

Article Positively Continuum-Wise Expansiveness for C¹ Differentiable Maps

Manseob Lee

Department of Mathematics, Mokwon University, Daejeon 302-729, Korea; lmsds@mokwon.ac.kr

Received: 2 September 2019; Accepted: 14 October 2019; Published: 16 October 2019

Abstract: We show that if a differentiable map f of a compact smooth Riemannian manifold M is C^1 robustly positive continuum-wise expansive, then f is expanding. Moreover, C^1 -generically, if a differentiable map f of a compact smooth Riemannian manifold M is positively continuum-wise expansive, then f is expanding.

Keywords: positively expansive; positively measure expansive; generic; positively continuum-wise expansive; expanding

MSC: 58C25; 37C20; 37D20

1. Introduction and Statements

Starting with Utz [1], expansive dynamical systems have been studied by researchers. Regarding this concept, many researchers suggest various expansivenesses (e.g., N-expansive [2], measure expansive [3] and continuum-wise expansive [4]). These concepts were used to show chaotic systems (see References [3,5–7]) and hyperbolic structures (see References [8–14]).

For chaoticity, Morales and Sirvent proved in Reference [3] that every Li-Yorke chaotic map in the interval or the unit circle are measure-expansive. Kato proved in Reference [7] that, if a homeomorphism f of a compactum X with dimX > 0 is continuum-wise expansive and Z is a chaotic continuum of f, then either f or f^{-1} is chaotic in the sense of Li and Yorke on almost all Cantor sets $C \subset Z$. Hertz [5,6] proved that if a homeomorphism f of locally compact metric space X or Polish continua X is expansive or continuum-wise expansive then f is sensitive dependent on the initial conditions.

For hyperbolicity, Mañé proved in Reference [12] that if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Arbieto proved in Reference [8] that, C^1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is expansive then it is Axiom A and has no cycles. Sakai proved in Reference [13] that, if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Lee proved in Reference [9] that, C^1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold Mis continuum-wise expansive then it is Axiom A and has no cycles.

Through these results, we are interested in general concepts of expansiveness. Actively researching positive expansivities (positively expansive [15], positively measure-expansive [16,17]) is a motivation of this paper. In this paper, we study positively continuum-wise expansiveness, which is the generalized notion of positive expansiveness and positive measure expansiveness.

In this paper, we assume that *M* is a compact smooth Riemannian manifold. A differentiable map $f : M \to M$ is *positively expansive*(write $f \in \mathcal{PE}$) if there exists a constant $\delta > 0$ such that for any $x, y \in M$, if $d(f^i(x), f^i(y)) \le \delta \forall i \ge 0$ then x = y. From Reference [18], if a differentiable map $f \in \mathcal{PE}$ then *f* is open and a local homeomorphism. For any $\delta > 0$, we define a dynamical δ -ball for $x \in M$ such as $\{y \in M : d(f^i(x), f^i(y)) \le \delta \forall i \ge 0\}$. Put $\Gamma^+_{\delta}(x) = \{y \in M : d(f^i(x), f^i(y)) \le \delta \forall i \ge 0\}$.

Note that if a differentiable map $f \in \mathcal{PE}$, then $\Gamma_{\delta}^+(x) = \{x\}$ for any $x \in M$. Here $\delta > 0$ is called an expansive constant of f.

Let us introduce a generalization of the positively expansive called the positively measure-expansive (see Reference [3]). Let $\mathcal{M}(M)$ be the space of a Borel probability measure of M. A measure $\mu \in \mathcal{M}(M)$ is *atomic* if $\mu(\{x\}) \neq 0$, for some point $x \in M$. Let $\mathcal{A}(M)$ be the set of atomic measures of M. Note that $\mathcal{A}(M)$ is dense in $\mathcal{M}(M)$. Let $\mathcal{M}^*(M) = \mathcal{M}(M) \setminus \mathcal{A}(M)$. A differentiable map $f : M \to M$ is *positively measure-expansive* (write $f \in \mathcal{PME}$) if there exists a constant $\delta > 0$ such that $\mu(\Gamma_{\delta}(x)) = 0$ for any $\mu \in \mathcal{M}^*(M)$, where $\delta > 0$ is called a *measure expansive constant*. In Reference [17], the authors found that there exists a differentiable map $f : S^1 \to S^1$ that is positively μ -expansive for any $\mu \in \mathcal{M}^*_f(S^1)$ but not positively expansive where $\mathcal{M}^*_f(M)$ is the set of non-atomic invariant measures of M.

