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Abstract: Contraflow technique has gained a considerable focus in evacuation planning research
over the past several years. In this work, we design efficient algorithms to solve the maximum,
lex-maximum, earliest arrival, and quickest dynamic flow problems having constant attributes and
their generalizations with partial contraflow reconfiguration in the context of evacuation planning.
The partial static contraflow problems, that are foundations to the dynamic flows, are also studied.
Moreover, the contraflow model with inflow-dependent transit time on arcs is introduced. A strongly
polynomial time algorithm to compute approximate solution of the quickest partial contraflow
problem on two terminal networks is presented, which is substantiated by numerical computations
considering Kathmandu road network as an evacuation network. Our results show that the quickest
time to evacuate a flow of value 100,000 units is reduced by more than 42% using the partial contraflow
technique, and the difference is more with the increase in the flow value. Moreover, the technique
keeps the record of the portions of the road network not used by the evacuees.

Keywords: network optimization; dynamic flow; evacuation planning; contraflow configuration;
partial lane reversals, algorithms and complexity; logistic supports

1. Introduction

Because of the significant occurrences of many predictable and unpredictable large-scale disasters
worldwide, regardless of various discoveries and urbanization, an efficient, implementable, and reliable
evacuation planning is indispensable for saving life and supporting humanitarian relief with optimal
use and equitable distribution of available resources. Among prevalent disasters, e.g., earthquakes,
volcanic eruptions, landslides, floods, tsunamis, hurricanes, typhoons, chemical explosions, and
terrorist attacks, the most remarkable losses are noted in earthquakes in Nepal (April 2015), Japan
(March 2011), Haiti (January 2010), Chichi (Taiwan, September 1999), Bam (Iran, December 2003),
Kashmir (Pakistan, October 2005), and Chile (May 1960); various tsunamis in Japan and the Indian
Ocean; the major hurricanes Katrina, Rita, and Sandy in USA; and the September 11 attacks in USA.
The threat of disasters always persists, e.g., there is a prediction of earthquakes of more than 8.4 in
Richter scale around the capital of Nepal in the near future (Pyakurel et al. [1]). Therefore, there is
always a need for an effective emergency plan to cope with disasters worldwide, including Nepal.

Evacuating people from disastrous areas to safe places is one of the important aspect of emergency
planning. Among the diversified fields (e.g., traffic simulation, fluid dynamics, control theory,
variational inequalities, and network flow) of mathematical research in evacuation planning, network
flow methodologies are the most efficient [2]. An evacuation optimizer looks after a plan on evacuation
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network for an efficient transfer of maximum evacuees from the dangerous (sources) to safer (sinks)
locations as quickly as possible [3,4]. An optimal shelter location and support of humanitarian logistics
within these emergency scenarios are equally demanding but challenging issues. The aim of this paper
is to look at the transportation planning based on strong mathematical modeling with applications,
not only in emergency evacuations, but also in the heavy traffic hours of a city. A comprehensive
explanation on diversified theories and applications can be found in the survey papers of Hamacher
and Tjandra [4], Cova and Johnson [5], Altay and Green III [6], Pascoal et al. [7], Moriarty et al. [8],
Chen and Miller-Hooks [9], Yusoff et al. [10], Dhamala et al. [11], Kotsireas et al. [12], and the literature
therein. The theoretical background needed in this paper, in particular, is given in Section 2 and inside
other sections, wherever necessary.

The evacuation network, which corresponds to a region (or a building, shopping mall, etc.), is
represented by a dynamic network in which nodes represent the street intersections (or rooms), and
arcs represent the connections (streets, doors, etc.) between the nodes. The hazardous locations of
evacuees are termed as the source nodes and the safe locations where the evacuees are to be transferred
are termed as sink nodes. The nodes and arcs have capacities. Further, each arc has a transit time
or a cost associated with it. The evacuees or the vehicles carrying evacuees traveling through the
network are modeled as a flow. An evacuation plan largely depends on the number of sources, number
of sinks, and the parameters associated with nodes and arcs, which may be dependent on time or
the amount of the flow, along with other constraints. The time variable which is continuous may be
discretized. The discrete time steps approximate the computationally heavy continuous models at the
cost of solution approximations. Also the constant time probably approximated by free flow speeds
or certain queuing rules and constant capacity settings mostly realize the evacuation problems to be
linear, at least more tractable, in contrast to the more general and realistic flow-dependent real-world
evacuation scenarios.

Following the pioneers of Ford and Fulkerson [13], with an objective to maximize the flow from a
source to a sink at the end of given discrete time period, Gale [14] shows an existence of the maximum
flow from the very beginning in discrete time setting. Two pseudo-polynomial time algorithms are
presented by Wilkinson [15] and Minieka [16] for the latter problem with constant arc transit times.
An upward scaling approximation algorithm of Hoppe [17] polynomially solves this problem within a
factor of 1 + ε, for every ε > 0. For the special series-parallel networks, Ruzika et al. [18] solve this
problem, applying a minimum cost circulation flow algorithm by exploiting a property that every
cycle of its residual network is of non-negative length. Minieka [16], and Hoppe and Tardos [19]
maximize the flow in priority ordering, which is important in some scenarios of evacuation planning.
Burkard et al. [20], and Hoppe and Tardos [19] present efficient algorithms for shifting the already
fixed evacuees in minimum time. However, the general multiterminal evacuation problems, with
variable number of evacuees at sources, are computationally hard even with constant attributes on
arcs. Likewise, the earliest arrival transshipment solutions that fulfill the specific demands at sinks
by the specific supplies from sources maximizing the flow at each point of time are also not solved
in polynomial time yet. The multisource single-sink (cf. Baumann and Skutella [21]) and zero transit
times, in either one source or one sink (cf. Fleischer [22]) earliest arrival transshipment problems, have
polynomial time solutions. Gross et al. [23] propose efficient algorithms to calculate the approximate
earliest arrival flows on arbitrary networks. Several works have been done with continuous time
settings as well (see, Pyakurel and Dhamala [24] for the references). Several polynomial time algorithms
by natural transformations are obtained by Fleischer and Tardos [25].

In urban road networks, the vehicles in a particular road segment are allowed to move in a
specified direction only. In case of disasters, the evacuation planners discourage people to move
towards risk areas from safer places. As a result, the road segments leading towards the risk areas
become unoccupied and those towards safer places become overoccupied. If the direction of the traffic
flow in unoccupied segments is reversed, then the vehicles moving towards the safe areas can use those
segments as well. Reversing the traffic flow in a particular road segment is also known as lane reversal.
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The optimal lane reversal strategy makes the traffic systematic and smooth by removing the traffic jams
caused, not only in different natural and human-created disasters of large scale, but also in busy office
hours, special events and street demonstrations. The contraflow reconfiguration, by means of various
operations research models (cf. Section 2), heuristics, optimization techniques and simulation, reverses
the usual direction of empty lanes towards sinks satisfying the given constraints that increase the
value of the flow, and decrease the average time of evacuation. However, an efficient and universally
acceptable solution approach that meets the macroscopic and microscopic behavioral characteristics of
the evacuees (e.g., threat conditions, community context, and preparedness) is still lacking (see [4,26]).
Because of the large size of the problem (a large number of variables and parameters involved),
designing algorithms to calculate optimal solution within a desired time is challenging. Heuristics and
approximation methods provide solutions within an acceptable time but the optimality of the solution
is not guaranteed. A trade-off between computational costs and solution quality should always be
desired when designing solution algorithms.

As the computational costs of the exact mathematical solutions for general contraflow techniques
are quite high, a series of heuristic procedures are approached in literature that are computationally
manageable. Kim et al. [27] present two greedy and bottleneck heuristics for possible numerical
approximate solutions to the quickest contraflow problem, and they show that at least 40% evacuation
time can be reduced by reverting at most 30% arcs in their case study. They model the problem of
lane reversals mathematically as an integer programming problem by means of flows on network
and also prove that it is NP-hard. All contraflow evacuation problems are at least harder than the
corresponding problems without contraflow. We recommend Dhamala et al. [11] and the references
therein for different approaches of contraflow heuristics.

Though comparatively less, recent interest also includes analytical techniques, after
Rebennack et al. [28] solved the two-terminal maximum contraflow and quickest contraflow
problems optimally in polynomial times. The earliest arrival and the maximum contraflow problems
are solved with the temporally repeated solutions in Dhamala and Pyakurel [29]. Its solution with
continuous time is obtained in [30]. The authors of [31] solve the earliest arrival contraflow on
two-terminal network in pseudo-polynomial time. They also introduce the lex-maximum dynamic
contraflow problem in which flow is maximized in given priority ordering and solved with polynomial
time complexity. These problems are also solved in continuous time setting by using natural
transformation (cf. Section 2.2) of flow in discrete times to continuous time intervals in [24,30]. With
the given supplies at the sources and demands of the sink, the earliest arrival transshipment contraflow
problem is modeled in discrete time [32] and solved on multisource network with polynomial
algorithm. The problem with zero transit time on arcs is also solved on multi-sink network with a
polynomial time complexity. For the multiterminal network, they present approximation algorithms
to solve the earliest arrival transshipment contraflow problem. The discrete solutions are extended
into continuous time in [1,24]. The problems with similar objectives, in what is known as an abstract
network, are solved in [33].

