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Abstract: We consider online scheduling with bi-criteria on parallel batch machines, where the batch
capacity is unbounded. In this paper, online means that jobs’ arrival is over time. The objective is to
minimize the maximum machine cost subject to the makespan being at its minimum. In unbounded
parallel batch scheduling, a machine can process several jobs simultaneously as a batch. The processing
time of a job and a batch is equal to 1. When job Jj is processed on machine Mi, it results cost cij. We only
consider two types of cost functions: cij = a + cj and cij = a · cj, where a is the fixed cost of machines
and cj is the cost of job Jj. The number of jobs is n and the number of machines is m. For this problem,
we provide two online algorithms, which are showed to be the best possible with a competitive ratio of
(1+ βm, d n

me), where βm is the positive root of the equation (1+ βm)m+1 = βm + 2.
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1. Introduction

In this article, we consider an online bi-criteria scheduling problem to minimize the maximum
machine cost subject to the makespan achieving its minimum. Online means that jobs’ arrival is over
time. It means, until when a job arrives, all information about it, including its arrival time, processing
time and processing cost, is not known by us. For a minimization problem that is relevant to a single
objective function, the competitive ratio of an online algorithm A is defined to be

ρA = sup{ f (A, I)
OPT(A, I)

: I is any job instance and OPT(A, I) > 0}.

Here, f (A, I) is the objective value in algorithm A for any input instance I, OPT(A, I) is the
optimal objective value in the offline circumstance, respectively. We say algorithm A is the best
possible if there doesn’t exist any algorithm A′ such that ρA′ < ρA.

Parallel-batch was first studied by Uzsoy et al. [1,2]. There are two classes of parallel-batch models
that have been widely considered in the literature, the unbounded version b = ∞ and the bounded
version b < ∞, where b is the batch capacity. That is, at most b jobs can be processed simultaneously in
one batch. The processing time of one batch is defined as the longest job in it. Since in this paper we
consider that the jobs are with identical processing time, the processing time of the batches is 1.

In traditional scheduling theory, most problems are concerned with the minimization of one
certain function. There have been many achievements such as, for minimizing maximum completion
time when jobs have the same processing times, Zhang et al. [3] provided two best possible online
algorithmss with 1 + βm and 1 + α-competitive ratio for the unbounded model b = ∞ and bounded
model b < ∞, respectively, and βm satisfies (1 + βm)m+1 = βm + 2, α =

√
5−1
2 . When jobs have

diverse processing times, Tian et al. [4] and Liu et al. [5] independently gave two best possible
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online algorithms with competitive ratio of 1 + αm, and αm is the positive solution of the equation
α2

m + m · αm − 1 = 0. Fang et al. [6] presented a best possible online algorithm with a competitive
ratio of 1 + φ for a set of processing time scheduling problems, where φ =

√
5−1
2 . For minimizing a

maximum weighted completion time problem, Li et al. [7] established a best possible online algorithm
with a competitive ratio of

√
5+1
2 . For minimizing total weighted completion time problem, Cao et al. [8]

gave a best possible online algorithm with a competitive ratio of ρm, where ρm is the positive solution
of ρm+1

m − ρm − 1 = 0. Some reviews for parallel-batch scheduling research can be found in [9–14].
Today, with the rapid development of science and technology, minimization of one certain

function doesn’t satisfy the needs of things. In addition, jobs’ objective functions may have certain
kinds of aspects to minimize. In recent years, there have been some results about minimizing bi-criteria
objective functions such as Ma et al. [15], who considered an online trade-off scheduling problem
that minimize makespan and total weighted completion time on a single machine, presenting a
nondominated (1 + α, 1 + 1

α )−competitive online algorithm for each α with 0 < α ≤ 1. Liu et al. [16]
considered the single machine online trade-off scheduling problem, which minimizes the makespan
and maximum lateness. They established a nondominated (ρ, 1 + 1

ρ )−competitive online algorithm

with 1 ≤ ρ ≤
√

5+1
2 . Here, a (ρ1, ρ2)-competitive online algorithm is called nondominated if

there is no other (ρ′1, ρ′2)-competitive online algorithm A′ such that (ρ′1, ρ′2) ≤ (ρ1, ρ2) and either
ρ′1 < ρ1 or ρ′2 < ρ2. In addition, Lee et al. [17] considered two bi-criteria scheduling problems:
one is minimizing the maximum machine cost subject to the total completion time achieving its
minimum, another is minimizing the total machine cost subject to the makespan achieves its minimum.
As these two problems are strongly NP-hard, they proposed fast heuristics and found their worst-case
performance bounds.

