 0.2 Θఒఴଵ 0.07 0.02 0.01 0.3 0.04 0.05 0.06 0.3 0.2 Θఒఴଶ 0.07 0.02 0.01 0.01 0.04 0.05 0.06 0.3 0.2 Θఒవଵ 0.07 0.02 0.01 0.03 0.4 0.05 0.06 0.3 0.2 Θఒవଶ 0.07 0.02 0.01 0.03 0.01 0.05 0.06 0.3 0.2 Θఓభଵ 0.07 0.02 0.01 0.03 0.04 0.5 0.06 0.3 0.2 Θఓభଶ 0.07 0.02 0.01 0.03 0.04 0.005 0.06 0.3 0.2 Θఓమଵ 0.07 0.02 0.01 0.03 0.04 0.05 0.6 0.3 0.2 Θఓమଶ 0.07 0.02 0.01 0.03 0.04 0.05 0.006 0.3 0.2 Θ௣భଵ 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.8 0.2 Θ௣భଶ 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.03 0.2 Θ௣మଵ 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.8 Θ௣మଶ 0.07 0.02 0.01 0.03 0.04 0.05 0.06 0.3 0.05

Figure 2. System reliability prediction by the proposed model and model developed in Teng et al.
[22].

Figure 2. System reliability prediction by the proposed model and model developed in Teng et al. [22].

Mathematics 2019, 7, 1049 9 of 14
Mathematics 2019, 7, x 9 of 14

9

Figure 3. System reliability prediction with and without considering hardware-software interaction.

We are interested in the system reliability comparison by applying the parameter set Θௌ೔ି௞ and
initial parameter set Θ଴. For instance, if hardware degradation rate 𝜆ଵ increases, the system reliability
may increase or decrease, as illustrated in Figure 4. If the failure rate 𝜆ସ increases, which means the
transition rate from the partially failed hardware (detected but not recovered by software) to the
software-induced hardware failures increases, the system reliability may increase or decrease, as
illustrated in Figure 5. If the failure rate 𝜆଺ increases, which means the transition rate from the
partially failed hardware (detected and recovered by software) to software-induced hardware
failures increases, the system reliability may increase or decrease, as illustrated in Figure 6. Figure 7
shows the system reliability may decrease as the failure rate 𝜆଼, the transition parameter from the
partially failed hardware (not detected) to software-induced hardware failures, increases. Figure 8
shows the system reliability may decrease as the failure rate 𝜆ଽ, the transition parameter from the
partially failed hardware (not detected) to hardware-induced software failures, increases. Figure 9
illustrates the system reliability may increase or decrease as the repair rate 𝜇ଵ , the transition
parameter from the partially failed hardware (detected but not recovered by software) to full working
state, increases. Figure 10 illustrates the system reliability may increase or decrease as the repair rate 𝜇ଶ, the transition parameter from the partially failed hardware (detected and recovered by software)
to the full working state, increases. As the probability (𝑝ଵ) of detecting hardware failures increases,
the system reliability may increase or decrease, as seen in Figure 11. Figure 12 shows the system
reliability may increase or decrease as the probability (𝑝ଶ) of fixing the partially failed hardware
through software increases.

Figure 3. System reliability prediction with and without considering hardware-software interaction.

We are interested in the system reliability comparison by applying the parameter set ΘSi−k and
initial parameter set Θ0. For instance, if hardware degradation rate λ1 increases, the system reliability
may increase or decrease, as illustrated in Figure 4. If the failure rate λ4 increases, which means
the transition rate from the partially failed hardware (detected but not recovered by software) to
the software-induced hardware failures increases, the system reliability may increase or decrease,
as illustrated in Figure 5. If the failure rate λ6 increases, which means the transition rate from the
partially failed hardware (detected and recovered by software) to software-induced hardware failures
increases, the system reliability may increase or decrease, as illustrated in Figure 6. Figure 7 shows
the system reliability may decrease as the failure rate λ8, the transition parameter from the partially
failed hardware (not detected) to software-induced hardware failures, increases. Figure 8 shows the
system reliability may decrease as the failure rate λ9, the transition parameter from the partially failed
hardware (not detected) to hardware-induced software failures, increases. Figure 9 illustrates the
system reliability may increase or decrease as the repair rate µ1, the transition parameter from the
partially failed hardware (detected but not recovered by software) to full working state, increases.
Figure 10 illustrates the system reliability may increase or decrease as the repair rate µ2, the transition
parameter from the partially failed hardware (detected and recovered by software) to the full working
state, increases. As the probability (p1) of detecting hardware failures increases, the system reliability
may increase or decrease, as seen in Figure 11. Figure 12 shows the system reliability may increase or
decrease as the probability (p2) of fixing the partially failed hardware through software increases.