In the present work, we propose algorithms to reverse the road segments up to the necessary
capacity only, to record segments with unused capacities so that they can be used for other purposes
of facilitating evacuation. Our proposed algorithms also summarize the earlier results on contraflow
in compact form. To the best of our knowledge, this is the first attempt to address the issues on
different partial contraflow problems with constant transit times and inflow-dependent transit times
associated to the arcs. These node–arc partial contraflow models contribute in saving the unnecessary
arc reversals improving the complete contraflow approaches.

The organization of this paper is as follows. Section 2 presents the basic terminology necessary
in the paper and different flow models. All the previously solved dynamic contraflow problems
with constant transit time are extended in the partial contraflow configuration and solved with
efficient algorithms in Section 4, after presenting the fundamental static partial contraflow solutions
in Section 3. Section 5 introduces the partial contraflow approach to solve the quickest flow problem
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with inflow-dependent transit times presenting efficient algorithms. Section 6 presents numerical
computations related to the quickest partial contraflow, with inflow-dependent transit times and taking
a case of the Kathmandu road network. The paper is concluded in Section 7.

2. Basic Terminology

An evacuation network is represented by N = (V, A, b, τ, S, D, T), where V is the set of n nodes,
A ⊆ V ×V is the set of m arcs with a set of source nodes S and that of sink nodes D. For each v ∈ V,
we define Av = {e : e = (v, u) ∈ A}, the set of arcs outgoing from v, and Bv = {e : e = (u, v) ∈ A}, the
set of arcs incoming to v. The network is assumed to be without parallel arcs between the nodes as they
can be combined to a single arc with added capacity. It is connected with m arcs, so that n− 1 ≤ m,
and therefore n + m = O(m). The nodes may be equipped with the initial occupancy o : V → R+.
The predefined parameter T denotes a permissible time window within which the whole evacuation
process has to be completed. It may be discretized into discrete time steps T = {0, 1, . . . , T} or can be
considered a continuous one as T = [0, T].

On arcs, the upper capacity (bound) function b : A× T → R+ limits the flow rate passing along
the arcs for each point in time. The transit time function τ : A× T → R+ measures the time the flow
units take to travel along the arcs. We frame this work with constant and inflow-dependent transit
times on arcs. Smith and Cruz [34] give various approaches of travel time estimation on arterial links,
free and high ways. With inflow-dependent transit times, the transit time τe(xe(θ)) is a function of
inflow rate xe(θ) on the arc e at given time point θ, so that at a time flow units enter an arc with the
uniform speed and remain with the uniform speed traveling through this arc.

The flow rate function is defined by x : A× T → R+, where xe(θ) denotes the flow rate on e at
time θ. It may be taken as an inflow, outflow, and intermediate flow rate that measure the flow at entry,
exit, and intermediate points on an arc, respectively. For θ ∈ {0, 1, . . . , T} and constant function τ, the
amount of flow sent at time θ into e arrives to its end at time θ + τe. Whereas, for continuous time
θ ∈ [0, T] and constant function τ, the amount of flow per time unit enters at this rate e at time θ and
proceed continuously.

One may introduce an additional parameter λe ∈ R+ on arc e, e.g., a gain factor, to model a
generalized dynamic flow when only λe units of flow leave from w at time θ + τe, by entering a unit
of flow on e = (v, w) at time θ. If the flow is not gained, practically, along any arc, then λe ≤ 1
holds for each arc e ∈ A, and we call the network as a lossy network [35], which is denoted by
N = (V, A, b, τ, λ, S, D, T).

2.1. Flow Models

For a source node, s, and a sink node, d, a static s-d flow with value val(y) is a function
y : → R+ satisfying

val(y) = ∑
e∈Bd

ye = ∑
e∈As

ye (1)

∑
e∈Bv

ye − ∑
e∈Av

ye = 0, ∀ v ∈ V\{s, d} (2)

be ≥ ye ≥ 0, ∀ e ∈ A (3)

The constraints in (2) are flow-conservation constraints and the constraints in (3) are capacity
constraints. The maximum static flow problem seeks to maximize the objective (1), and we denote the
value of the maximum static flow by valmax(y). If the flow conservation constraints (2) are satisfied
for each v ∈ V, then corresponding flow y is also known as a circulation. If we add an arc (d, s) with
capacity val(y) and set y(d, s) = val(y), then the value of such a flow is zero, and the resulting flow
is a circulation. Given a fixed flow value val(y) and the cost ce per unit of flow for each e ∈ A, the
minimum cost static flow problem seeks to minimize the total cost ∑e∈A ceye of shifting val(y) from s
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to d. Adding an arc (d, s) with capacity val(y) and cost 0, the minimum cost static flow problem can be
turned into a minimum cost circulation problem.

Let us assume that the arc transit times and capacities are constant over the time. With an amount
of inflow xe(θ) on arc e at discrete time θ = 0, 1, . . . , T that may change over the planning horizon T,
the generalized dynamic flow x : A× T → R+ for given time T satisfies constraints (4–6).

T

∑
σ=τe

∑
e∈Bv

λexe(σ− τe) =
T

∑
σ=0

∑
e∈Av

xe(σ), ∀ v 6∈ {s, d} (4)

θ

∑
σ=τe

∑
e∈Bv

λexe(σ− τe) ≥
θ

∑
σ=0

∑
e∈Av

xe(σ), ∀ v 6∈ {s, d}, θ ∈ T (5)

be(θ) ≥ λexe(θ) ≥ 0, ∀ e ∈ A, θ ∈ T (6)

The generalized earliest arrival flow problem is to find a generalized dynamic flow of value
valmax(xe, θ) for each time unit θ ∈ T defined by objective function (7). It is defined as a generalized
maximum dynamic flow problem if the maximization is considered for θ = T only:

val(x, θ) = ∑
e∈Bd

θ

∑
σ=τe

λexe(σ− τe), θ ∈ T (7)

Note that, besides the sink, no flow units remain in the dynamic network after time T. It is
ensured by assuming that xe(θ) = 0 for all θ ≥ T − τe.

For the following models we assume that gain factor λ = 1. Then, the generalized dynamic flow
reduces to the dynamic flow and the generalized earliest arrival flow reduces to the earliest arrival
flow with objective function (8).

val(x, θ) =
θ

∑
σ=0

∑
e∈As

xe(σ) =
θ

∑
σ=τe

∑
e∈Bd

xe(σ− τe) (8)

Given a time horizon, T, and and a set of terminals with a given priority order, the lexicographic
maximum (lex-maximum) dynamic flow problem seeks to identify a feasible dynamic flow that
maximizes the amount leaving (entering) a terminal in the given order. For a given value Q0 (number
of flow units representing evacuees), the quickest flow problem minimizes T = T(Q0) such that the
value of the dynamic flow not less than Q0, satisfying the constraints (4)–(6) with equality in (5) and
λ = 1.

Let N = (V, A, b, τ, S, D, µ(s), µ(d)) be a multiterminal network with source-supply and
sink-demand vectors µ(s) and µ(d), respectively, such that µ(S ∪ D) = ∑v∈S∪D µ(v) = 0.
The multiterminal earliest arrival flow problem seeks to find the dynamic flow, so that the total
supply µ(S) = ∑s∈S µ(s) is sent from S to meet the total demand µ(D) = ∑d∈D µ(d) in D with
maximum value at each θ ≥ 0. If all demands are to be fulfilled with supplies by shifting them to
the sinks within given time T, then the problem is known as a transshipment problem. The earliest
arrival transshipment problem maximizes val(x, θ) in objective function (9) satisfying multiterminal
constraints (4)–(6) for all time points θ ∈ {0, 1, . . . , T} with λ = 1.

val(x, θ) =
θ

∑
σ=0

∑
e∈As :s∈S

xe(σ) =
θ

∑
σ=τe

∑
e∈Bd :d∈D

xe(σ− τe) (9)

If the transshipment from S to D is done in the minimum time min T = T(µ(S ∪ D)), then the
problem is called quickest transshipment problem.
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Let e′ = (w, v) be the reverse of an arc e = (v, w). The residual network N (y) for a static
flow y is given by (V, A(y)), where A(y) = AF(y) ∪ AB(y) with AF(y) = {e ∈ A : ye < be} and
AB(y) = {e′ ∈ A : ye > 0} with arc length τe for e ∈ AF(y) and −τe for e′ ∈ AB(y). The residual
capacity b(y) : A(y)→ R+ is defined as be(y) = be − ye for e ∈ AF(y) and be(y) = ye′ for e ∈ AB(y).

Given a multiterminal S-D network, we construct an extended network by adding two extra
nodes: s∗ (called super-source) and d∗(called super-sink). For each s ∈ S, d ∈ D, we construct arcs
(s∗, s), (d, d∗) with zero transit time and problem-dependent capacities.

2.2. Natural Transformation

With the continuous time settings set as T = [0, T], all of the above models described in the above
subsection can be remodeled by replacing the summation over time with respective integrals. The
amount of flow entry, xe, on the arcs considered above in discrete models naturally transfer to the
entry flow rates in this continuous approach.