Another class of scheduling problems with bi-criteria is to minimize a secondary objective function
f2 subject to a primary objective function f1 being at its minimum, and the objective is denoted by
Lex( f1, f2). In practical production, the producer wants to reduce the cost of the machine as soon
as it is finished. Given m parallel batch machines Mi, 1 ≤ i ≤ m, and n jobs Jj, 1 ≤ j ≤ n. Every
machine has a fixed cost ai, job Jj has cost cj, and 1 ≤ j ≤ n. When job Jj is processed on machine
Mi, this will result in different costs cij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Suppose that xij = 1 if job j is
processed on machine i, otherwise xij = 0. Thus, the total machine cost, is named TMC, and TMC
= ∑m

i=1 ∑n
j=1 cijxij, and the maximum machine cost is named MMC, and MMC = maxm

i=1{∑
n
j=1 cijxij}.

In Lee et al. [17], they studied the offline bi-criteria scheduling problems, for which the objective
functions are minimizing MMC subject to the constraint that ∑ Cj is minimized and minimizing TMC
subject to the constraint that Cmax is minimized, where Cj is the completion time of job Jj, ∑ Cj is
total completion time of jobs, and Cmax is the maximum completion time of jobs. They considered
three kinds of cost functions: cij = cj, cij = ai + cj, and cij = ai · cj. In our article, we consider online
algorithms to minimize the maximum machine cost subject to the makespan achieving its minimum,
and the objective function is denoted as Lex(Cmax, MMC). Here, we assume that all machines have the
same fixed cost a, and we consider two kinds of costs: cij = a + cj and cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Since the jobs are processed in batches in our model, the cost of a batch processed on some machine
is defined as the maximum cost of the jobs in it. Then, the cost of one machine is the total cost of the
batches on it. This problem can be written in the three-field notation as Pm|online, p− batch, b = ∞,
pj = 1|Lex(Cmax, MMC), when cij = a + cj or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For the online scheduling problem to minimize a primary objective function f1 and a
secondary objective function f2, we say that an online algorithm A is (ρA,1, ρA,2)-competitive if it
is ρA,1-competitive when minimizing f1 and ρA,2-competitive when minimizing f2. In the case that ρA,1
is the competitive ratio of A for minimizing f1 and ρA,2 is the competitive ratio of A for minimizing
f2, we also say that the online algorithm A has a competitive ratio of (ρA,1, ρA,2). Suppose that the best
possible competitive ratio is ρ when minimizing f1. We say that the online algorithm A is the best
possible, if ρA,1 = ρ and there is no other online algorithm A′ such that ρA′ ,1 = ρ and ρA′ ,2 < ρA,2.
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This paper is organized as four sections as follows. In Section 2, the parameters and notations are
introduced. In Section 3, the lower bounds of the competitive ratio are presented. In Section 4, two
best possible online algorithms with a competitive ratio of (1 + βm, d n

m e) are showed, where βm is the
positive root of the equation (1 + βm)m+1 = βm + 2.

The objective considered in this paper is to minimize the maximum machine cost subject to the
makespan being at its minimum. In addition, the algorithms studied in this paper are extensions of
the results about makespan in the literature.

2. Preliminaries and Notations

Some preliminaries and notations that will be used in the paper are shown in the following:

• cmax = max{c1, c2, · · · , cn}: The maximum cost of the jobs;
• Bli : The lth batch on machine Mi;
• cBl : The cost of batch Bl , denoted as cBl , is the maximum cost of jobs belonging to batch Bl ;
• cMi : The cost of machine Mi, i.e., the total cost of all batches on machine Mi;
• U(t): The set of the unscheduled available jobs at time t;
• rmax(t): The last release time of jobs in U(t);
• rj: The release time of job Jj;
• rmax: The last release time of all jobs;
• sl : The starting time of batch Bl by an online algorithm;
• σ and π: The schedules generated by an online algorithm and an offline optimal algorithm,

respectively;
• Cmax(σ) and Cmax(π): The maximum completion time in σ and the maximum completion time in

π, respectively;
• MMC(σ) and MMC(π): The maximum machine cost in σ and the maximum machine cost in π,

respectively.

