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Abstract: We show that if a differentiable map f of a compact smooth Riemannian manifold M
is C1 robustly positive continuum-wise expansive, then f is expanding. Moreover, C1-generically,
if a differentiable map f of a compact smooth Riemannian manifold M is positively continuum-wise
expansive, then f is expanding.
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1. Introduction and Statements

Starting with Utz [1], expansive dynamical systems have been studied by researchers.
Regarding this concept, many researchers suggest various expansivenesses (e.g., N-expansive [2],
measure expansive [3] and continuum-wise expansive [4]). These concepts were used to show chaotic
systems (see References [3,5–7]) and hyperbolic structures (see References [8–14]).

For chaoticity, Morales and Sirvent proved in Reference [3] that every Li-Yorke chaotic map in the
interval or the unit circle are measure-expansive. Kato proved in Reference [7] that, if a homeomorphism
f of a compactum X with dimX > 0 is continuum-wise expansive and Z is a chaotic continuum of f ,
then either f or f−1 is chaotic in the sense of Li and Yorke on almost all Cantor sets C ⊂ Z. Hertz [5,6]
proved that if a homeomorphism f of locally compact metric space X or Polish continua X is expansive
or continuum-wise expansive then f is sensitive dependent on the initial conditions.

For hyperbolicity, Mañé proved in Reference [12] that if a diffeomorphism f of a compact smooth
Riemannian manifold M is robustly expansive then it is quasi-Anosov. Arbieto proved in Reference [8]
that, C1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is expansive
then it is Axiom A and has no cycles. Sakai proved in Reference [13] that, if a diffeomorphism f of a
compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Lee proved in
Reference [9] that, C1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold M
is continuum-wise expansive then it is Axiom A and has no cycles.

Through these results, we are interested in general concepts of expansiveness. Actively researching
positive expansivities (positively expansive [15], positively measure-expansive [16,17]) is a motivation
of this paper. In this paper, we study positively continuum-wise expansiveness, which is the
generalized notion of positive expansiveness and positive measure expansiveness.

In this paper, we assume that M is a compact smooth Riemannian manifold. A differentiable
map f : M→ M is positively expansive(write f ∈ PE ) if there exists a constant δ > 0 such that for any
x, y ∈ M, if d( f i(x), f i(y)) ≤ δ ∀i ≥ 0 then x = y. From Reference [18], if a differentiable map f ∈ PE
then f is open and a local homeomorphism. For any δ > 0, we define a dynamical δ-ball for x ∈ M
such as {y ∈ M : d( f i(x), f i(y)) ≤ δ ∀i ≥ 0}. Put Γ+

δ (x) = {y ∈ M : d( f i(x), f i(y)) ≤ δ ∀i ≥ 0}.
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Note that if a differentiable map f ∈ PE , then Γ+
δ (x) = {x} for any x ∈ M. Here δ > 0 is called an

expansive constant of f .
Let us introduce a generalization of the positively expansive called the positively

measure-expansive (see Reference [3]). LetM(M) be the space of a Borel probability measure of M.
A measure µ ∈ M(M) is atomic if µ({x}) 6= 0, for some point x ∈ M. Let A(M) be the set of atomic
measures of M. Note that A(M) is dense inM(M). LetM∗(M) =M(M) \ A(M). A differentiable
map f : M → M is positively measure-expansive (write f ∈ PME ) if there exists a constant δ > 0
such that µ(Γδ(x)) = 0 for any µ ∈ M∗(M), where δ > 0 is called a measure expansive constant.
In Reference [17], the authors found that there exists a differentiable map f : S1 → S1 that is positively
µ-expansive for any µ ∈ M∗

f (S
1) but not positively expansive whereM∗

f (M) is the set of non-atomic
invariant measures of M.

Now, we introduce another generalization of the positive expansiveness, which is called positively
continuum-wise expansiveness (see Reference [4]). We say that C is a continuum if it is compact and
connected.

Definition 1. A differentiable map f is positively continuum-wise expansive (write f ∈ PCWE ) if there is
a constant e > 0 such that if C ⊂ M is a non-trivial continuum, then there is n ≥ 0 such that diam f n(C) > e,
where if C is a trivial, then C is a one point set.