Fleischer and Tardos [25] connect the continuous and discrete flow models by the following
natural transformation, as defined in (10), that deals with the same computational complexity to both.

xc
e(ψ) = xe(θ), for all θ and ψ with θ ≤ ψ < θ + 1 (10)

where xe(θ) is the amount of discrete dynamic flow that enters arc e at time θ = 0, 1, . . . , T with
constant capacities on the arcs. For static flow ye on arc e, the amount of discrete dynamic flow with
transit time τe on arc e is

xe(θ) =
τ(e)−1

∑
σ=0

ye(θ − σ), for all θ = 0, 1, . . . , T − 1 (11)

Notice that the flow entering an arc e = (v, w) at time θ − τe arrives at w at time θ in discrete time,
but at time [θ + 1) in continuous time. The flow xc is feasible and will be same for both settings at any
interval [θ, θ + k), for θ = 0, 1, . . . , T, k ∈ N.

With standard chain decomposition, the static flow y is decomposed into a set of chain flows
Γ = {γ1, . . . , γr} with r ≤ m that satisfies y = ∑r

k=1 γk. Each chain in Γ starts at a source node and
ends at a sink node using arcs in the same direction as y does. The travel time on each chain γk is such
that τ(γk) ≤ T. The feasible dynamic flow can be obtained by summing the dynamic flows induced
by each chain flow.

A nonstandard chain decomposition of feasible y, e.g., Γ = {γ1, . . . , γr′}, allows for an arc in
the opposite direction also for the flow. If e = (v, w) has transit time τe, then for its reverse arc
e′ = (w, v), τe′ = −τe. A unit of flow starting from w at time θ + τe and reaching v at time θ cancels the
unit of flow starting from v at time θ and reaching w at time θ + τe, and thus it is equivalent to sending
a negative unit of flow from v at time θ to w at time θ + τe.

Using the concept of natural transformation discussed above, Fleischer and Tardos [25] solved
the continuous versions of maximum flow, universal dynamic flow, lexicographically maximum flow,
quickest flow, and dynamic transshipment problems by solving their discrete counter parts with
time-invariant attributes. The computational complexities for both approaches remain the same. The
generalized dynamic cut capacity is defined to show the equivalent maximum flow solutions.

2.3. Models for Arc Reversals

Let N = (V, A, b, τ, S, D, T) be an evacuation network. For e = (v, w) ∈ A, we denote its reverse
arc (w, v) by e′. To solve a network flow problem with arc reversals, a common approach is to solve the
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corresponding problem in, what is known as, an auxiliary network. We denote the auxiliary network
of N by N = (V, E, b, τ, S, D, T), in which

be = be + be′ , and τe =

{
τe if e ∈ A
τe′ otherwise

and an edge e ∈ E in auxiliary N if e ∈ A or e′ ∈ A. While working with the auxiliary network
for reconfiguration, one is allowed to redirect the edge in any direction with the modified increased
capacity and same transit time in either direction. The remaining graph topology and data structures
in reconfigured network are unaltered. By discarding the time factor for flow passing through the
network, a static contraflow configuration will be defined analogously.

The core idea behind contraflow reconfiguration technique is to increase outbound flow with
reduced time on the evacuation network. Numerous dynamic contraflow heuristics have been
presented and implemented during the past few years. However, recently many analytical approaches
have been investigated, and polynomial time algorithms are also presented in a few cases, though the
general multiterminal problem is still NP-hard because of a conflict with reverting intermediate arcs.
We recommend a complete survey [11] for details.

Example 1. Let us consider a single-source single-sink evacuation network as shown in Figure 1(i), where s
is the source node and d is the sink node. The arcs, for example, (x, y) and (y, x), represent the two-way road
segments between nodes x and y. Each arc contains capacity and transit time (cost) associated to it. For example,
arc (s, w) has capacity 2 and transit time 3, that means, assuming a time unit of 5 min and a flow unit of 10
cars, a maximum of 20 cars can reach w from s in 15 min. The auxiliary network for reconfiguration is as shown
in Figure 1(ii), in which the capacity of each edge ē is obtained by adding the capacities of e, e′ and the transit
time τe = τe = τe′ .

s y

w

x d

z

2, 1

1, 1

3, 2

3, 2

3, 1

2, 1

2, 3

3, 3
1, 0 2, 0

1, 2 2, 2

3, 1

2, 1

2, 1

1, 1

2, 1

2, 1

1, 11, 1

s y

w

x d

z

5, 3

6, 2

3, 1 3, 2

3, 0 3, 1

4, 1

5, 1

5, 1

2, 1

(i) (ii)(capacity, transit time)

Figure 1. (i) Evacuation network N . (ii) Auxiliary network N of N .

3. Static Partial Contraflow

In this section, we introduce the maximum static partial contraflow problem (MSPCFP)
(cf. Problem 1) and the lex-maximum static partial contraflow problem (LMSPCFP) (cf. Problem 2).
Thereafter, polynomial time algorithms are presented to solve these problems. These algorithms
work as a foundation of solving the dynamic versions of the corresponding problems in the
subsequent sections.
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3.1. Maximum Static Partial Contraflow

Problem 1. Given a static network N = (V, A, b, τ, S, D), the maximum static partial contraflow problem
(MSPCFP) is to maximize a static S-D flow, saving the unused arc capacity, if the direction of arcs can be
reversed partially.

Algorithm 1 is designed for a single-source single-sink static network.

Algorithm 1: The maximum static partial contraflow algorithm (MSPCFA).

Input: A static network N = (V, A, b, s, d)
Output: A maximum static partial contraflow (MSPCF) on N with saved capacities of arcs

1. Construct the auxiliary network N = (V, E, b, s, d).
2. Run the maximum static flow algorithm in N with capacity b, that is, b̄e for each ē ∈ E to

compute the maximum static flow y.
3. Decompose the flow into paths and cycles and remove the flow in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Step 2 of Algorithm 1 relies on any of the best polynomial time maximum flow algorithms
that have a long history but are still under study. Their optimal solutions are guaranteed by
the fundamental max-flow min-cut theorem, which states that the maximum flow value equals
to the minimum cut capacity. Following the flow augmenting path pseudo-polynomial, that is,
O(nm log bmax) time, algorithm of Ford and Fulkerson [13], which ensures a maximum static flow
y if and only if the corresponding residual network does not contain an augmenting path, there
exist several advancements on its improvements. By scaling the capacities, the running time can
be improved to O(m2 log bmax), where bmax represents the integer valued maximum arc capacity.
Furthermore, the shortest augmenting path algorithm that uses the unit path length function, the
blocking flow algorithm that augments along a maximal set of shortest paths with respect to a blocking
flow, and the push-relabel algorithm that functions with nonconservation of flows, except at the source,
and sink nodes turn into strongly polynomial time algorithms with complexity, O(nm2), O(n2m) and
O(nm log(n2/m)), respectively.

The flow decomposition of Step 3 into paths and cycle removal is less costly with O(nm) running
time. In a few special case, like unit capacities, some of these algorithms can be implemented with
nearly linear time bounds. Using advanced data structures and dynamic trees, though much theoretical,
even more strongly polynomial time algorithms are developed, however, not much implementable in
usual practice (see Goldberg and Tarjan [36] for a brief review). For example, with the dynamic-tree
data structure, the binary blocking flow algorithm requires O(min(n2/3,

√
m)m log(n2/m) log bmax)

time within a factor log(n2/m) log bmax of the best algorithm for the unit arc capacity problem without
parallel arcs.

In Step 4 of Algorithm 1, reversal of traffic flow is allowed only in the necessary amount on
the road segment, i.e, partial reversal of the arcs in evacuation network. Unlike in the previous
investigations, the remaining capacity of the segment is not reversed, which can be used for other
purposes, for example, facility location–allocation and emergency logistic supports.

Based on maximum static contraflow solution with complete contraflow configuration presented
in [28], Step 2 of Algorithm 1, the maximum flow algorithm, computes the maximum static flow
optimally on auxiliary network N and Step 5 comes as a direct consequence of it. This leads to:

Lemma 1. Algorithm 1 computes the maximum static flow with partial arc reversal on N by saving capacities
r(e) of arc e ∈ A correctly.
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Theorem 1. Algorithm 1 solves the MSPCFP in strongly polynomial time with partial arc reversal capability.

Using a maximum flow algorithm, Rebennack et al. [28] obtained a maximum contraflow solution
in auxiliary network. However, their algorithm applies complete arc reversal strategy, such that an arc
e′ ∈ A is reversed if and only ye > be or ye > 0 for e 6∈ A in the maximum static contraflow solution
y. Here, we use partial lane reversal strategy, where the lanes of arcs not required by the contraflow
solution are not reversed.

Example 2. We illustrate Algorithm 1 on the network constructed in Example 1. First, we solve the maximum
static flow problem on auxiliary network in Figure 1(ii). As shown in Figure 2(i), paths P1 = s − x − d,
P2 = s− y− d, P3 = s− y− z− d, P4 = s− w− z− d, and P5 = s− w− y− x− d carry 3, 5, 1, 1, and 2
flow units, respectively. Thus, the obtained maximum static flow 12 units on N is equivalent to the maximum
static contraflow on N with arc reversals. According to Algorithm 1, arcs (x, s), (y, s), (d, x), (d, y), (d, z) are
reversed completely; arcs (w, s), (x, y), (y, w) are partially reversed each up to the capacity 1; each of the arcs
(y, z), (w, z), (z, w), (y, w) has a saved capacity of one unit; and each of (z, y), (w, s) has that of two units, as
shown in Figure 2(ii).

s y
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x d
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3/3, 1 5/5, 1

3/5, 3

2/3, 2

5/5, 1

2/2, 1

6/6, 2

2/3, 0

1/4, 1

1/3, 1

s y

w

x d

z1

1
2

2

1
1

1

(i) (ii)

Figure 2. (i) Solution in Figure 1(ii) with (flow/capacity, transit time). (ii) Saved capacities to part (i).