Mathematics 2019, 7, x 9 of 14

9

Figure 3. System reliability prediction with and without considering hardware-software interaction.

We are interested in the system reliability comparison by applying the parameter set Θௌ೔ି௞ and
initial parameter set Θ଴. For instance, if hardware degradation rate 𝜆ଵ increases, the system reliability
may increase or decrease, as illustrated in Figure 4. If the failure rate 𝜆ସ increases, which means the
transition rate from the partially failed hardware (detected but not recovered by software) to the
software-induced hardware failures increases, the system reliability may increase or decrease, as
illustrated in Figure 5. If the failure rate 𝜆଺ increases, which means the transition rate from the
partially failed hardware (detected and recovered by software) to software-induced hardware
failures increases, the system reliability may increase or decrease, as illustrated in Figure 6. Figure 7
shows the system reliability may decrease as the failure rate 𝜆଼, the transition parameter from the
partially failed hardware (not detected) to software-induced hardware failures, increases. Figure 8
shows the system reliability may decrease as the failure rate 𝜆ଽ, the transition parameter from the
partially failed hardware (not detected) to hardware-induced software failures, increases. Figure 9
illustrates the system reliability may increase or decrease as the repair rate 𝜇ଵ , the transition
parameter from the partially failed hardware (detected but not recovered by software) to full working
state, increases. Figure 10 illustrates the system reliability may increase or decrease as the repair rate 𝜇ଶ, the transition parameter from the partially failed hardware (detected and recovered by software)
to the full working state, increases. As the probability (𝑝ଵ) of detecting hardware failures increases,
the system reliability may increase or decrease, as seen in Figure 11. Figure 12 shows the system
reliability may increase or decrease as the probability (𝑝ଶ) of fixing the partially failed hardware
through software increases.

Figure 4. System reliability comparison with the changes of degradation rate λ1.

Mathematics 2019, 7, 1049 10 of 14

Mathematics 2019, 7, x 10 of 14

10

Figure 4. System reliability comparison with the changes of degradation rate 𝜆ଵ.

.

Figure 5. System reliability comparison with the changes of failure rate 𝜆ସ.

Figure 6. System reliability comparison with the changes of failure rate 𝜆଺.

Figure 7. System reliability comparison with the changes of failure rate 𝜆଼.

Figure 5. System reliability comparison with the changes of failure rate λ4.

Mathematics 2019, 7, x 10 of 14

10

Figure 4. System reliability comparison with the changes of degradation rate 𝜆ଵ.

.

Figure 5. System reliability comparison with the changes of failure rate 𝜆ସ.

Figure 6. System reliability comparison with the changes of failure rate 𝜆଺.

Figure 7. System reliability comparison with the changes of failure rate 𝜆଼.

Figure 6. System reliability comparison with the changes of failure rate λ6.

Mathematics 2019, 7, x 10 of 14

10

Figure 4. System reliability comparison with the changes of degradation rate 𝜆ଵ.

.

Figure 5. System reliability comparison with the changes of failure rate 𝜆ସ.

Figure 6. System reliability comparison with the changes of failure rate 𝜆଺.

Figure 7. System reliability comparison with the changes of failure rate 𝜆଼. Figure 7. System reliability comparison with the changes of failure rate λ8.

Mathematics 2019, 7, 1049 11 of 14

Mathematics 2019, 7, x 11 of 14

11

Figure 8. System reliability comparison with the changes of failure rate 𝜆ଽ.

Figure 9. System reliability comparison with the changes of repair rate 𝜇ଵ.

Figure 10. System reliability comparison with the changes of repair rate 𝜇ଶ.

Figure 8. System reliability comparison with the changes of failure rate λ9.

Mathematics 2019, 7, x 11 of 14

11

Figure 8. System reliability comparison with the changes of failure rate 𝜆ଽ.