Note that f ∈ PCWE if and only if f n ∈ PCWE ∀n ≥ 1. We say that f is countably expansive (write
f ∈ CE ) if there is a constant δ > 0 such that for all x ∈ M, Γ+

δ (x) = {y ∈ M : d( f i(x), f i(y)) ≤ δ

∀i ∈ Z} is countable. In Reference [19], the authors showed that if a homeomorphism f : M → M
is measure expansive then f is countably expansive. Moreover, the converse is true. Then, as in the
proof of Theorem 2.1 in Reference [19], it is easy to show that f is positively countable-expansive if
and only if f is positively measure expansive. In this paper, we consider the relationship between the
positively measure-expansive and the positively continuum-wise expansive (see Lemma 1). We can
know that if f is positively measure-expansive then it is not positively continuum-wise expansive
because a continuum is not countable, in general.

Definition 2. A differentiable map f : M→ M is expanding if there exist constants C > 0 and λ > 1 such that

‖Dx f n(v)‖ ≥ Cλn‖v‖,

for any vector v ∈ Tx M(x ∈ M) and any n ≥ 0.

Note that a positively measure-expansive differentiable map is not necessarily expanding.
However, under the C1 robust or C1 generic condition, it is true.

A differentiable map f is C1 robustly positive P if there exists a C1 neighborhood U ( f ) of f such
that for any g ∈ U ( f ), g is positive P.

A point x ∈ M is a singular if Dx f : Tx M → Tf (x)M is not injective. Denoted by S f the set of
singular points of f .

Sakai proved in Reference [15] that if a differentiable map f is C1 robustly positive expansive
then S f = ∅ and it is an expanding map. Lee et al. [17] proved that if f is C1 robustly positive
measure-expansive, then S f = ∅ and it is expanding. Note that if a differentiable map f is expanding
then it is expansive. According to these facts, we prove the following.

Theorem A If a differentiable map f : M → M is C1 robustly positive continuum-wise expansive (write
f ∈ RPCWE ) then S f = ∅ and it is expanding.

Let D1(M) be the set of differentiable maps f : M → M. Note that D1(M) contains the
set of diffeomorphisms Diff1(M) on M and Diff1(M) is open in D1(M). We say that a subset
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G ⊂ D1(M) is residual if it contains a countable intersection of open and dense subsets of D1(M).
Note that the countable intersection of residual subsets is a residual subset of D1(M). A property
“P” holds generically if there exists a residual subset G ⊂ D1(M) such that for any f ∈ G, f has
the “P”. Some times we write for C1 generic f ∈ D1(M) which means that there exists a residual
set G ⊂ D1(M) such that for any f ∈ G. Arbieto [8] and Sakai [15] proved that, C1 generically, a
positively expansive map is expanding. Ahn et al. [16] proved that for a C1 generic f ∈ D1(M),
if S f = ∅ and f is positively measure expansive, then it is expanding. Recently, Lee et al. [17]
showed that, C1 generically, if f ∈ D1(M) is positively measure-expansive then S f = ∅ and f is
expanding. According to these results, we consider C1 generic positively continuum-wise expansive
for f ∈ D1(M) and prove the following.

Theorem B For C1 generic f ∈ D1(M), if f is positively continuum-wise expansive then S f = ∅ and it
is expanding.

2. The Proof of Theorem A

The following proof is similar to Lemma 2.2 in Reference [19].

Lemma 1. Let C ⊂ M be compact and connected. A differentiable map f ∈ PCWE if and only if there is
a constant δ > 0 such that for all x ∈ M, if a continuum C ⊂ Γ+

δ (x) then C is a trivial continuum set.

Proof. Let δ > 0 be a continuum-wise expansive constant and C be compact and connected (that is,
a continuum). Take c = δ/2.. We assume that for any x ∈ M, if C ⊂ Γ+

c (x) then diam f n(C) ≤ 2c for
all n ≥ 0. Since f is positively continuum-wise expansive, C should be a trivial continuum set. Thus,
if f ∈ PCWE , then for all x ∈ M, if a continuum C ⊂ Γ+

c (x), then C is a trivial continuum set.
For the converse part, suppose that f ∈ PCWE . Then, there is a constant c > 0 such that

diam f n(C) ≤ c ∀n ≥ 0, where C is a continuum. Let x ∈ C be given. Since diam f n(C) ≤ c, for all
y ∈ C we have

d( f n(x), f n(y)) ≤ c∀n ≥ 0.