3.2. Lex-Maximum Static Partial Contraflow

Assume that, in a multiterminal evacuation network, the risk zones and the destination areas are
prioritized subject to specific reasons such as risk levels of disastrous areas, disabilities or urgency of
the evacuees, and service requirements to them. To meet these necessities, the sets of sources and sinks
are categorized as priority sets.

Let S1 ⊆ · · · ⊆ Sq ⊆ S and D1 ⊆ · · · ⊆ Dr ⊆ D, respectively, be the priority sets of the sources
and sinks, where Xi gets higher priority to Xj whenever Xi ⊆ Xj holds. Considered with a maximal
flow, let the greatest number of units that can enter the sink D∗ be valm(D∗). Then, a maximal flow
that delivers valm(Dk) units into each Dk is a lexicographically (lex-) maximal static flow on the sinks.
A maximal flow that sends maximum number of units, valm(Sk), out of each Sk is a lexicographically
(lex-) maximal flow on the sources.

Problem 2. Let N = (V, A, b, S, D) be a given multiterminal network with ordered sets of sources and sinks.
The lex-maximum static partial contraflow problem (LMSPCFP) at sources (sinks) is used to determine a feasible
flow that lexicographically maximizes the amounts leaving (entering) the terminals in given priority orders, if
the partial reversal of arcs is allowed.
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To solve the lex-maximum static partial contraflow problem (LMSPCFP; Problem 2), we design
Algorithm 2. An illustration is given in Figure 3.

Algorithm 2: The lex-maximum static partial contraflow algorithm (LMSPCFA).

Input: A multiterminal static network N = (V, A, b, S, D, T) with given orders of sources and
sinks priorities

Output: A LMSPCF on N with saved capacities of arcs

1. Construct the auxiliary network N = (V, E, b, S, D).
2. Run the lex-maximum static algorithm of [16] on N with capacity b̄ to find the flow y.
3. Decompose y into paths and cycles, and remove flows in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

The authors of [31] presented a polynomial time algorithm to find contraflow reconfiguration
with complete arc reversals. We establish the following result that leaves the unused parts of arcs
unturned, solving a lex-maximum partial contraflow problem in polynomial time.

Theorem 2. The LMSPCFP can be solved using Algorithm 2 in polynomial time with arc reversals partially.

Proof. For the given priority ordering of multiterminals, the maximum static flow problem is
solved iteratively on auxiliary network N = (V, E, b, S, D) that gives an optimal solution to the
lexicographically (lex-) maximum static flow problem, as in [16]. The obtained solution is equivalent
to the lex-maximum static contraflow solution on N , [31]. Step 5 of Algorithm 2 saves all unused
capacities of arcs in O(m) time, leading to the solution of LMSPCFP in polynomial time.

x
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Figure 3. On the capacitated static network (i) with 2-sources and 3-sinks having priority ordering of
sinks d1, d3, and d2, the lex-maximum static partial contraflow is obtained as in (ii). Flow entering sinks
d1, d3, and d2 are maximized through paths s1 − x− d1, s2 − y− d1, s2 − y− d3, and s1 − x− y− d3,
and s1 − x− y− d2, respectively, by saving arc unit capacity of arcs (x, y) and (d2, y).

4. Partial Lane Reversals for Time-Invariant Attributes

This section deals with the concepts of dynamic partial contraflow and contra-transshipment
problems with constant transit times and capacities on arcs. Some efficient algorithms are presented
for their solutions. As the evacuation issues with dynamic environment have been categorized into
different problem types, such as maximum flow, quickest flow, lexicographically maximum flow,
earliest arrival flow, quickest transshipment, and earliest arrival transshipment, each has to be dealt to
separately with contraflow and, thereby, partial contraflow configuration techniques. The maximum
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dynamic, earliest arrival, lex-maximum dynamic and quickest, dynamic partial contra-transshipment
problems are abbreviated by MDPCFP, EAPCFP, LMDPCFP, QPCFP, and DPCTP, respectively.

4.1. Dynamic Contraflow Problems

As there is no algorithm to find temporally repeated flows on general S-D dynamic networks,
an exact optimal dynamic contraflow solution for them have not been found in polynomial time yet.
In particular, on the networks, like two-terminal s-d; priority-based S-D; and transshipments S-d, s-D,
and S-D with different constraints, the optimal static flow can be decomposed into chains (paths) that
are temporally repeated over the time horizon, T, returning the temporally repeated dynamic flows in
such cases. From the series of literature on analytical contraflow [1,24,28,30–32,37], it is established
that the optimal dynamic contraflow for the given network N = (V, E, b, τ, s, d, T) is equivalent
to the optimal dynamic flow on corresponding reconfigured network N = (V, E, b, τ, s, d, T). The
input network may be a super-source super-sink added extended network if one is considering a
multiterminal network, whenever a temporally repeated solution is possible.

Previous contraflow approaches do not apply the remaining arc capacities, which result after
contraflow reconfiguration. In this subsection, we redefine a series of partial contraflow problems
with time-invariant attributes and present appropriate efficient algorithms to solve the corresponding
problems saving the unnecessary arc capacities. Once a dynamic flow is obtained, it should be
subtracted from reconfigured capacities of arcs to record the maximum unused arc capacities.
These algorithms have great benefit as the remaining unused arc capacities can be used for emergency
vehicles and logistics. The following problem is more general, addressing respective partial contraflow
problems in a compact form.

Problem 3. Given a network, N = (V, A, b, τ, S, D, T), with integer inputs, the dynamic partial contraflow
problem (DPCFP) with objective function (G) is to find a dynamic S-D flow optimizing (G) for all time θ ∈ T
with arc reversals partially.

Problem 3 is stated in an abstract form for a general objective function G without its explicit nature.
As per the requirement of the specific problem, we will state it explicitly in the subsequent sections.

Applying Step 2 of Algorithm 3, any technique that computes a temporally repeated flow on
reconfigured network N is applicable to find an optimal solution to the corresponding contraflow for
the original network N . During the computation of temporally repeated flows, Step 3 removes the
cycle flows, if they exist, so that the simultaneous flows in both directions are not possible. Saving of
the unused capacities are recorded in Step 5. Thus, a flow is either along arc e or arc e′, and its value
is not greater than the added arc capacities at all time units. Therefore, the condition of feasibility is
satisfied by the algorithm. The optimality depends on the specific objective function.

Algorithm 3: The dynamic partial contraflow algorithm (DPCFA).

Input: A Dynamic network N = (V, A, b, τ, s, d, T) with constant and symmetric transit time,
i.e., τe = τe′

Output: A dynamic partial contraflow x with the partial arc reversals

1. Construct the auxiliary network N = (V, E, b, τ, s, d, T) of N for contraflow reconfiguration.
2. Use a temporally repeated flow algorithm to solve DPCFP(G) on reconfigured network N

with capacity be and transit time τ̄e for each ē ∈ E.
3. Decompose the flow y into paths and cycles and remove the flow in cycles.
4. For each θ ∈ T, reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0

whenever e /∈ A.
5. For each θ ∈ T and e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is

reversed, r(e) = be − ye, where r(e) is the saved capacity of e.
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4.1.1. Maximum Dynamic Contraflow

If the flow has to be maximized for given time period, T, without considering earlier periods,
then Problem 3 with the arcs permissible to be reversible only at time zero is the MDPCF problem.
The objective (8) is then max G = max val(x, T) for θ = T subject to constraints (4)–(6).

Polynomial time algorithms to solve the S-D MDCFP has not been investigated yet. However, it
can be solved in pseudo-polynomial time by reducing it into extended s-d network of its time-expanded
network. The s-d MDCFP is polynomially solvable in discrete time [28] and, in continuous time, [30]
reverses an arc completely whenever it is to be reversed.

Theorem 3. The s-d MDPCFP with G = val(x, T) can be solved in O(h1(n, m) + h2(n, m)) time in which
flow decomposition and minimum cost flow problems are solved in h1(n, m) = O(n.m) and h2(n, m) =

O(n2.m3. log n) times, respectively.

Proof. Theorem 3 is proved in three steps. First, we show that the solution Algorithm 3 yields is
feasible. Step 2 uses maximum dynamic flow algorithm of [13]. After the removal of the positive flow
in cycles in Step 3, there is a flow either along arc e or e′ but never in both arcs and the flow is not
greater than the modified capacities in the auxiliary network on each arc at each time unit. Second, we
show the optimality. We use the temporally repeated flow algorithm of [13] after we obtain the feasible
flow that gives a maximum dynamic flow solution on reconfigured network N , which is equivalent to
the maximum dynamic contraflow solution on N with the arcs reversed up to the necessary capacity
in Step 4. In Step 5, we record the capacities of the arcs not used by the flow after necessary (partial)
arc reversals, thereby obtaining a MDPCF solution.

The time complexity of the algorithm is dominated by the time complexity of the maximum
dynamic flow algorithm of [13] in Step 2, which is equal to the complexity of a minimum cost flow
computation, and that of flow decomposition in Step 3. This completes the proof.