Now, we introduce another generalization of the positive expansiveness, which is called positively continuum-wise expansiveness (see Reference [4]). We say that *C* is a *continuum* if it is compact and connected.

Definition 1. A differentiable map f is positively continuum-wise expansive (write $f \in PCWE$) if there is a constant e > 0 such that if $C \subset M$ is a non-trivial continuum, then there is $n \ge 0$ such that diam $f^n(C) > e$, where if C is a trivial, then C is a one point set.

Note that $f \in \mathcal{PCWE}$ if and only if $f^n \in \mathcal{PCWE} \forall n \ge 1$. We say that f is *countably expansive* (write $f \in \mathcal{CE}$) if there is a constant $\delta > 0$ such that for all $x \in M$, $\Gamma_{\delta}^+(x) = \{y \in M : d(f^i(x), f^i(y)) \le \delta \forall i \in \mathbb{Z}\}$ is countable. In Reference [19], the authors showed that if a homeomorphism $f : M \to M$ is measure expansive then f is countably expansive. Moreover, the converse is true. Then, as in the proof of Theorem 2.1 in Reference [19], it is easy to show that f is positively countable-expansive if and only if f is positively measure expansive. In this paper, we consider the relationship between the positively measure-expansive and the positively continuum-wise expansive (see Lemma 1). We can know that if f is positively measure-expansive then it is not positively continuum-wise expansive because a continuum is not countable, in general.

Definition 2. A differentiable map $f : M \to M$ is expanding if there exist constants C > 0 and $\lambda > 1$ such that

$$\|D_x f^n(v)\| \ge C\lambda^n \|v\|,$$

for any vector $v \in T_x M(x \in M)$ and any $n \ge 0$.

Note that a positively measure-expansive differentiable map is not necessarily expanding. However, under the C^1 robust or C^1 generic condition, it is true.

A differentiable map f is C^1 *robustly positive* \mathfrak{P} if there exists a C^1 neighborhood $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$, g is positive \mathfrak{P} .

A point $x \in M$ is a *singular* if $D_x f : T_x M \to T_{f(x)} M$ is not injective. Denoted by S_f the set of singular points of f.

Sakai proved in Reference [15] that if a differentiable map f is C^1 robustly positive expansive then $S_f = \emptyset$ and it is an expanding map. Lee et al. [17] proved that if f is C^1 robustly positive measure-expansive, then $S_f = \emptyset$ and it is expanding. Note that if a differentiable map f is expanding then it is expansive. According to these facts, we prove the following.

Theorem A If a differentiable map $f : M \to M$ is C^1 robustly positive continuum-wise expansive (write $f \in \mathcal{RPCWE}$) then $S_f = \emptyset$ and it is expanding.

Let $D^1(M)$ be the set of differentiable maps $f : M \to M$. Note that $D^1(M)$ contains the set of diffeomorphisms $\text{Diff}^1(M)$ on M and $\text{Diff}^1(M)$ is open in $D^1(M)$. We say that a subset

 $\mathcal{G} \subset D^1(M)$ is *residual* if it contains a countable intersection of open and dense subsets of $D^1(M)$. Note that the countable intersection of residual subsets is a residual subset of $D^1(M)$. A property "P" holds generically if there exists a residual subset $\mathcal{G} \subset D^1(M)$ such that for any $f \in \mathcal{G}$, f has the "P". Some times we write for C^1 generic $f \in D^1(M)$ which means that there exists a residual set $\mathcal{G} \subset D^1(M)$ such that for any $f \in \mathcal{G}$. Arbieto [8] and Sakai [15] proved that, C^1 generically, a positively expansive map is expanding. Ann et al. [16] proved that for a C^1 generic $f \in D^1(M)$, if $S_f = \emptyset$ and f is positively measure expansive, then it is expanding. Recently, Lee et al. [17] showed that, C^1 generically, if $f \in D^1(M)$ is positively measure-expansive then $S_f = \emptyset$ and f is expanding. According to these results, we consider C^1 generic positively continuum-wise expansive for $f \in D^1(M)$ and prove the following.

Theorem B For C^1 generic $f \in D^1(M)$, if f is positively continuum-wise expansive then $S_f = \emptyset$ and it is expanding.

2. The Proof of Theorem A

The following proof is similar to Lemma 2.2 in Reference [19].