Figure 9. System reliability comparison with the changes of repair rate 𝜇ଵ.

Figure 10. System reliability comparison with the changes of repair rate 𝜇ଶ.

Figure 9. System reliability comparison with the changes of repair rate µ1.

Mathematics 2019, 7, x 11 of 14

11

Figure 8. System reliability comparison with the changes of failure rate 𝜆ଽ.

Figure 9. System reliability comparison with the changes of repair rate 𝜇ଵ.

Figure 10. System reliability comparison with the changes of repair rate 𝜇ଶ. Figure 10. System reliability comparison with the changes of repair rate µ2.

Mathematics 2019, 7, 1049 12 of 14

Mathematics 2019, 7, x 12 of 14

12

Figure 11. System reliability comparison with the changes of probability (𝑝ଵ) of detecting partial
failures.

Figure 12. System reliability comparison with the changes of probability (𝑝ଶ) of fixing partial failures
through software.

4. Conclusions

The interactions between hardware subsystems and software subsystems are often neglected in
most existing system reliability models. Even a few system reliability models have hardware-
software interaction failures; for instance, such interactions were interpreted as hardware-related
software failures. However, the impact of the software execution on the hardware platform is not
well addressed. Thus, we incorporated three types of system failures in this research: hardware
failures, software failures, and hardware-software interaction failures. The main contribution of our
research was that we further classified hardware-software interaction failures into two groups:
software-induced hardware failures and hardware-induced software failures. A Markov-based
unified system reliability model was proposed incorporating three main failure categories: hardware
failures, software failures, and hardware-software interaction failures (software-induced hardware
failures and hardware-induced software failures), which provided a novel and practical perspective
to define system failures and further improve reliability prediction accuracy. The dependence among
system failures can be further investigated.

Figure 11. System reliability comparison with the changes of probability (p1) of detecting partial failures.

Mathematics 2019, 7, x 12 of 14

12

Figure 11. System reliability comparison with the changes of probability (𝑝ଵ) of detecting partial
failures.

Figure 12. System reliability comparison with the changes of probability (𝑝ଶ) of fixing partial failures
through software.

4. Conclusions

The interactions between hardware subsystems and software subsystems are often neglected in
most existing system reliability models. Even a few system reliability models have hardware-
software interaction failures; for instance, such interactions were interpreted as hardware-related
software failures. However, the impact of the software execution on the hardware platform is not
well addressed. Thus, we incorporated three types of system failures in this research: hardware
failures, software failures, and hardware-software interaction failures. The main contribution of our
research was that we further classified hardware-software interaction failures into two groups:
software-induced hardware failures and hardware-induced software failures. A Markov-based
unified system reliability model was proposed incorporating three main failure categories: hardware
failures, software failures, and hardware-software interaction failures (software-induced hardware
failures and hardware-induced software failures), which provided a novel and practical perspective
to define system failures and further improve reliability prediction accuracy. The dependence among
system failures can be further investigated.

Figure 12. System reliability comparison with the changes of probability (p2) of fixing partial failures
through software.

4. Conclusions

The interactions between hardware subsystems and software subsystems are often neglected in
most existing system reliability models. Even a few system reliability models have hardware-software
interaction failures; for instance, such interactions were interpreted as hardware-related software
failures. However, the impact of the software execution on the hardware platform is not well addressed.
Thus, we incorporated three types of system failures in this research: hardware failures, software
failures, and hardware-software interaction failures. The main contribution of our research was
that we further classified hardware-software interaction failures into two groups: software-induced
hardware failures and hardware-induced software failures. A Markov-based unified system reliability
model was proposed incorporating three main failure categories: hardware failures, software failures,
and hardware-software interaction failures (software-induced hardware failures and hardware-induced
software failures), which provided a novel and practical perspective to define system failures and
further improve reliability prediction accuracy. The dependence among system failures can be
further investigated.

Author Contributions: Conceptualization, M.Z. and H.P.; methodology, M.Z. and H.P.; software, M.Z.; validation,
M.Z. and H.P.; formal analysis, M.Z.; investigation, M.Z.; data curation, M.Z.; writing—original draft preparation,
M.Z.; writing—review and editing, M.Z. and H.P.