Example 3. We compute the maximum dynamic flow on auxiliary network (cf. Figure 1(ii)) of evacuation
network in Figure 1(i)) having the aforementioned capacities and transit times on each arc with the repetition of
path flows computed in Example 2 within given time horizon T = 6. Using the algorithm in [13], we get the
static flow y corresponding to the temporally repeated dynamic flow, which is the same as that in Figure 2(i).
The temporally repeated maximum dynamic flow after partial contraflow configuration is as given in Table 1.

Table 1. Maximum dynamic flow computation after partial contraflow configuration (cf. Figure 1).

Path P y(P) Repeated for θ = Dynamic Flow Value

s− x− d 3 2, 3, 4, 5, 6 15
s− y− d 5 3, 4, 5, 6 20

s− y− z− d 1 4, 5, 6 3
s− w− z− d 1 5, 6 2

s− w− y− x− d 2 6 2

Total 42

The arc reversals and saved capacities are similar to those in Example 2.

We observe another algorithm for the partial contraflow configuration that is based on the
minimum cut problem. The formation of reconfigured network is from weighted undirected network
on which a minimum s-d cut can be obtained in O(n2 log3 n) time complexity that is independent
with maximum flow computations (Karger and Stein [38]). The partial contraflow configuration can
be achieved by reversing only the capacities of arcs that are equal to the minimum cut capacities.
However, it is difficult to identify the used capacities of other arcs that are not contained on minimum
cut set. We can say that maximum flow is equal to the minimum cut but there is not any technique
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developed to decompose the maximum flow value in different s-d paths in undirected network given
a minimum cut solution. If any such technique exists, then solving partial contraflow configuration
problem is not harder than finding the distribution of maximum flow value in different arcs and paths
of the network.

4.1.2. Earliest Arrival Contraflow

The earliest arrival (also known as the universal maximum) partial contraflow problem
(EAPCFP/UMPCFP) on the given dynamic network N = (V, A, b, τ, S, D, T) is to find a dynamic S-D
flow that is maximum for all time steps θ = 0, 1, . . . , T with arc reversal capability partially. In Step 2
of Algorithm 3, the objective function (8) is then max G = max val(x, θ) for all θ ∈ T subject to
constraints (4)–(6).

The earliest arrival contraflow problem for s-d series-parallel network is solved in polynomial
time O(nm + m log m), being identical with maximum flow optimal solution in which arcs are reversed
only at time zero [29,30]. The two solutions match for this case since each cycle in the residual network
has nonnegative length [18]. However, for other general networks, as there does not exist any exact
earliest arrival maximum flow solution with standard chain decomposition of [13], the nonstandard
chain decomposition of [19] has to be applied in order to decide contraflow reconfiguration which
demands arc reversals time to time, [24,31]. This results in a pseudo-polynomial time algorithm,
using the successive shortest path algorithms as in [15,16]. A complication for the s-d earliest arrival
contraflow solution arises because of the flipping requirements of intermediate arcs with respect to
the time.

As the S-D maximum dynamic contraflow problem is NP-hard, the corresponding S-D earliest
arrival contraflow problem is also NP-hard. However, the authors of [30] obtain an approximate
contraflow solution within the factor (1− ε) of the optimal earliest arrival contraflow in polynomial
time. For this they run, the fully polynomial time approximation algorithm of [17] and obtain the
approximate s-d earliest arrival contraflow in O(mε−1(m + n log n) log b̄max) time are used, where
b̄max = maxe∈E b̄ē.

The authors of [39] extend the results on earliest arrival contraflow problem to the partial
lane reversal reconfiguration by saving unused arc capacity. Their algorithms have similar times
complexities as without contraflow.

4.1.3. Generalization of Dynamic Contraflow

Given a generalized dynamic lossy network N = (V, A, b, τ, λ, S, D, T) with integer inputs, the
generalized earliest arrival partial contraflow problem (GEAPCFP) is to find a generalized maximum
flow max G = max val(x, θ) for all θ ∈ T defined in Equation (7), subject to the constraints (4)–(6) with
partial arc reversal capability at time zero. If flow is maximized for a given time horizon T only, then
the problem is a generalized maximum dynamic partial contraflow problem (GMDPCFP).

As the corresponding contraflow problems on general S-D network are NP-hard, an additional
gain factor on each arc make the partial contraflow problems also NP-hard on general S-D lossy
network, too. However, considering s-d lossy network, the contraflow problems can be solved
computing corresponding generalized flows on the auxiliary network in pseudo-polynomial time
complexity [40]. Moreover, with the same complexity, we can solve the partial contraflow problems
using Algorithm 4 saving all unused arc capacities that can be used for other purposes.

There are different factors that make the flow to be lost during evacuation process. However,
we consider a special case in which it is assumed that in each time unit the same percentage of the
remaining flow value is lost. Thus, we consider a special case λ ≡ 2c.τ for some constant c < 0.

In the reconfigured network, we compute a maximum flow by calculating flow along shortest
s-d paths, augmenting this flow, and repeating the process successively until no s-d path exists in the
residual network. Then, such a maximum flow constructs an optimal maximum dynamic flow in
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pseudo-polynomial time with the standard temporally repeated flow technique in time-expanded
network.

Algorithm 4: The generalized dynamic partial contraflow algorithm (GDPCFA).

Input: Given a lossy network N = (V, A, b, τ, λ, s, d) with integer inputs
Output: The resulting flow is GMDPCF and GEAPCF with the arc reversals by saving unused
arc capacities

1. Compute the generalized maximum dynamic contraflow and generalized earliest arrival
contraflow on N = (V, E, b, τ, λ, s, d) with respective be and τe calculated in Step 1 of
Algorithm 3, and with additional gain factor λe ≡ 2c.τe , c < 0 using algorithms of [40,41].
Let y be the corresponding flow.

2. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
3. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Theorem 4. The generalized maximum dynamic partial contraflow problem (GMDPCFP) can be solved with
pseudo-polynomial time complexity.

Proof. The highest gain path is computed in h3(n, m) = O(mn) time, in which transit time τē =
1
c log λē is considered as cost function. In auxiliary network N the generalized maximum flow using
the highest gain path is computed by a standard maximum flow algorithm. For given time horizon T,
there are at most T iteration, i.e., a maximum flow is computed at each iterations in O(nm), and thus
time complexity is h3(n, n) = O(nm.T) [41]. As Steps 2 and 3 are solved in linear time, the complexity
of Algorithm 4 is dominated by Step 1. Therefore, the GMDPCFP is solved in O(h3(n, m) + h3(n, n))
time complexity. Moreover, the GMDPCF solution has the earliest arrival property maximizing the
flow at each point of time and thus, the GEAPCFP is also solved in the same complexity.

4.1.4. Lexicographically Maximum Dynamic Contraflow

With given priority ordering at terminals of the dynamic network N = (V, A, b, τ, S, D, T), the
LMDPCFP is to find a lexicographically maximum dynamic flow at each priority terminal sets with
arc reversal capability partially at any time point.

Fixing the supplies and demands at sources and sinks, the LMDPCFP problem has been solved
with polynomial time complexity [24,31]. However, it is also solvable for unknown supplies and
demands on terminals with the same complexity, because there is a priority ordering in terminals but
not in supplies and demands. In the reconfigured network N = (V, E, b, τ, S, D, T) of Algorithm 3,
if we calculate the minimum cost flow in Step 2 at each iteration as in [19], the LMDPCF solution is
obtained after δ (number of terminals) iterations within time horizon T by saving unused arc capacities.
However, it uses so-called nonstandard flow decomposition in which backward arcs are allowed. The
consequence is Theorem 5.

Theorem 5. The LMDPCFP with partial reversals of arc capacities can be solved in O(δ×MCF(m, n)) time,
where MCF(m, n) = O(m log n(m + n log n)) is the time complexity of minimum cost flow solution.

4.1.5. Quickest Contraflow Problem

Problem 4. For a given dynamic network N = (V, A, b, τ, S, D, Q0) with integer inputs and fixed flow value
Q0, the quickest partial contraflow problem (QPCFP) is to find a minimum time T to transship the flow value
Q0 from the sources S to the sinks D with arc reversal capability partially.
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The authors of [24,28,30,37] investigate the s-d network quickest contraflow problem and S-D
network quickest contra-transshipment problem and present polynomial-time algorithms for their
solution. On the S-D network, the quickest contraflow problem is not easier than 3-SAT and
PARTITION [28]. However, for an s-d network, they present a strongly polynomial time algorithm with
discrete T based on the parametric search technique of Megiddo [42] and Burkard et al. [20]). They
find an upper bound for the quickest time by computing s-d paths in polynomial time and then use
parametric search to find the minimum time before which given flow value is sent to the sink resulting
in a strongly polynomial time complexity of O(m2(log n)3(m + n log n)). In same time complexity, the
quickest contraflow problem is solved in continuous times in [30].

Pyakurel et al. [37] presented the first polynomial algorithm with a time-complexity of a minimum
cost flow algorithm to solve the s-d quickest contraflow problem. The s-d quickest contraflow solution
has been computed by solving the parametric minimum cost flow problem using the cost scaling
algorithm of Lin and Jaillet [43]. It takes O(nm log(n2/m) log(nτmax)) time to solve this problem,
where τmax is the maximum transit time over all arcs. All the algorithms are presented with complete
contraflow configuration.