Thus, we know y ∈ Γc(x). Since y ∈ C and y is arbitrary, we have C ⊂ Γc(x). Since a continuum
C ⊂ Γc(x), we have that C is a trivial continuum set.

A periodic point p ∈ P( f ) is hyperbolic if Dp f π(p) : Tp M → Tp M has no eigenvalue with a
modulus equal to 0 or 1, where π(p) is the period of p. Then, Tp M = Es

p ⊕ Eu
p of subspaces such that

(a) Dp f π(p)(Eσ
p) = Eσ

p(σ = s, u), and
(b) there exist constants C > 0, and λ ∈ (0, 1) satisfies for all positive integer n ∈ N,

• ‖ Dp f n(v) ‖≤ Cλn ‖ v ‖ for any v ∈ Es
p, and

• ‖ Dp f−n(v) ‖≤ Cλn ‖ v ‖ for any v ∈ Eu
p

A hyperbolic point p ∈ P( f ) is a sink if Eu
p = {0}, a source if Es

p = {0}, and a saddle if Es
p 6= {0}

and Eu
p 6= {0}. Let Ph( f ) be the set of hyperbolic periodic points of f . The dimension of the stable

manifold Ws(p) = {x ∈ M : d( f i(x), f i(p))→ 0 as i → ∞} is written by the index of p, and denoted
by ind(p). Then, we know 0 ≤ ind(p) ≤ dimM. Let Pi( f ) be the set of all p ∈ Ph( f ) with ind(p) = i.

Lemma 2. If a differentiable map f ∈ PCWE then Pi( f ) = ∅ for 1 ≤ i ≤ dimM.

Proof. By contradiction, we assume that there is i ∈ [1, dimM] such that Pi( f ) 6= ∅. Take p ∈ Pi( f )
and δ > 0. Then, we can find a local stable manifold Ws

δ(p) of p such that Ws
δ(p) 6= ∅. We can

construct a continuum Jp ⊂ Ws
δ(p) centered at p such that diamJp = δ/4. Let Γ+

δ/2(p) = {y ∈ M :
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d( f i(p), f i(y)) ≤ δ/2 ∀i ≥ 0}. Then, we know Jp ⊂ Γ+
δ/2(p). By Lemma 1, Jp should be a trivial

continuum set. This is a contradiction since Jp is not a trivial continuum set.

In Reference [17], the authors showed that there is a positively expansive differentiable map f :
S1 → S1 such that S f 6= ∅. Thus, if f is positively measure-expansive then S f 6= ∅. But if f is C1

robustly positive measure-expansive then S f = ∅. For that, we consider that f is C1 robustly positive
continuum-wise expansive.

The following is a version of differentiable maps of Franks’ lemma (see Lemma 2.1 in Reference [8]).

Lemma 3 ([20]). Let f : M → M be a differentiable map and let U ( f ) be a C1 neighborhood of f . Then,
there exists δ > 0 such that for a finite set A = {x1, x2, . . . , xn} ⊂ M, a neighborhood U of A and a linear map
Li : Txi M→ Tf (xi)

M satisfying ‖Li − Dxi f ‖ < δ for 1 ≤ i ≤ n, there exist ε0 > 0 and g ∈ U ( f ) having the
following properties;

(a) g(x) = f (x) if x ∈ A, and
(b) g(x) = exp f (xi)

◦ Li ◦ exp−1
xi

(x) if x ∈ Bε0(xi) and ∀i ∈ {1, . . . , n}.

It is clear that assertion (b) implies that

g(x) = f (x) if x ∈ A

and that Dxi g = Li, ∀i ∈ {1, . . . , n}.

Theorem 1. If a differentiable map f ∈ RPCWE then S f = ∅.