Mathematics 2019, 7, 1049 13 of 14

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jia, G.; Gardoni, P. State-Dependent stochastic models: A general stochastic framework for modeling
deteriorating engineering systems considering multiple deterioration process and their interactions. Struct.
Saf. 2018, 72, 99–110. [CrossRef]

2. Yang, Q.; Zhang, N.; Hong, Y. Reliability analysis of repairable systems with dependent component failures
under partially perfect repair. IEEE Trans. Reliab. 2013, 62, 490–498. [CrossRef]

3. Eryilmaz, S.; Tekin, M. Reliability evaluation of a system under a mixed shock model. J. Comput. Appl. Math.
2019, 352, 255–261. [CrossRef]

4. Gao, X.; Wang, R.; Gao, J.; Gao, Z.; Deng, W. A novel framework for the reliability modelling of repairable
multistate complex mechanical systems considering propagation relationships. Qual. Reliab. Eng. Int. 2019,
35, 84–98. [CrossRef]

5. Li, G.; Zhu, H.; He, J.; Wu, K.; Jia, Y. Application of power law model in reliability evaluation of machine
tools by considering working condition difference. Qual. Reliab. Eng. Int. 2019, 35, 136–145. [CrossRef]

6. Rodríguez-Borbón, M.I.; Rodríguez-Medina, M.A.; Rodríguez-Picón, L.A.; Alvarado-Iniesta, A.; Sha, N.
Reliability estimation for accelerated life tests based on a Cox proportional hazard model with error effect.
Qual. Reliab. Eng. Int. 2017, 33, 1407–1416. [CrossRef]

7. Yi, X.J.; Shi, J.; Dhillon, B.S.; Hou, P.; Lai, Y.H. A new reliability analysis method for repairable systems
with multifunction modes based on goal-oriented methodology. Qual. Reliab. Eng. Int. 2017, 33, 2215–2237.
[CrossRef]

8. Park, J.; Baik, J. Improving software reliability prediction through multi-criteria based dynamic model
selection and combination. J. Syst. Softw. 2015, 101, 236–244. [CrossRef]

9. Lung, C.H.; Zhang, X.; Rajeswaran, P. Improving software performance and reliability in a distributed
and concurrent environment with an architecture-based self-adaptive framework. J. Syst. Softw. 2016, 121,
311–328. [CrossRef]

10. Wang, S.; Wu, Y.; Lu, M.; Li, H. Discrete nonhomogeneous Poisson process software reliability growth models
based on test coverage. Qual. Reliab. Eng. Int. 2013, 29, 103–112. [CrossRef]

11. Zhu, M.; Pham, H. A two-phase software reliability modeling involving with software fault dependency and
imperfect fault removal. Comput. Lang. Syst. Struct. 2018, 53, 27–42. [CrossRef]

12. Zhu, M.; Pham, H. A software reliability model incorporating martingale process with gamma-distributed
environmental factors. Ann. Oper. Res. 2018, 1–22. [CrossRef]

13. Iyer, R.K.; Velardi, P. Hardware-Related software errors: Measurement and analysis. IEEE Trans. Softw. Eng.
1985, 2, 223–231. [CrossRef]

14. Why Email Fails: Message One Survey of Email Outages. Available online: http://www.disaster-resource.
com/articles/ems_whitepaper_why_emls_fail.pdf (accessed on 5 August 2019).

15. Huang, B.; Rodriguez, M.; Li, M.; Bernstein, J.B.; Smidts, C.S. Hardware error likelihood induced by the
operation of software. IEEE Trans. Reliab. 2011, 60, 622–639. [CrossRef]

16. Laprie, J.C. Dependable computing and fault-tolerance: Concepts and terminology. In Proceedings of the
IEEE FTCS-15, Ann Arbor, MI, USA, 19–21 June 1985.

17. Shapiro, F.R. Etymology of the computer bug: History and folklore. Am. Speech. 1987, 62, 376–378. [CrossRef]
18. Huang, B.; Rodriguez, M.; Bernstein, J.; Smidts, C. Software reliability estimation of microprocessor

transient faults. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
Sacramento, CA, USA, 9–12 July 2006.

19. Huang, B. Study of the Impact of Hardware Failures on Software Reliability; University of Maryland: College-Park,
MD, USA, 2006.

20. Goswami, K.K.; Iyer, R.K. Simulation of software behavior under hardware faults. In Proceedings of the
23rd International Symposium on Fault-Tolerant Computing, Toulouse, France, 22–24 June 1993.