Replacing the cost scaling algorithm of Lin and Jaillet [43], if we use the cancel and tighten
algorithm of Saho and Shigeno [44] in Step 2 of Algorithm 3 that computes the quickest flow by solving
the parametric minimum cost flow problem in strongly polynomial time complexity, we get what
is stated in Theorem 6 without detailed proof. With this, we not only improve the complexity of
algorithm to solve the s-d quickest contraflow problem, but also reverse necessary parts of the road
segments saving all unused arc capacities, obtaining the QPCF solution in strongly polynomial time.

Theorem 6. The quickest contraflow problem on s-d network can be solved in O(nm2(log n)2) time complexity
with partial reversals of arc capacities.

4.2. Dynamic Contra-Transshipment Problems

Problem 5. Given a network N = (V, A, b, τ, S, D, µ(S), µ(D), T) with integer inputs, the dynamic partial
contra-transshipment problem (DPCTP) with objective function (H) is to find a feasible dynamic S-D flow for
(G) that fulfills the supply-demand shipments with partial arc reversals.

Problem 5 is stated in an abstract form for a general objective function G without its explicit nature.
As per the requirement of the specific problem, we will state it explicitly in the subsequent sections.

If the fixed source-sink supply-demand amounts should be shifted within given time horizon T
by maximizing G at every time point from the beginning with partial arc reversals, then the problem is
earliest arrival partial contra-transshipment (EAPCTP).

The authors of [1,24,32] investigate the earliest arrival contra-transshipment problem and present
polynomial time algorithms on multisource or multi-sink networks for specific arc transit times.
Moreover, a pseudo-polynomial time algorithm has been presented and its approximation solution
is computed for arbitrary transit times on each arc. If the transit time of each arc is zero, then the
approximation solution is obtained in polynomial time. For an urban evacuation scenarios including
life boats or pick-up bus stations, the concept of zero transit time is very important and applicable [45].

Based on the previous results from the literature, the EAPCTP can be solved in different
conditions using Algorithm 5 in which all unused arc capacities are saved in contraflow configuration.
However, this problem is not solved on general S-D network yet. For the S-d network N =

(V, A, b, τ, S, d, µ(S), µ(d), T) with arbitrary arc transit times, a solution of the earliest arrival
contra-transshipment problem can be found in polynomial time reversing the arc in the time intervals
whenever necessary. Moreover, the algorithm records all unused arc capacities.

By constructing extended network of reconfigured S-d network, we can compute with
super-source s∗ the s∗-d minimum cost flow circulations according to [21] and can save arc capacity
using Step 3 of Algorithm 5 as follows.
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First, the S-d network N is converted into extended network s∗-d network, making all nodes
in S intermediate and the total of the supply µ(S) is assigned to s∗. Moreover, node s∗ is connected
from d with a dummy arc (d, s∗) having infinite capacity. On s∗-d auxiliary network, we obtain
a feasible dynamic flow by computing the minimum cost circulation to the dynamic flow on S-d
auxiliary network, where µ(S) units of flow are being sent from the sources in S to d in time T. In
this procedure, to overcome from the violation of individual supplies at the source nodes, an earliest
arrival flow pattern p(θ), i.e., the maximum flow valS(x, θ) in which p(θ) ≤ valS(x, θ) for every θ ≥ 0,
is defined on s∗-d network. If p(θ) = valS(x, θ), for all θ ≥ 0, the process is complete. The pattern is
obtained polynomially in the input size plus the number of breakpoints. For given pattern p(θ) with k
breakpoints on the S-d network N , an earliest arrival transshipment can be obtained by computing a
transshipment dynamic flow in s∗-d network with k additional nodes and arcs. Thus, the obtained
earliest arrival transshipment is equivalent to the earliest arrival contra-transshipment on S-d network
N. Moreover, we can save all the unused arc capacities within the same complexity.

Algorithm 5: The dynamic partial contra-transshipment algorithm (DPCTPA).

Input: A dynamic network N = (V, A, b, τ, S, D, µ(S), µ(D), T) with constant and symmetric
transit times, i.e., τe = τe′

Output: A dynamic contra-transshipment with the partial arc reversals

1. Construct the reconfigured auxiliary network N = (V, E, b, τ, S, D, µ(S), µ(D)) of N for
contraflow reconfiguration.

2. Use a respective transshipment algorithm to solve DPCTP(G) on reconfigured network N
with capacity be and transit time τe for each ē ∈ E. Let y be the corresponding flow.

3. For each θ ∈ T and reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0
whenever e /∈ A.

4. For each θ ∈ T and e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is
reversed, r(e) = be − ye, where r(e) is the saved capacity of e.

Theorem 7. On the S-d network, the EAPCTP can be solved in polynomial time in the input plus output size.

If the network is s-D with arbitrary transit times, its solution does not exist, because there is
always conflict of which s-D path should be used first to make earliest possible flows. However, if
transit times are assumed to be zero, every s-D path has same length yielding optimal earliest arrival
contra-transshipment solution in polynomial time. Different networks can be categorized as in [45],
wherein the s-D network EAPCTP can be solved polynomially using Algorithm 5 with reversing the
partial capacities of arcs.

Theorem 8. The EAPCTP problem can be solved polynomially on multi-sink networks with transit time zero
on each arc, saving the unused arc capacities.

Even with the zero transit times, for the S-D network, an earliest arrival transshipment solution
is not possible. Consider a network N with two sources, s1 and s2; two sinks, d1 and d2; and arcs
(s1, d1), (s1, d2), and (s2, d2). Each source and sink have supply 2 and demand 2, and each arc has unit
capacity. If we use all paths at time zero, we can transship three units of flows. But leaving the path
s1-d2 empty, we can transship only two units of flow at time zero violating the maximality at every
time point.

Thus, we investigate for an approximate solution for the S-D network earliest arrival partial
contra-transshipment problem. For the solution, the reconfigured S-D transshipment network is
transformed into time-expanded network. Then, the extended time-expanded network is constructed
adding supper source s∗ and super sink d∗ with enough time bound, T, in which we can apply
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the algorithm of Gross et al. [23] that computes 2-value approximate earliest arrival transshipment
solution. The optimal earliest arrival transshipment solution is bounded by 2 times the earliest
arrival transshipment solution, called the 2-value approximate earliest arrival transshipment. It is
equivalent to the 2-value approximate earliest arrival contra-transshipment on given network with
arbitrary transit time on each arc. As it works on a time-expanded network, its time complexity
is pseudo-polynomial. However, if the transit time is reduced to be zero, polynomial time 2-value
approximation EAPCT can be obtained using the algorithm in [46] on Step 2 of Algorithm 5, thereby
reversing the necessary parts of the segments and saving unused arc capacities in Steps 4 and 5.

Theorem 9. The 2-value approximated EAPCT on S-D network can be solved efficiently by saving all unused
arc capacities of arcs.

5. Lane Reversals with Variable Attributes

We consider problems with variable transit times as a nonlinear function of probable congestion
due to the current situation of flow in arcs. The transit times are flow dependent if they depend upon
the density, speed and flow rate along the arcs. The inflow-dependent transit time τe(xe(θ)) depends
on inflow rate xe(θ) at given time point θ so that, at a time, the flow units enter an arc e with uniform
speed which remains uniform throughout this arc.

Contraflow with Inflow Dependent Transit Times

To introduce the inflow-dependent quickest partial contraflow problem (IFDQPCFP), the function
τ in Problem 4 is replaced by inflow-dependent transit time function τ(x), which comprises functions
τe(xe), which denote the transit time on arc e if the inflow rate is xe, for each e ∈ A (see also [47]).
In what follows, we model the problem and present a strongly polynomial time algorithm for an
approximate solution of IFDQPCFP.

In oder to model the inflow-dependent flow over time problem, assume that at any moment of
time the transit time function on an arc is given as a piecewise constant, nondecreasing, left-continuous
function of inflow rate, Köhler et al. [2]. Note that this function can be restricted to be only integral
values as it can be easily relaxed to allow arbitrary rational values by scaling the time with a proper way.
Moreover, any general non-negative, nondecreasing, left-continuous function has been approximated
by a step function within arbitrary precision.

Along with the inflow rate, the transit time functions generally depend on the free flow transit
time and capacity of the arc. If the capacity of an arc is increased, more flow can be sent along the arc
and the units of flow take less time to travel the same arc. In a contraflow configuration, the auxiliary
network is constructed by adding the capacities of the opposite arcs. Therefore the same amount of
flow may take less time to reach from one end of the arc to the other end in comparison to the one
without contraflow configuration. We assume that the free flow transit time in the two opposite arcs
and the arc with which they are replaced with in the contraflow configuration are identical. The value
of the transit time function on the arc in the auxiliary network is the result of the free flow transit time
and the enhanced capacity. We assume that the transit time τe on an arc e is a function of the inflow
rate xe(θ), the free flow transit time τ0

e , and the capacity be. Our approach is to find the quickest flow
in the form of a temporally repeated static flow y, we assume that τe is given as a function of the static
flow rate ye, τ0

e , be. Let
τe(ye) = f (ye, τ0

e , be).

Then, for some ye = ζ, assuming that the free flow transit times on the opposite arcs e and e′ are
equal, we have,

τe(ζ) = f (ζ, τ0
e , be),

τe′(ζ) = f (ζ, τ0
e , be′),
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and on the auxiliary network
τē(ζ) = f (ζ, τ0

e , be + b′e).

We present Algorithm 6 to solve the single-source single-sink IFDQPCF Problem 6.