Lemma 1. Let $C \subset M$ be compact and connected. A differentiable map $f \in \mathcal{PCWE}$ if and only if there is a constant $\delta > 0$ such that for all $x \in M$, if a continuum $C \subset \Gamma^+_{\delta}(x)$ then C is a trivial continuum set.

Proof. Let $\delta > 0$ be a continuum-wise expansive constant and *C* be compact and connected (that is, a continuum). Take $c = \delta/2$. We assume that for any $x \in M$, if $C \subset \Gamma_c^+(x)$ then diam $f^n(C) \leq 2c$ for all $n \ge 0$. Since f is positively continuum-wise expansive, C should be a trivial continuum set. Thus, if $f \in \mathcal{PCWE}$, then for all $x \in M$, if a continuum $C \subset \Gamma_c^+(x)$, then *C* is a trivial continuum set.

For the converse part, suppose that $f \in \mathcal{PCWE}$. Then, there is a constant c > 0 such that diam $f^n(C) \le c \ \forall n \ge 0$, where *C* is a continuum. Let $x \in C$ be given. Since diam $f^n(C) \le c$, for all $y \in C$ we have

$$d(f^n(x), f^n(y)) \le c \forall n \ge 0.$$

Thus, we know $y \in \Gamma_c(x)$. Since $y \in C$ and y is arbitrary, we have $C \subset \Gamma_c(x)$. Since a continuum $C \subset \Gamma_c(x)$, we have that *C* is a trivial continuum set. \Box

A periodic point $p \in P(f)$ is hyperbolic if $D_p f^{\pi(p)} : T_p M \to T_p M$ has no eigenvalue with a modulus equal to 0 or 1, where $\pi(p)$ is the period of p. Then, $T_pM = E_p^s \oplus E_p^u$ of subspaces such that

(a) $D_p f^{\pi(p)}(E_p^{\sigma}) = E_p^{\sigma}(\sigma = s, u)$, and

(b) there exist constants C > 0, and $\lambda \in (0, 1)$ satisfies for all positive integer $n \in \mathbb{N}$,

- $\| D_p f^n(v) \| \le C\lambda^n \| v \| \text{ for any } v \in E_p^s \text{ and} \\ \| D_p f^{-n}(v) \| \le C\lambda^n \| v \| \text{ for any } v \in E_p^u \end{cases}$

A hyperbolic point $p \in P(f)$ is a *sink* if $E_p^u = \{0\}$, a *source* if $E_p^s = \{0\}$, and a *saddle* if $E_p^s \neq \{0\}$ and $E_p^u \neq \{0\}$. Let $P_h(f)$ be the set of hyperbolic periodic points of f. The dimension of the stable manifold $W^{s}(p) = \{x \in M : d(f^{i}(x), f^{i}(p)) \to 0 \text{ as } i \to \infty\}$ is written by the *index* of *p*, and denoted by ind(*p*). Then, we know $0 \leq ind(p) \leq dim M$. Let $P_i(f)$ be the set of all $p \in P_h(f)$ with ind(p) = i.

Lemma 2. If a differentiable map $f \in \mathcal{PCWE}$ then $P_i(f) = \emptyset$ for $1 \le i \le \dim M$.

Proof. By contradiction, we assume that there is $i \in [1, \dim M]$ such that $P_i(f) \neq \emptyset$. Take $p \in P_i(f)$ and $\delta > 0$. Then, we can find a local stable manifold $W^s_{\delta}(p)$ of p such that $W^s_{\delta}(p) \neq \emptyset$. We can construct a continuum $\mathcal{J}_p \subset W^s_{\delta}(p)$ centered at p such that diam $\mathcal{J}_p = \delta/4$. Let $\Gamma^+_{\delta/2}(p) = \{y \in M :$ $d(f^i(p), f^i(y)) \leq \delta/2 \ \forall i \geq 0$ }. Then, we know $\mathcal{J}_p \subset \Gamma^+_{\delta/2}(p)$. By Lemma 1, \mathcal{J}_p should be a trivial continuum set. This is a contradiction since \mathcal{J}_p is not a trivial continuum set. \Box

In Reference [17], the authors showed that there is a positively expansive differentiable map $f : S^1 \to S^1$ such that $S_f \neq \emptyset$. Thus, if f is positively measure-expansive then $S_f \neq \emptyset$. But if f is C^1 robustly positive measure-expansive then $S_f = \emptyset$. For that, we consider that f is C^1 robustly positive continuum-wise expansive.