For minimizing a single criterion, there have been many results about minimizing makespan.
For example, the following lemma shows one result to minimize Cmax. From Theorem 3 of
Zhang et al. [3], we have

Lemma 1. For problem Pm|online, p− batch, b = ∞, pj = 1|Cmax, the competitive ratio of the best possible
online algorithm is 1 + βm, where βm is the positive root of the equation (1 + βm)m+1 = βm + 2.

3. The Lower Bound

Theorem 1. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exists no online algorithm with a competitive ratio less than
(1 + βm, d n

m e).

Proof. Supposing that the fixed cost of each machine is a, the cost of each job is 1, which means
cmax = 1. Let ψ be the set of the best possible solutions of the objective function Cmax. Then, for ∀σ ∈ ψ,
we prove that there exists no online algorithm that satisfies MMC(σ)

MMC(π)
< d n

m e, subjected to the constraint

Cmax(σ)

Cmax(π)
≤ 1 + βm. (1)

We use adversary strategy to prove this conclusion. Let A be an arbitrary online algorithm, and ε

is an arbitrarily small positive number. Suppose the first job J1 arrives at 0 and starts at s1. From (1),
we can know that s1 ≤ βm. Otherwise, we have

Cmax(σ)

Cmax(π)
=

s1 + 1
r1 + 1

> 1 + βm,
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a contradiction. Job Ji+1 arrives at si + ε and starts at si+1, 1 ≤ i ≤ n − 1. We claim that si ≤
(1 + βm)ri + βm. Otherwise,

Cmax(σ)

Cmax(π)
=

si + 1
ri + 1

>
(1 + βm)ri + βm + 1

ri + 1
= 1 + βm,

Then, Cmax(σ) > (1 + βm)Cmax(π), a contradiction.
Hence, n jobs are processed as n batches on m machines.
When cij = a + cj, after n jobs are processed, there must be not less than d n

m e jobs on one machine.
Because the cost of each job is 1, the maximum machine cost is MMC(σ) ≥ d n

m e × (a + 1). In π, all
jobs can form one batch starting at the last time when the job arrives, so MMC(π) = a + 1. Then, we
get MMC(σ)

MMC(π)
≥ d n

m e.
When cij = a · cj, similarly after n jobs are finished, there must be one machine that does not have

less than d n
m e jobs. Since each job’s cost is 1, the maximum machine cost is MMC(σ) ≥ d n

m e × (a · 1).
In π, all jobs can form one batch starting at the time which the last job arrives, so MMC(π) = a · 1.
Then, we get MMC(σ)

MMC(π)
≥ d n

m e.
Therefore, for problem Pm|online, p− batch, b = ∞, pj = 1|.Lex(Cmax, MMC), when cij = a + cj

or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and there exists no online algorithm in which the competitive
ratio is less than (1 + βm, d n

m e).

4. Best Possible Online Algorithms

Here, there are two online algorithms for this problem.

Algorithm H1

At current time t, if some machine is idle, U(t) 6= ∅, when t ≥ (1 + βm)rmax(t) + βm; then, start
the jobs in U(t) as a batch on the idle machine that has the minimum machine cost at the moment.
Otherwise, do nothing but wait.

Algorithm H2

At current time t, if some machine is idle, U(t) 6= ∅, when t ≥ (1 + βm)rmax(t) + βm; then, start
the jobs in U(t) as a batch on the idle machine that has the minimum number of batches at the moment.
Otherwise, do nothing but wait.

Following the notation in Zhang et al. [3], we also call batches that start at (1 + βm)rmax(t) + βm

regular batches. From Lemma 1 of Zhang et al. [3], we have

Lemma 2. All batches generated by algorithm H1 and H2 are regular batches.

Lemma 3. When cij = a + cj, Then, MMC(π) = a + cmax; When cij = a · cj, then MMC(π) = a · cmax.