Problem 6. Given a network N = (V, A, b, τ, s, d, Q0) with inflow-dependent τ, integer inputs, and fixed
flow value Q0, the s-d inflow-dependent quickest partial contraflow problem (IFDQPCFP) is to find a minimum
time T to transship the flow value Q0 allowing partial arc reversals.

Algorithm 6: Inflow dependent quickest partial contraflow algorithm (IFDQPCFA).

Input: Given a dynamic network N = (V, A, b, τ, s, d, Q0)

Output: An inflow-dependent quickest contraflow allowing partial arc reversals

1. Consider the reconfigured network N = (V, E, b, τ, s, d, Q0), where

bē = be + be′ and τ0
ē =

{
τ0

e if e ∈ A
τ0

e′ otherwise

for e ∈ E.
2. Compute the static flow y corresponding to the quickest flow on N using algorithm of

Köhler et al. [2].
3. Decompose y into paths and cycles and remove flows in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Before we realize the correctness of Algorithm 6, we show that the temporally repeated flow with
inflow-dependent transit times can be computed using a bow network in Step 2 as in Köhler et al. [2].
Let τst be the step function representation of τ, such that for a particular arc e = (v, w) ∈ A, τst

e (z) =
τi, z ∈ (zi−1, zi], i = 1 · · · k, where 0 = z0 < z1 < · · · < zk = be and zi, τi are non-negative integers.
To construct the bow graph, we introduce

(i) regulating arcs ρi(i = 1 · · · k) with capacity zi and transit time 0, such that the tail of ρi is the head
of ρi+1 for i = 1 · · · k− 1 and tail of ρk is v, and

(ii) bow arcs βi(i = 1 · · · k) with infinite capacity and transit time τi such that the tail of βi is the head
of ρi and the head of βi is w.

Figure 4 shows the bow graph representation of e = (v, w) in which τst
e (z) = 2, z ∈ (0, z1]; τst

e (z) =
4, z ∈ (z1, z2 = be].

We denote the bow network corresponding to the network N = (V, A, b, τ, s, d) by N B =

(VB, AB, bB, τB, s, d), where VB, AB consist of vertices and arcs constructed as a result of bow graph
representation of each arc e ∈ A; bB and τB represent the capacity and transit time of each e ∈ AB

as defined above. With this, every flow over time with inflow-dependent transit times in N can be
considered as a flow over time with constant transit times in N B, but not conversely. The problem on
bow network is certainly a relaxation of the original with inflow-dependent transit times flow over
time problem. Lemma 2 assumes inflow-dependent nondecreasing piecewise constant transit time
functions.

Lemma 2. For given dynamic s-d flow with inflow-dependent transit times sending Q0 units in reconfigured
network N within time T∗ = min T(Q0), a temporally repeated flow with inflow-dependent transit times can
be computed in strongly polynomial time that sends the same amount of s-d flow within at most 2T∗ time.
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Proof. To construct the bow graph N B
of N , we modify E by replacing each ē ∈ E by two opposite

arcs, each with the capacity b̄ and transit time τē, which can be done in o(m) times. Then we construct
the bow network as mentioned earlier. As this network has constant transit time on arcs, we can
use any algorithm to calculate the quickest flow for a network with constant transit time on arcs.
The best-known strongly polynomial algorithm so far is the cancel-and-tighten algorithm in [44]. Let
TB be the quickest time to send a flow of value Q0 from s to d. Thus, TB is a lower bound on the
optimal time T∗ in N . The quickest flow computation, e.g., by cancel-and-tighten algorithm, yields a
static flow yB on N B

. Temporal repetition of yB over the time horizon TB yields a dynamic flow xB in
N B

, with

val(xB) = TBval(yB)− ∑
e∈EB

τeyB
e = Q0 (12)

The dynamic flow xB in N B
may not yield a feasible dynamic flow in N [2]. We overcome the

difficulty by pushing the static flow from fast bow arcs to the slowest positive flow carrying bow arc
(say, βe) for each e ∈ E. This results into a modified static flow ȳB, with val(ȳB) = val(yB), which
induces a temporally repeated dynamic flow x̄B in N B

with time horizon T ≥ TB. T can be calculated
by using the equation

val(x̄B) = Tval(ȳB)− ∑
e∈EB

τeȳB
e = Q0 (13)

One can show that
2TBval(ȳB)− ∑

e∈EB

τeȳB
e ≥ Q0 (14)

and as val(x̄B) is an increasing function of T, it can be realized that T ≤ 2TB. For any e ∈ E, as ȳB uses
at most one bow arc βe, we can find a feasible dynamic flow x in N such that xe(θ) = x̄B

βe(θ) ≤ ȳB
βe . As

the temporally repeated dynamic flow induced by ȳB satisfies flow conservation, x also satisfies the
flow conservation with storage of flow at intermediate nodes on N . The time horizon of x is T such
that T ≤ 2TB ≤ 2T∗.

v
e

be, τe(ye)
w

ye

τst
e (ye)

z1 z2 = be0

2

4

v
(z2, 0)

ρ2

(z1, 0)
ρ1

(∞, τ2)

β2

(∞, τ1)

β1 w

Figure 4. Expansion of a single arc e = (v, w) in the bow network with transit times 2 and 4, for at most
z1 and z2 flow units, respectively.

Theorem 10. An approximate solution to the IFDQPCFP can be obtained using the IFDQPCFPA (Algorithm 6)
in strongly polynomial time by reversing arc capacities partially.

Proof. First, the IFDQPCFPA algorithm (cf. Algorithm 6) is feasible, as all of its steps are feasible. On
auxiliary network N , we can compute the temporally repeated flow with inflow-dependent transit
times using the algorithm of Köhler et al. [2] that gives the approximate quickest flow as in Lemma 2
as well as we can save all the unused arc capacities. From the feasibility of our algorithm, we directly
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conclude that every feasible quickest flow solution on the reconfigured network N is equivalent to
the quickest flow solution in the original network N as in constant transit times [28,30,32]. Thus, the
obtained approximate quickest flow on N is the approximate quickest partial contraflow for network
N with inflow-dependent transit times which can be obtained in polynomial time complexity.

6. Case Illustration

To illustrate some computational results, we consider Kathmandu road network containing major
road sections (cf. Figure 5) as an evacuation network N with n = 44 and m = 124. The transit time
(which we consider as the free flow transit time) in each road segment is as provided by Google Maps,
and the integer capacity is assumed to be between 1 to 4 flow units per second according to the width
of the segment. Related data are given in Appendix A (Tables A1 and A2).

Figure 5. Kathmandu road network.

For the purpose of calculating inflow-dependent transit time on each arc e, we consider the
following two functions given in [48] and present an analysis corresponding to each of them in parallel.

1. BPR function, developed by US Bureau of Public Roads:

τe(ye) = t0
e

[
1 + α

(
ye

b′e

)β
]

(15)

As an usual practice, we take α = 0.15, β = 4, b′e = 0.8be.
2. Davidson’s function:

τe(ye) = t0
e

[
1 + J

ye

be − ye

]
(16)

In our computations, we take J = 0.1.
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Given the number of flow units Q0 to be evacuated, to find the quickest flow allowing (partial) arc
reversal, we construct the auxiliary network of the evacuation network. To solve the problem with the
transit time depending on the inflow on each arc, we construct the bow graph of the auxiliary network
as described in Section 5.

To construct the bow graph, measuring ye, be in flow units per second and t0
e in seconds, we

consider the transit time function as the step function

τst
e (ye) = bτe(dyee − 1)e , 0 < ye ≤ be (17)

where dyee represents the least integer greater than or equal to ye and bτe(ye)e is the value of τe(ye)

rounded to the nearest integer. As an example, the step function representation of a function on an arc
with the free flow transit time 120 s and capacity four units of flow per second is given in Figure 6.

0 1 2 3 4 5
xe

110
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160
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e(
x e

)

(a) BPR function

0 1 2 3 4 5
xe

110

120

130

140

150

160

170

180

190

200

e(
x e

)

(b) Davidson’s function

Figure 6. Flow-dependent transit time functions and corresponding step functions with τ0
e = 120 s and

be = 4 per second.

We find the static flow corresponding to the quickest flow in the bow graph, and we push the
flow to the slowest arc (see Section 5) to find the approximate dynamic flow corresponding to the
quickest flow. To compare the quickest time T∗ in the bow graph and its approximate value Tapprox,
we consider Q0 between 1 to 10,000 with a gap of 500. The results are shown in Figure 7. We find the
maximum value of Tapprox

T∗ to be 1.045 in case of BPR function and 1.098 in case of Davidson’s function.
We compare the quickest times before and after allowing partial arc reversal in Figure 8. For

Q0 as small as 500, the quickest time before allowing (partial) arc reversal using the BPR function is
approximately 29.5 min; whereas, after allowing arc reversal, it is 27.6 min (i.e., approximately 93.5%
of the time before allowing arc reversal). With the increase in the value of Q0, the gap increases. For
Q0 as large as 100,000, the value after allowing arc reversal is 141.7 min, 57.6% of the value before
allowing arc reversal which is 246.1 min. The quickest times for some values of Q0 before and after
allowing arc reversal are listed in Table 2.

The number of arcs reversed (partially) for some values of Q0 are given in Table 3.
The observations show that increasing Q0 beyond a sufficient large value does not increase the
number of arcs reversed beyond some fixed value (e.g., 29 in this case).