The following is a version of differentiable maps of Franks' lemma (see Lemma 2.1 in Reference [8]).

Lemma 3 ([20]). Let $f : M \to M$ be a differentiable map and let $\mathcal{U}(f)$ be a C^1 neighborhood of f. Then, there exists $\delta > 0$ such that for a finite set $A = \{x_1, x_2, ..., x_n\} \subset M$, a neighborhood U of A and a linear map $L_i : T_{x_i}M \to T_{f(x_i)}M$ satisfying $||L_i - D_{x_i}f|| < \delta$ for $1 \le i \le n$, there exist $\varepsilon_0 > 0$ and $g \in \mathcal{U}(f)$ having the following properties;

- (a) g(x) = f(x) if $x \in A$, and
- (b) $g(x) = \exp_{f(x_i)} \circ L_i \circ \exp_{x_i}^{-1}(x)$ if $x \in B_{\varepsilon_0}(x_i)$ and $\forall i \in \{1, \dots, n\}$.

It is clear that assertion (b) implies that

$$g(x) = f(x)$$
 if $x \in A$

and that $D_{x_i}g = L_i, \forall i \in \{1, ..., n\}.$

Theorem 1. If a differentiable map $f \in \mathcal{RPCWE}$ then $S_f = \emptyset$.

Proof. Suppose that there is $x \in S_f$. Then, by Lemma 3, we can take $g C^1$ close to f such that g has a closed connected small arc $B_{\epsilon}(x)$ centered at x with radius $\epsilon > 0$, such that dim $B_{\epsilon}(x) = 1$ and $g(B_{\epsilon}(x))$ is one point. Take $\delta = 2\epsilon$. Let $\Gamma^+_{\delta}(x) = \{y \in M : d(g^i(x), g^i(y)) \le \delta \forall i \ge 0\}$. It is clear $B_{\epsilon}(x) \subset \Gamma^+_{\delta}(x)$. Since $g(B_{\epsilon}(x))$ is one point, for any $y \in B_{\epsilon}(x)$, we know that diam $g^i(B_{\epsilon}(x)) \le \delta$ for all $i \ge 0$. However, $B_{\epsilon}(x)$ is not a trivial continuum set, by Lemma 1 this is a contradiction. \Box

Recall that a differentiable map $f : M \to M$ is *star* if every periodic point of $g(C^1$ nearby f) is hyperbolic.

Lemma 4. If a differentiable map $f \in \mathcal{RPCWE}$ then f is star.

Proof. Suppose that *f* is not star. Then, we can take $g C^1$ close to *f* such that *g* has a non-hyperbolic $p \in P(g)$. As Lemma 3, we can find $g_1 C^1$ close to $g (g_1 C^1$ close to *f*) such that $D_p g_1^{\pi(p)}$ has an eigenvalue λ with $|\lambda| = 1$. For simplicity, we assume that $g_1^{\pi(p)}(p) = g_1(p) = p$. Let E_p^c be associated with λ . If $\lambda \in \mathbb{R}$ then dim $E_p^c = 1$, and if $\lambda \in \mathbb{C}$ then dim $E_p^c = 2$.

First, we consider dim $E_p^c = 1$. Then, we assume that $\lambda = 1$ (the other case can be proved similarly). By Lemma 3, there are $\epsilon > 0$ and $h C^1$ close to g_1 (also, C^1 close to f), having the following properties;

•
$$h(p) = g_1(p) = p$$
,

•
$$h(x) = \exp_n \circ D_p g_1 \circ \exp_n^{-1}(x)$$
 if $x \in B_{\epsilon}(p)$, and

• $h(x) = g_1(x)$ if $x \notin B_{4\epsilon}(p)$.

Since $\lambda = 1$, we can construct a closed connected small arc $\mathcal{I}_p \subset B_{\epsilon}(p) \cap \exp_p(E_p^c(\epsilon))$ with its center at p such that

- diam $\mathcal{I}_p = \epsilon/4$,
- $h(\mathcal{I}_p) = \mathcal{I}_p$, and
- the map $h|_{\mathcal{I}_p} : \mathcal{I}_p \to \mathcal{I}_p$ which is the identity.