Proof. Suppose that there is x ∈ S f . Then, by Lemma 3, we can take g C1 close to f such that g has a
closed connected small arc Bε(x) centered at x with radius ε > 0, such that dimBε(x) = 1 and g(Bε(x))
is one point. Take δ = 2ε. Let Γ+

δ (x) = {y ∈ M : d(gi(x), gi(y)) ≤ δ ∀i ≥ 0}. It is clear Bε(x) ⊂ Γ+
δ (x).

Since g(Bε(x)) is one point, for any y ∈ Bε(x), we know that diamgi(Bε(x)) ≤ δ for all i ≥ 0. However,
Bε(x) is not a trivial continuum set, by Lemma 1 this is a contradiction.

Recall that a differentiable map f : M → M is star if every periodic point of g(C1 nearby f ) is
hyperbolic.

Lemma 4. If a differentiable map f ∈ RPCWE then f is star.

Proof. Suppose that f is not star. Then, we can take g C1 close to f such that g has a non-hyperbolic p ∈
P(g). As Lemma 3, we can find g1 C1 close to g (g1 C1 close to f ) such that Dpgπ(p)

1 has an eigenvalue

λ with |λ| = 1. For simplicity, we assume that gπ(p)
1 (p) = g1(p) = p. Let Ec

p be associated with λ. If
λ ∈ R then dimEc

p = 1, and if λ ∈ C then dimEc
p = 2.

First, we consider dimEc
p = 1. Then, we assume that λ = 1 (the other case can be proved similarly).

By Lemma 3, there are ε > 0 and h C1 close to g1 (also, C1 close to f ), having the following properties;

• h(p) = g1(p) = p,
• h(x) = expp ◦ Dpg1 ◦ exp−1

p (x) if x ∈ Bε(p), and
• h(x) = g1(x) if x /∈ B4ε(p).

Since λ = 1, we can construct a closed connected small arc Ip ⊂ Bε(p) ∩ expp(Ec
p(ε)) with its

center at p such that

• diamIp = ε/4,
• h(Ip) = Ip, and
• the map h|Ip : Ip → Ip which is the identity.
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Take δ = ε/2. Let Γ+
δ (p) = {x ∈ M : d(hi(x), hi(p)) ≤ δ ∀i ≥ 0}. Then, it is clear Ip ⊂ Γδ(p),

and diamhi(Ip) = diamIp for all i ≥ 0. Since f ∈ RPCWE , according to Lemma 1, Ip has to be just
a trivial continuum set. This is a contradiction since Ip is not a trivial continuum set.

Finally, we consider dimEc
p = 2. For convenience, we assume that gπ(p)(p) = g(p) = p.

As Lemma 3, we can find ε > 0 and g1 ∈ U ( f ), which has the following properties;

• g1(p) = g(p) = p,
• g1(x) = expp ◦ Dpg ◦ exp−1

p (x) if x ∈ Bε(p), and
• g1(x) = g(x) if x /∈ B4ε(p).

For any v ∈ Ec
p(ε), there is l > 0 such that Dpgl(v) = v. Take u ∈ Ec

p(ε) such that ‖u‖ = ε/2.
As in the previous arguments, we can construct a closed connected small arc Jp ⊂ Bε(p)∩ expp(Ec

p(ε))

such that

• diamJp = ε/4,
• gl

1(Jp) = Jp, and
• gl

1|Jp : Jp → Jp is the identity map.

As in the proof of the first case, take δ = ε/2. Let Γ+
δ (p) = {x ∈ M : d(gli

1 (x), gli
1 (p) ≤ δ ∀i ≥ 0}.

It is clear that Jp ⊂ Γ+
δ (p). Then, by Lemma 1, Jp must be a trivial continuum set but it is not possible

since Jp is a closed connected small arc. Thus, if f ∈ RPCWE then f is star.