21. Huang, B.; Li, X.; Li, M.; Bernstein, J.; Smidts, C. Study of the impact of hardware fault on software reliability.
In Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05),
Chicago, IL, USA, 8–11 November 2005.

http://dx.doi.org/10.1016/j.strusafe.2018.01.001
http://dx.doi.org/10.1109/TR.2013.2259194
http://dx.doi.org/10.1016/j.cam.2018.12.011
http://dx.doi.org/10.1002/qre.2382
http://dx.doi.org/10.1002/qre.2386
http://dx.doi.org/10.1002/qre.2113
http://dx.doi.org/10.1002/qre.2180
http://dx.doi.org/10.1016/j.jss.2014.12.029
http://dx.doi.org/10.1016/j.jss.2016.06.102
http://dx.doi.org/10.1002/qre.1301
http://dx.doi.org/10.1016/j.cl.2017.12.002
http://dx.doi.org/10.1007/s10479-018-2951-7
http://dx.doi.org/10.1109/TSE.1985.232198
http://www.disaster-resource.com/articles/ems_whitepaper_why_emls_fail.pdf
http://www.disaster-resource.com/articles/ems_whitepaper_why_emls_fail.pdf
http://dx.doi.org/10.1109/TR.2011.2161699
http://dx.doi.org/10.2307/455415

Mathematics 2019, 7, 1049 14 of 14

22. Teng, X.; Pham, H.; Jeske, D.R. Reliability modeling of hardware and software interactions, and its applications.
IEEE Trans. Reliab. 2006, 55, 571–577. [CrossRef]

23. Hecht, H.; Hecht, M. Software reliability in the system context. IEEE Trans. Softw. Eng. 1986, 1, 51–58.
[CrossRef]

24. Friedman, M.A.; Tran, P. Reliability techniques for combined hardware/software systems. In Proceedings of
the Annual Reliability and Maintainability Symposium, Las Vegas, NV, USA, 21–23 January 1992.

25. Welke, S.R.; Johnson, B.W.; Aylor, J.H. Reliability modeling of hardware/software systems. IEEE Trans. Reliab.
1995, 44, 413–418. [CrossRef]

26. Park, J.; Kim, H.J.; Shin, J.H.; Baik, J. An embedded software reliability model with consideration of hardware
related software failures. In Proceedings of the 2012 IEEE Sixth International Conference on Software Security
and Reliability, Gaithersburg, MD, USA, 20–22 June 2012.

27. Zeng, Y.; Xing, L.; Zhang, Q.; Jia, X. An analytical method for reliability analysis of hardware-software
co-design system. Qual. Reliab. Eng. Int. 2019, 35, 165–178. [CrossRef]

28. Bar-Yam, Y. Dynamics of Complex Systems; Addison-Wesley: Boston, MA, USA, 1997.
29. Yang, G. Life Cycle Reliability Engineering; Wiley: Hoboken, NJ, USA, 2007.
30. Elsayed, E.A. Reliability Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2012.
31. Song, S.; Coit, D.W.; Feng, Q.; Peng, H. Reliability analysis for multi-component systems subject to multiple

dependent competing failure processes. IEEE Trans. Reliab. 2014, 63, 331–345. [CrossRef]
32. Pham, H. System Software Reliability; Springer: Berlin, Germany, 2007.
33. Ross, S.M. Introduction to Probability Models; Academic Press: Cambridge, MA, USA, 2014.
34. Kulkarni, V.G. Modeling and Analysis of Stochastic Systems; Chapman and Hall/CRC: Boca-Raton, FL, USA, 2016.
35. Goel, A.L.; Okumoto, K. Time-Dependent error-detection rate model for software reliability and other

performance measures. IEEE Trans. Reliab. 1979, 28, 206–211. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TR.2006.884589
http://dx.doi.org/10.1109/TSE.1986.6312919
http://dx.doi.org/10.1109/24.406575
http://dx.doi.org/10.1002/qre.2389
http://dx.doi.org/10.1109/TR.2014.2299693
http://dx.doi.org/10.1109/TR.1979.5220566
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Markov-Based Unified System Reliability Model
	System Failures Classification
	Model Formulation

	Numerical Examples
	Conclusions
	References