Take $\delta = \epsilon/2$. Let $\Gamma_{\delta}^+(p) = \{x \in M : d(h^i(x), h^i(p)) \le \delta \ \forall i \ge 0\}$. Then, it is clear $\mathcal{I}_p \subset \Gamma_{\delta}(p)$, and diam $h^i(\mathcal{I}_p) = \text{diam}\mathcal{I}_p$ for all $i \ge 0$. Since $f \in \mathcal{RPCWE}$, according to Lemma 1, \mathcal{I}_p has to be just a trivial continuum set. This is a contradiction since \mathcal{I}_p is not a trivial continuum set.

Finally, we consider dim $E_p^c = 2$. For convenience, we assume that $g^{\pi(p)}(p) = g(p) = p$. As Lemma 3, we can find $\epsilon > 0$ and $g_1 \in U(f)$, which has the following properties;

- $g_1(p) = g(p) = p$,
- $g_1(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$ if $x \in B_{\epsilon}(p)$, and
- $g_1(x) = g(x)$ if $x \notin B_{4\epsilon}(p)$.

For any $v \in E_p^c(\epsilon)$, there is l > 0 such that $D_p g^l(v) = v$. Take $u \in E_p^c(\epsilon)$ such that $||u|| = \epsilon/2$. As in the previous arguments, we can construct a closed connected small arc $\mathcal{J}_p \subset B_{\epsilon}(p) \cap \exp_p(E_p^c(\epsilon))$ such that

- diam $\mathcal{J}_p = \epsilon/4$,
- $g_1^l(\mathcal{J}_p) = \mathcal{J}_p$, and
- $g_1^{\overline{l}}|_{\mathcal{J}_p} : \mathcal{J}_p \to \mathcal{J}_p$ is the identity map.

As in the proof of the first case, take $\delta = \epsilon/2$. Let $\Gamma_{\delta}^+(p) = \{x \in M : d(g_1^{li}(x), g_1^{li}(p) \le \delta \ \forall i \ge 0\}$. It is clear that $\mathcal{J}_p \subset \Gamma_{\delta}^+(p)$. Then, by Lemma 1, \mathcal{J}_p must be a trivial continuum set but it is not possible since \mathcal{J}_p is a closed connected small arc. Thus, if $f \in \mathcal{RPCWE}$ then f is star. \Box

The differentiable maps $f, g: M \to M$ are *conjugate* if there is a homeomorphism $h: M \to M$ such that $f \circ h = h \circ g$. We say that a differentiable map f is *structurally stable* if there is a C^1 neighborhood $\mathcal{U}(f)$ of $f \in D^1(M)$ such that for any $g \in \mathcal{U}(f)$, g is conjugate to f. A differentiable map f is Ω *stable* if there is a C^1 neighborhood $\mathcal{U}(f)$ of $f \in D^1(M)$ such that for any $g \in \mathcal{U}(f)$, g is conjugate to f. A differentiable map f is Ω *stable* if there is a C^1 neighborhood $\mathcal{U}(f)$ of $f \in D^1(M)$ such that for any $g \in \mathcal{U}(f)$, $g|_{\Omega(g)}$ is conjugate to $f|_{\Omega(f)}$, where $\Omega(f)$ denotes the nonwandering points of f. Przytycki proved in Reference [21] that if f is an Anosov differentiable map then it is not an Anosov diffeomorphism or expandings which are not structurally stable. Moreover, assume that f is Axiom A (i.e., $\overline{P(f)} = \Omega(f)$ is hyperbolic) and has no singular points in the nonwandering set $\Omega(f)$. Then f is Ω stable if and only if f is strong Axiom A and has no cycles (see Reference [22]). Here, f is *strong Axiom A* means that f is Axiom A and $\Omega(f)$ is the disjoint union $\Lambda_1 \cup \Lambda_2$ of two closed f invariant sets.

According to the above results of a diffeomorphism $f \in \text{Diff}^1(M)$, one can consider the case of a differentiable $f \in D^1(M)$ which is an extension of a diffeomorphism. For instance, a diffeomorphism $f \in \text{Diff}(M)$ is said to be *star* if we can choose a C^1 neighborhood $\mathcal{U}(f)$ of f such that every periodic point of g is hyperbolic, for all $g \in \mathcal{U}(f)$.

If a diffeomorphism *f* is star then *f* is Axiom A and has no cycles (see References [23,24]). Aoki et al. Theorem A in Reference [25] proved that if a differentiable map *f* is star and the nonwandering set $\Omega(f) \cap S_f \subset \{p \in P(f) : p \text{ is a sink }\}$ then *f* is Axiom A and has no cycles.