The differentiable maps f , g : M→ M are conjugate if there is a homeomorphism h : M→ M such
that f ◦ h = h ◦ g. We say that a differentiable map f is structurally stable if there is a C1 neighborhood
U ( f ) of f ∈ D1(M) such that for any g ∈ U ( f ), g is conjugate to f . A differentiable map f is Ω stable
if there is a C1 neighborhood U ( f ) of f ∈ D1(M) such that for any g ∈ U ( f ), g|Ω(g) is conjugate to
f |Ω( f ), where Ω( f ) denotes the nonwandering points of f . Przytycki proved in Reference [21] that if f
is an Anosov differentiable map then it is not an Anosov diffeomorphism or expandings which are not
structurally stable. Moreover, assume that f is Axiom A (i.e., P( f ) = Ω( f ) is hyperbolic) and has no
singular points in the nonwandering set Ω( f ). Then f is Ω stable if and only if f is strong Axiom A
and has no cycles ( see Reference [22]). Here, f is strong Axiom A means that f is Axiom A and Ω( f ) is
the disjoint union Λ1 ∪Λ2 of two closed f invariant sets.

According to the above results of a diffeomorphism f ∈ Diff1(M), one can consider the case of
a differentiable f ∈ D1(M) which is an extension of a diffeomorphism. For instance, a diffeomorphism
f ∈ Diff(M) is said to be star if we can choose a C1 neighborhood U ( f ) of f such that every periodic
point of g is hyperbolic, for all g ∈ U ( f ).

If a diffeomorphism f is star then f is Axiom A and has no cycles (see References [23,24]). Aoki et
al. Theorem A in Reference [25] proved that if a differentiable map f is star and the nonwandering set
Ω( f ) ∩ S f ⊂ {p ∈ P( f ) : p is a sink } then f is Axiom A and has no cycles.

Theorem 2. Let f ∈ D1(M). If f ∈ RPCWE then f is Axiom A and has no cycles.

Proof. Suppose that f ∈ RPCWE . As Lemma 4, f is star. By Theorem 1, we know S f = ∅, and so,
Ω( f ) ∩ S f = ∅. By Lemma 2, there do not exist sinks in P( f ), that is, {p ∈ P( f ) : p is a sink } = ∅.
Thus, by Theorem A in Reference [25], f is Axiom A and has no cycles.

Proof of Theorem A. Suppose that f ∈ RPCWE . Then, by Lemma 2, Theorem 2 and Proposition 2.7
in [17], Ω( f ) = P0( f ) is hyperbolic and P0( f ) is expanding. Then, by Lemma 2.8 in Reference [17],
M = P0( f ). Thus, f is expanding.

3. The Proof of Theorem B

Denote by KS the set of Kupka–Smale C1 maps of M. By Shub [26], KS is a residual set of D1(M).
If f ∈ KS then every p ∈ P( f ) is hyperbolic. Then, we can see the following.
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Lemma 5. Let f ∈ KS . If f ∈ PCWE then P( f ) = P0( f ).

Proof. Let f ∈ PCWE . Suppose, by contradiction, that Pi( f ) 6= ∅ for some 1 ≤ i ≤ dimM. Take p ∈
Pi( f ) and δ > 0. Then, we can define a local stable manifold Ws

δ(p) of p such that Ws
δ(p) 6= ∅.

We can construct a closed connected small arc Jp ⊂Ws
δ(p) with its center at p such that diamJp = δ/4.

Let Γ+
δ (p) = {x ∈ M : d( f i(x), f i(p)) ≤ δ for all i ≥ 0}. Then, it is clear Jp ⊂ Γ+

δ (p). Since f ∈ PCWE ,
by Lemma 1, Jp must be a trivial continuum set. This is a contradiction since Jp is not a trivial
continuum set. Thus, every p ∈ P( f ) is a source so that P( f ) = P0( f ).

Lemma 6. Lemma 8 in [15]. There exists a residual set G1 ⊂ D1(M) such that for given f ∈ G1, if for any
C1 neighborhood U ( f ) of f there exist g ∈ U ( f ) and p ∈ Ph(g) with ind(p) = i(0 ≤ i ≤ dimM), then there
is p′ ∈ Ph( f ) with ind(p′) = i.

Lemma 7. There exists a residual subset G2 ⊂ D1(M) such that for a given f ∈ G2, if f ∈ PCWE then
S f ∩ P0( f ) = ∅.