Proof. The offline optimal objective case of the maximum machine cost MMC is: all jobs can form
one batch starting at the last arrival time on an arbitrary machine. Thus, when cij = a + cj, the
maximum machine cost is MMC(π) = a + cmax; when cij = a · cj, the maximum machine cost is
MMC(π) = a · cmax.

Theorem 2. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H1 is a best possible online algorithm with a competitive ratio of
(1 + βm, d n

m e).
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Proof. When cij = a + cj, suppose that the schedule generated by algorithm H1 is σ′1. From Lemmas 1
and 2, we can know that

Cmax(σ
′
1) = (1 + βm)rmax + βm + 1 = (1 + βm)(rmax + 1) ≤ (1 + βm)Cmax(π).

In the following, we prove MMC(σ′1) ≤ d
n
m e ·MMC(π). Suppose, in σ′1, that the machine Mx

has the maximum machine cost, Then,

MMC(σ′1) = cMx . (2)

We distinguish the following cases:
Case 1 The number of batches on machine Mx is no more than d n

m e. Thus,

cMx ≤ d n
m
e · a + ∑

1≤l≤d n
m e

cBlx

≤ d n
m
e · (a + cmax).

In addition, by (2), we have

MMC(σ′1) = cMx ≤ d
n
m
e · (a + cmax).

From Lemma 3, we get

MMC(σ′1) ≤ d
n
m
e ·MMC(π).

Case 2 The number of batches on machine Mx is more than d n
m e. Thus, there must be one machine

that has less than d n
m e batches. Suppose machine Mx′ is the machine that has less than d n

m e batches;
let By be the last batch to process on machine Mx.

Firstly, if machine Mx′ is idle directly before sy, let the total cost of batches that start before sy

on Mx′ be V1. From algorithm H1, because the number of batches on machine Mx′ is no more than
d n

m e − 1, so

V1 ≤ (d n
m
e − 1) · a + ∑

1≤l≤d n
m e−1

cBlx′
. (3)

Moreover, from algorithm H1, the total cost of batches that start before sy on machine Mx is not
greater than the total cost of batches start before sy on machine Mx′ , that is

cMx − (a + cBy) ≤ V1,

then from (3), we have

cMx ≤ V1 + (a + cBy)

≤ (d n
m
e − 1) · a + ∑

1≤l≤d n
m e−1

cBlx′
+ (a + cBy)

≤ d n
m
e · a + (d n

m
e − 1) · cmax + cmax

= d n
m
e · (a + cmax).
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In addition, by (2), we have

MMC(σ′1) = cMx ≤ d
n
m
e · (a + cmax).

Lemma 3 shows that
MMC(σ′1) ≤ d

n
m
e ·MMC(π).

Secondly, if machine Mx′ is busy directly before sy, let By′ be the last batch that is on machine Mx

such that machine Mx′ is idle directly before sy′ . Supposing that there are k batches between By and
By′ , we denote them as B′1, B′2, · · · , B′k.

Claim By′ must exist and is not the first batch on Mx.
Otherwise, By′ does not exist or it is the first batch on Mx. This means that machine Mx′ is busy

when B2x , B3x ,· · · start on machine Mx. Since the number of batches on machine Mx is more than d n
m e,

the number of batches on machine Mx′ must be not less than d n
m e, contradicting the assumption that

the number of batches on machine Mx′ is less than d n
m e. Thus, the claim holds.

Let the total cost of batches start before sy′ on machine Mx′ be V2. Then, from the definition of By′

and Mx′ , the number of batches that start before sy′ on machine Mx′ is no more than d n
me − (k + 2). Thus,

V2 ≤ [d n
m
e − (k + 2)] · a + ∑

1≤l≤d n
m e−(k+2)

cBlx′

≤ [d n
m
e − (k + 2)] · a + [d n

m
e − (k + 2)] · cmax

= [d n
m
e − (k + 2)] · (a + cmax).

That is,
V2 ≤ [d n

m
e − (k + 2)] · (a + cmax). (4)

Furthermore, by algorithm H1, the total cost of batches starting before sy′ on machine Mx is not
greater than the total cost of batches starting before sy′ on machine Mx′ , then

cMx − (a + cBy)− (k · a + ∑
1≤l≤k

cB′l
)− (a + cBy′

) ≤ V2.