Theorem 2. Let $f \in D^1(M)$. If $f \in \mathcal{RPCWE}$ then f is Axiom A and has no cycles.

Proof. Suppose that $f \in \mathcal{RPCWE}$. As Lemma 4, f is star. By Theorem 1, we know $S_f = \emptyset$, and so, $\Omega(f) \cap S_f = \emptyset$. By Lemma 2, there do not exist sinks in P(f), that is, $\{p \in P(f) : p \text{ is a sink }\} = \emptyset$. Thus, by Theorem A in Reference [25], f is Axiom A and has no cycles. \Box

Proof of Theorem A. Suppose that $f \in \mathcal{RPCWE}$. Then, by Lemma 2, Theorem 2 and Proposition 2.7 in [17], $\Omega(f) = \overline{P_0(f)}$ is hyperbolic and $\overline{P_0(f)}$ is expanding. Then, by Lemma 2.8 in Reference [17], $M = \overline{P_0(f)}$. Thus, *f* is expanding. \Box

3. The Proof of Theorem B

Denote by \mathcal{KS} the set of Kupka–Smale C^1 maps of M. By Shub [26], \mathcal{KS} is a residual set of $D^1(M)$. If $f \in \mathcal{KS}$ then every $p \in P(f)$ is hyperbolic. Then, we can see the following. **Lemma 5.** Let $f \in \mathcal{KS}$. If $f \in \mathcal{PCWE}$ then $P(f) = P_0(f)$.

Proof. Let $f \in \mathcal{PCWE}$. Suppose, by contradiction, that $P_i(f) \neq \emptyset$ for some $1 \leq i \leq \dim M$. Take $p \in P_i(f)$ and $\delta > 0$. Then, we can define a local stable manifold $W^s_{\delta}(p)$ of p such that $W^s_{\delta}(p) \neq \emptyset$. We can construct a closed connected small arc $\mathcal{J}_p \subset W^s_{\delta}(p)$ with its center at p such that diam $\mathcal{J}_p = \delta/4$. Let $\Gamma^+_{\delta}(p) = \{x \in M : d(f^i(x), f^i(p)) \leq \delta \text{ for all } i \geq 0\}$. Then, it is clear $\mathcal{J}_p \subset \Gamma^+_{\delta}(p)$. Since $f \in \mathcal{PCWE}$, by Lemma 1, \mathcal{J}_p must be a trivial continuum set. This is a contradiction since \mathcal{J}_p is not a trivial continuum set. Thus, every $p \in P(f)$ is a source so that $P(f) = P_0(f)$. \Box

Lemma 6. Lemma 8 in [15]. There exists a residual set $\mathcal{G}_1 \subset D^1(M)$ such that for given $f \in \mathcal{G}_1$, if for any C^1 neighborhood $\mathcal{U}(f)$ of f there exist $g \in \mathcal{U}(f)$ and $p \in P_h(g)$ with $ind(p) = i(0 \le i \le dim M)$, then there is $p' \in P_h(f)$ with ind(p') = i.

Lemma 7. There exists a residual subset $\mathcal{G}_2 \subset D^1(M)$ such that for a given $f \in \mathcal{G}_2$, if $f \in \mathcal{PCWE}$ then $S_f \cap \overline{P_0(f)} = \emptyset$.

Proof. Let $f \in \mathcal{G}_2 = \mathcal{KS} \cap \mathcal{G}_1$ and $f \in \mathcal{PCWE}$. Suppose, by contradiction, that $S_f \cap \overline{P_0(f)} \neq \emptyset$. Since $S_f \cap \overline{P_0(f)} \neq \emptyset$, we can choose a point $x \in S_f \cap \overline{P_0(f)}$. Then, we can find a sequence of periodic points $\{p_n\} \subset P_0(f)$ with period $\pi(p_n)$ such that $p_n \to x$ as $n \to \infty$. As Lemma 3, there exists $g C^1$ close to f such that $g^{\pi(p_n)}(p_n) = p_n$ and $p_n \in S_g$. Again using Lemma 3, there exists $g_1 C^1$ closed to g such that $g_1 C^1$ is close to f, $g_1^{\pi(p_n)}(p_n) = p_n$, and $\operatorname{ind}(p_n) = i(1 \le i \le \dim M)$. Since $f \in \mathcal{G}_1$, by Lemma 6, f has a hyperbolic saddle periodic point q with $\operatorname{index}(q) = i(1 \le i \le \dim M)$. This is a contradiction by Lemma 2. \Box