Proof. Let f ∈ G2 = KS ∩ G1 and f ∈ PCWE . Suppose, by contradiction, that S f ∩ P0( f ) 6= ∅.
Since S f ∩ P0( f ) 6= ∅, we can choose a point x ∈ S f ∩ P0( f ). Then, we can find a sequence of periodic
points {pn} ⊂ P0( f ) with period π(pn) such that pn → x as n → ∞. As Lemma 3, there exists g C1

close to f such that gπ(pn)(pn) = pn and pn ∈ Sg. Again using Lemma 3, there exists g1 C1 closed

to g such that g1 C1 is close to f , gπ(pn)
1 (pn) = pn, and ind(pn) = i(1 ≤ i ≤ dimM). Since f ∈ G1,

by Lemma 6, f has a hyperbolic saddle periodic point q with index(q) = i(1 ≤ i ≤ dimM). This is
a contradiction by Lemma 2.

For a δ > 0, a point p ∈ P( f )( f π(p)(p) = p) said to be a δ-hyperbolic (see Reference [27]) if for an
eigenvalue of D f π(p)(p), we can take an eigenvalue λ of D f π(p)(p) such that

(1− δ)π(p) < |λ| < (1 + δ)π(p).

Lemma 8. There exists a residual subset G3 ⊂ D1(M) such that for a given f ∈ G3, if f ∈ PCWE , then we
can take δ > 0 such that f has no δ-hyperbolic.

Proof. Let f ∈ G3 = KS ∩ G1 ∩ G2, and let f ∈ PCWE . Since f ∈ KS ∩ G1 ∩ G2, by Lemma 2 and
Lemma 7, we know S f ∩ P0( f ) = ∅. Assume that for any δ > 0, there is a p ∈ Ph( f ) with a δ-hyperbolic.
By Lemma 3, we can take g C1 close to f such that p has an eigenvalue with modulus one. Again using
Lemma 3, there exists g1 C1 close to g (g1 C1 close to f ) such that g1 has a saddle q ∈ Ph(g1) with
ind(q) = i(1 ≤ i ≤ dimM), where Ph(g1) is the set of all hyperbolic periodic points of g1. Since f ∈ G1,
f has a saddle q′ ∈ Ph( f ) with ind(q′) = i(1 ≤ i ≤ dimM). This is a contradiction by Lemma 2.

Lemma 9. Lemma 7 in Reference [15]. There exists a residual subset G4 ⊂ D1(M) such that for a given
f ∈ G4 and δ > 0, if any C1 neighborhood U ( f ) of f there exist g ∈ U ( f ) and p ∈ Ph(g) with a δ-hyperbolic,
then we can find p′ ∈ Ph( f ) with a 2δ-hyperbolic.

Lemma 10. There exists a residual subset G5 ⊂ D1(M) such that for a given f ∈ G5, if f ∈ PCWE then f is star.

Proof. Let f ∈ G5 = G3 ∩ G4 and f ∈ PCWE . Suppose that f is not star. Then, as Lemma 3, we can
take g C1 close to f such that g has a q ∈ Ph(g) with a δ/2-hyperbolic for some δ > 0. Since f ∈ G4, f
has a hyperbolic periodic point p′ with a δ-hyperbolic. This is a contradiction by Lemma 8.

The following is a differentiable version of closing Lemma under the generic sense (see Theorem
1 in Reference [28]). Then we set CL is the residual subset in D1(M) such that for any f ∈ CL,
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Ω( f ) = P( f ).

Proof of Theorem B. Let f ∈ G = G5 ∩ CL and f ∈ PCWE . It is enough to show that M = P0( f ).
By Lemmas 5 and 7, P( f ) = P0( f ) and S f ∩ P0( f ) = ∅. Since f ∈ CL, Ω( f ) = P( f ). According to
Lemma 10, f is star, and so {Ω( f ) \ P( f )} ∩ S f = ∅. Thus we have Ω( f ) = P( f ) = P0( f ) is hyperbolic.
As Proposition 2.7 in Reference [17], we have that P0( f ) is expanding. Then, as in the proof of Lemma
3.8 in Reference [17], we have M = P0( f ).
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