The links used for the quickest flow corresponding to Q0 = 100,000 allowing partial arc reversal
(using BPR function and Davidson’s function) are depicted in Figure 9, with appropriate direction of
the flow. The road segments which need to be reversed fully are (1, Source), (12, Source), (18, Source),
(27, Source), (2, 1), (13, 12), (14, 13). (15, 14). (5, 4), (7, 6), (Sink, 8), (17, 16), (16, 15), (Sink, 7), (Sink, 40).
The segments which are to be reversed partially are listed in Table 4.
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Figure 7. Quickest time in bow graph and its approximation by pushing the flow to the slowest arc.

0 2000 4000 6000 8000 10000
Given units of flow Q0

25

30

35

40

45

50

55

60

Qu
ick

es
t t

im
e 

(m
in

ut
es

)

Without allowing arc reversal
Allowing arc reversal

(a) Using BPR function

0 2000 4000 6000 8000 10000
Given units of flow Q0

25

30

35

40

45

50

55

60

Qu
ick

es
t t

im
e 

(m
in

ut
es

)

Without allowing arc reversal
Allowing arc reversal

(b) Using Davidson’s function

Figure 8. Quickest times before and after allowing partial arc reversal.

Table 2. Comparison of the quickest time before and after allowing arc reversal.

BPR Function Davidson’s Function

Quickest Time Quickest Time

Q0 before Contraflow after Contraflow before Contraflow after Contraflow

500 29.5 27.6 30.8 28.6

1000 33.6 29.7 35 30.8

10,000 58.6 47.4 60.9 49

20,000 79.5 58.4 81.8 60.5

50,000 142 89.6 144.3 91.7

100,000 246.1 141.7 248.4 143.8
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Table 3. Number of arcs reversed.

Number of Arcs Reversed

Q0 BPR Function Davidson’s Function

500 8 5

1000 8 10

10,000 20 21

20,000 29 29

50,000 29 29

100,000 29 29

Figure 9. Direction of the approximate quickest flow allowing partial arc reversal, Q0 = 100,000.

We also compare the quickest times with inflow-dependent transit time on arcs against the
quickest times with constant transit time on arcs. For the purpose, we consider three types of constant
transit time τe for each e ∈ A:

(i) τe = τst
e (be), the upper bound on the step function represent of τe(ye).

(ii) τe = τ̄st
e (ye) =

∑be
i=1 τst

e (i)
be

, the average of the step function values.

(iii) τe = τ0
e the free flow transit time.

It is observed, in the network considered, that the quickest times corresponding to the constant
time on each arc as the average of the corresponding step function are very close to the quickest time
with inflow-dependent transit time (cf. Figure 10).
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Table 4. Partially reversed segments.

Segment Reversed Capacity Capacity

(3, 27) 1 2
(38, 2) 1 3

(39, 38) 1 3
(40, 39) 1 3

(6, 5) 1 3
(4, 32) 1 2

(32, 31) 1 2
(8, 7) 1 3

(23, 24) 2 4
(24, 25) 2 4
(26, 21) 2 4
(25, 26) 2 4
(31, 30) 1 2

(19, 18) a 1 2
(7, 17) b 1 2

a for Davidson’s function only. b for BPR function only.
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Figure 10. Comparison of quickest times (inflow-dependent transit time vs. constant transit time
on arcs).

7. Conclusions

Highlighting the overall pros and cons of the complete contraflow models and algorithms, a new
and more relevant approach—a partial lane reversal strategy—has been introduced in this paper.
Using this approach, we can send maximum evacuees in minimum evacuation time recording all
unused capacities of the lanes for other crucial emergency and logistic supports for the evacuees with
partial reversals of lane capacities. The static partial contraflow problems and the dynamic partial
contraflow problems including, the maximum dynamic, the earliest arrival, quickest, lex-maximum
dynamic, generalized universally maximum, and partial contra-transshipment problems, have been
solved with efficient algorithms. The maximum dynamic and earliest arrival contraflow problems are
generalized on lossy networks with partial contraflow reconfiguration. Polynomial time algorithms to
solve these problems with constant transit time on each arc have been proposed.
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Moreover, the partial contraflow models with variable transit time on each arc have been
introduced for the first time. For the inflow-dependent transit times on each arc, an algorithm
with strongly polynomial time complexity has been presented that computes an approximate solution
to the two terminal quickest contraflow problem with partial lane reversals, which is substantiated by
numerical computations considering a case of Kathmandu road network as an evacuation network.
The algorithms related to static flow are useful when one is interested to find the maximum rate of
flow (evacuees) that can reach the sink(s). Within a specified time, if the maximum number of evacuees
have to be evacuated, algorithms related to maximum dynamic flow are useful. The algorithms related
to quickest flow are useful to identify the minimum time to evacuate a known number of evacuees.

To the best of our knowledge, the problems investigated in this work are conducted for the
first time in the partial contraflow approach. Although these models provide information about
the parts of the road segments not used by evacuees, they do not guarantee the existence of such a
path between given nodes which may be required for movement of facilities from a node towards
sources. As we have investigated only a single-source single-sink model with variable attributes
to identify the quickest time, we are interested to extend these contraflow and partial contraflow
models and algorithms to solve other network flow over time problems with variable attributes.
In addition, we intend to implement the results for supporting logistics in emergencies using the
partial contraflow techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

BPR Bureau of Public Roads
DPCFA Dynamic partial contraflow algorithm
DPCFP Dynamic partial contraflow problem
DPCTA Dynamic partial contra-transshipment algorithm
DPCTP Dynamic partial contra-transshipment problem
EAPCFA Earliest arrival partial contraflow algorithm
EAPCFP Earliest arrival partial contraflow problem
GDPCFA Generalized dynamic partial contraflow algorithm
GDPCFP Generalized dynamic partial contraflow problem
GEAPCFA Generalized earliest arrival partial contraflow algorithm
GEAPCFP Generalized earliest arrival partial contraflow problem
GMDPCFA Generalized maximum dynamic partial contraflow algorithm
GMDPCFP Generalized maximum dynamic partial contraflow problem
IFDQPCFA Inflow-dependent quickest partial contraflow algorithm
IFDQPCFP Inflow-dependent quickest partial contraflow problem
LMDPCFA Lexicographic maximum dynamic partial contraflow algorithm
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LMDPCFP Lexicographic maximum dynamic partial contraflow problem
LMSPCFA Lexicographic maximum static partial contraflow algorithm
LMSPCFP Lexicographic maximum static partial contraflow problem
MDPCFA Maximum dynamic partial contraflow algorithm
MDPCFP Maximum dynamic partial contraflow problem
MSPCFA Maximum static partial contraflow algorithm
MSPCFP Maximum static partial contraflow problem
QPCFA Quickest partial contraflow algorithm
QPCFP Quickest partial contraflow problem
UMPCFA Universal maximum partial contraflow algorithm
UMPCFP Universal maximum partial contraflow problem

Appendix A

Table A1. Network data considered in Section 6.

e be (per second) be′ (per second) τ0
e (minutes)

(Source, 1) 2 2 6
(Source, 12) 2 2 10
(Source, 18) 2 2 3
(Source, 27) 2 2 4

(1, 2) 2 2 3
(1, 27) 2 2 5
(2, 3) 3 3 5

(2, 38) 3 3 12
(3, 4) 3 3 5

(3, 27) 2 2 6
(4, 5) 3 3 1

(4, 32) 2 2 1
(5, 6 ) 3 3 1
(5, 42) 2 2 7
(6, 7) 3 3 5

(6, 23) 2 2 2
(7, 8) 3 3 8

(7, 17) 2 2 10
(7, Sink) 2 2 5

(8, 9) 2 2 16
(8, Sink) 3 3 7
(9, 10) 2 2 3
(9, 17) 2 2 3

(10, 11) 2 2 5
(11, 12) 2 2 17
(11, 37) 2 2 7
(12, 13) 2 2 4
(13, 14) 2 2 6
(13, 33) 2 2 9
(14, 15) 2 2 1
(14, 33) 2 2 3
(15, 16) 2 2 1
(15, 35) 2 2 1
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Table A2. Network data considered in Section 6 (contd. . . ).

e be (per second) be′ (per second) τ0
e (minutes)

(16, 17) 2 2 1
(16, 36) 2 2 3
(16, 37) 4 0 1
(18, 19) 2 2 2
(18, 28) 2 2 2
(19, 20) 2 2 2
(19, 29) 2 2 2
(20, 21) 2 2 2
(20, 30) 2 2 2
(20, 33 ) 2 2 1
(21, 26) 0 4 1
(21, 34) 2 2 1
(22, 23) 4 0 1
(22, 32) 2 2 1
(23, 24) 4 0 1
(24, 25) 4 0 2
(25, 26) 4 0 1
(26, 35) 2 2 2
(27, 28) 2 2 3
(28, 29) 4 0 2
(29, 30) 4 0 1
(30, 31) 2 2 2
(31, 32) 2 2 2
(33, 34) 2 2 2
(34, 35) 2 2 1
(35, 36) 2 2 2
(38, 39) 3 3 7
(38, 42) 2 2 8
(39, 40) 3 3 1
(39, 41) 2 2 1
(40, 41) 2 2 2

(40, Sink) 3 3 8
(41, 42) 2 2 2
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