For a $\delta > 0$, a point $p \in P(f)(f^{\pi(p)}(p) = p)$ said to be a δ -hyperbolic (see Reference [27]) if for an eigenvalue of $Df^{\pi(p)}(p)$, we can take an eigenvalue λ of $Df^{\pi(p)}(p)$ such that

$$(1-\delta)^{\pi(p)} < |\lambda| < (1+\delta)^{\pi(p)}$$

Lemma 8. There exists a residual subset $\mathcal{G}_3 \subset D^1(M)$ such that for a given $f \in \mathcal{G}_3$, if $f \in \mathcal{PCWE}$, then we can take $\delta > 0$ such that f has no δ -hyperbolic.

Proof. Let $f \in \mathcal{G}_3 = \mathcal{KS} \cap \mathcal{G}_1 \cap \mathcal{G}_2$, and let $f \in \mathcal{PCWE}$. Since $f \in \mathcal{KS} \cap \mathcal{G}_1 \cap \mathcal{G}_2$, by Lemma 2 and Lemma 7, we know $S_f \cap \overline{P_0(f)} = \emptyset$. Assume that for any $\delta > 0$, there is a $p \in P_h(f)$ with a δ -hyperbolic. By Lemma 3, we can take $g C^1$ close to f such that p has an eigenvalue with modulus one. Again using Lemma 3, there exists $g_1 C^1$ close to $g (g_1 C^1$ close to f) such that g_1 has a saddle $q \in P_h(g_1)$ with ind $(q) = i(1 \le i \le \dim M)$, where $P_h(g_1)$ is the set of all hyperbolic periodic points of g_1 . Since $f \in \mathcal{G}_1$, f has a saddle $q' \in P_h(f)$ with ind $(q') = i(1 \le i \le \dim M)$. This is a contradiction by Lemma 2. \Box

Lemma 9. Lemma 7 in Reference [15]. There exists a residual subset $\mathcal{G}_4 \subset D^1(M)$ such that for a given $f \in \mathcal{G}_4$ and $\delta > 0$, if any C^1 neighborhood $\mathcal{U}(f)$ of f there exist $g \in \mathcal{U}(f)$ and $p \in P_h(g)$ with a δ -hyperbolic, then we can find $p' \in P_h(f)$ with a 2δ -hyperbolic.

Lemma 10. There exists a residual subset $\mathcal{G}_5 \subset D^1(M)$ such that for a given $f \in \mathcal{G}_5$, if $f \in \mathcal{PCWE}$ then f is star.

Proof. Let $f \in \mathcal{G}_5 = \mathcal{G}_3 \cap \mathcal{G}_4$ and $f \in \mathcal{PCWE}$. Suppose that f is not star. Then, as Lemma 3, we can take $g \ C^1$ close to f such that g has a $q \in P_h(g)$ with a $\delta/2$ -hyperbolic for some $\delta > 0$. Since $f \in \mathcal{G}_4$, f has a hyperbolic periodic point p' with a δ -hyperbolic. This is a contradiction by Lemma 8. \Box

The following is a differentiable version of closing Lemma under the generic sense (see Theorem 1 in Reference [28]). Then we set $C\mathcal{L}$ is the residual subset in $D^1(M)$ such that for any $f \in C\mathcal{L}$,

 $\Omega(f) = \overline{P}(f).$

Proof of Theorem B. Let $f \in \mathcal{G} = \mathcal{G}_5 \cap \mathcal{CL}$ and $f \in \mathcal{PCWE}$. It is enough to show that $M = \overline{P_0(f)}$. By Lemmas 5 and 7, $P(f) = P_0(f)$ and $S_f \cap \overline{P_0(f)} = \emptyset$. Since $f \in \mathcal{CL}$, $\Omega(f) = \overline{P(f)}$. According to Lemma 10, f is star, and so $\{\Omega(f) \setminus \overline{P(f)}\} \cap S_f = \emptyset$. Thus we have $\Omega(f) = \overline{P(f)} = \overline{P_0(f)}$ is hyperbolic. As Proposition 2.7 in Reference [17], we have that $\overline{P_0(f)}$ is expanding. Then, as in the proof of Lemma 3.8 in Reference [17], \square

Funding: This work is supported by the National Research Foundation of Korea (NRF) of the Korea government (MSIP) (No. NRF-2017R1A2B4001892).

Acknowledgments: The author would like to thank the referee for valuable help in improving the presentation of this article.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Utz, W.R. Unstable homeomorphisms. Proc. Am. Math. Soc. 1950, 1, 769–774. [CrossRef]
- 2. Morales, C.A. A generalization of expansivity. *Disc. Contin. Dynam. Syst.* **2012**, *32*, 293–301. [CrossRef]
- 3. Morales, C.A.; Sirvent, V.F. *Expansive Measure*; Colóquio Brasileiro de Matemática, IMPA: Rio de Janeiro, Brazil, 2013.
- 4. Kato, H. Continuum-wise expansive homeomorphisms. Can. J. Math. 1993, 45, 576–598. [CrossRef]
- 5. Hertz, J.R. Continuum-wise expansive homeomorphisms on Peano continua. arXiv 2004, arXiv:math/0406442.
- 6. Hertz, J.R. There are no stable points for continuum-wise expansive homeomorphisms. *arXiv* 2002, arXiv:math/0208102.
- 7. Kato, H. Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke. *Fund. Math.* **1994**, *145*, 261–279. [CrossRef]
- 8. Arbieto, A. Periodic orbits and expansiveness. Math. Z. 2011, 269, 801-807. [CrossRef]
- 9. Lee, M. Continuum-wise expansiveness for generic diffeomorpisms. Nonliearity 2018, 31, 2982.
- 10. Lee, M. Measure expansiveness for generic diffeomorphisms. Dynam. Syst. Appl. 2018, 27, 629–635.
- 11. Lee, M. General Expansiveness for Diffeomorphisms from the Robust and Generic Properties. *J. Dynam. Cont. Syst.* **2016**, *22*, 459–464. [CrossRef]
- 12. Mañé, R. Expansive Diffeomorphisms; Springer: Berlin, Germany, 1975.
- 13. Sakai, K. Continuum-wise expansive diffeomorphisms. Publ. Mat. 1997, 41, 375–382. [CrossRef]
- 14. Sakai, K.; Sumi, N.; Yamamoto, K. Measure-expansive diffeomorphisms. *J. Math. Anal. Appl.* **2014**, 414, 546–552. [CrossRef]
- 15. Sakai, K. Positively expansive differentiable maps. Acta Math. Sini. Eng. Ser. 2010, 26, 1839–1846. [CrossRef]
- 16. Ahn, J.; Lee, K.; Lee, M. Positively measure expansive and expanding. *Comm. Korean Math. Soc.* **2014**, *29*, 345–349. [CrossRef]
- Lee, K.; Lee, M.; Moriyasu, K.; Sakai, K. Positively measure expansive differentiable maps. *J. Math. Anal. Appl.* 2015, 435, 492–507. [CrossRef]
- Coven, E.M.; Reddy, W.L.Positively expansive maps of compact manifolds; Lecture Notes in Math. 819; Springer: Berlin, Germany, 1980; pp. 96–110.
- 19. Artigue, A.; Carrasco-Olivera, D. A note on measure expansive diffeomorphisms. *J. Math. Anal. Appl.* **2015**, 428, 713–716. [CrossRef]
- 20. Franks, J. Necessary conditions for stability of diffeomorphisms. *Trans. Amer. Math. Soc.* **1971**, *158*, 301–308. [CrossRef]
- 21. Przytycki, F. Anosov endomorphisms. Studia Math. 1976, 58, 249-285. [CrossRef]
- Przytycki, F. On Ω-stability and structural stability of endoemorphisms satisfying Axiom A. *Studia Math.* 1977, 60, 61–77. [CrossRef]
- 23. Aoki, N. The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Bras. Mat. 1992, 23, 21-65. [CrossRef]
- 24. Hayashi, S. Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A. *Ergod. Theory Dynam. Syst.* **1992**, *12*, 233–253. [CrossRef]

- 25. Aoki, N.; Moriyasu, K.; Sumi, N. C¹-maps having hyperbolic periodic points. *Fund. Math.* **2001**, *169*, 1–49. [CrossRef]
- 26. Shub, M. Endormorphisms of compact differentiable manifolds. Am. J. Math. 1969, 91, 175–199. [CrossRef]
- 27. Yang, D.; Gan, S. Expansive homoclinic classers. *Nonlinearity* **2009**, *22*, 729–733. [CrossRef]
- Rovella, A.; Sambarino, M. The C¹ closing lemma for generic C¹ endormorphisms. *Ann. Inst. Henri Poincaré* 2010, 27, 1461–1469. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).