Thus, from (4), we know that

cMx ≤ V2 + (a + cBy′
) + (k · a + ∑

1≤l≤k
cB′l

) + (a + cBy)

≤ [d n
m
e − (k + 2)] · (a + cmax) + (a + cmax) + (k · a + k · cmax) + (a + cmax)

= d n
m
e · (a + cmax).

In addition, by (2), we have

MMC(σ′1) = cMx ≤ d
n
m
e · (a + cmax).

Lemma 3 shows that
MMC(σ′1) ≤ d

n
m
e ·MMC(π).

We know that k ≥ 1. When k = 0, similar to the above discussion, the conclusion also holds.
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When cij = a · cj, suppose the schedule produced by algorithm H1 is σ′′1 . From Lemmas 1
and 2, we obtain that Cmax(σ′′1 ) ≤ (1 + βm)Cmax(π). In the following, we want to prove that
MMC(σ′′1 ) ≤ d

n
m e ·MMC(π). Supposing that machine Mw has maximum machine cost in σ′′1 , Then,

MMC(σ′′1 ) = cMw . (5)

We distinguish the following cases:
Case 3 The number of batches is no more than d n

m e on machine Mw. Then,

cMw ≤ ∑
1≤l≤d n

m e
(a · cBlw

)

= a · ∑
1≤l≤d n

m e
cBlw

≤ d n
m
e · a · cmax.

Thus,
cMw ≤ d

n
m
e · a · cmax. (6)

From (5) and (6), we have

MMC(σ′′1 ) = cMw ≤ d
n
m
e · (a · cmax).

Lemma 3 shows that
MMC(σ′′1 ) ≤ d

n
m
e ·MMC(π).

Case 4 The number of batches is more than d n
m e on machine Mw. Thus, there must be one

machine that has fewer than d n
m e batches. Supposing that machine Mw′ is the machine for which the

number of batches on it is less than d n
m e, let Bz be the last batch to process on machine Mw.

If machine Mw′ is idle directly before sz, we denote the total cost of batches start before sz on
machine Mw′ as V′1, by algorithm H1 because the number of batches on machine Mw′ is no more than
d n

m e − 1, hence
V′1 ≤ a · ∑

1≤l≤d n
m e−1

cBlw′
. (7)

Furthermore, by algorithm H1, the total cost of batches starting before sz on machine Mw is not
greater than the total cost of batches starting before sz on machine Mw′ ; then,

cMw − (a · cBz) ≤ V′1.

From (7), we have

cMw ≤ V′1 + a · cBz

≤ a · ∑
1≤l≤d n

m e−1
cBlw′

+ a · cBz

≤ a · (d n
m
e − 1) · cmax + a · cmax

= a · d n
m
e · cmax.

In addition, by (6), we have

MMC(σ′′1 ) = cMw ≤ d
n
m
e · a · cmax.
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Lemma 3 shows that
MMC(σ′′1 ) ≤ d

n
m
e ·MMC(π).

If machine Mw′ is busy directly before sz, let Bz′ be the last batch on machine Mw such that
machine Mw′ is idle directly before sz′ . Similarly, suppose there are k batches between Bz′ and Bz, we
denote them as B′1, B′2, · · · , B′k. From the discussion of case 2 in cij = a + cj situation, such Bz′ must
exist and is not the first batch on Mw. Denoting the total cost of batches starting before sz′ on machine
Mw′ is V′2; thus, by the definition of Bz′ and Mw′ , the number of batches starting before sz′ on machine
Mw′ is no more than d n

m e − (k + 2). Then,

V′2 ≤ ∑
1≤l≤d n

m e−(k+2)
a · cBlw′

= a · ∑
1≤l≤d n

m e−(k+2)
cBlw′

≤ a · [d n
m
e − (k + 2)] · cmax.

Thus,
V′2 ≤ a · [d n

m
e − (k + 2)] · cmax. (8)

Moreover, by algorithm H1, the total cost of batches starting before sz′ on machine Mw is not
greater than the total cost of batches starting before sz′ on machine Mw′ , so

cMw − (a · cBz)− (a · ∑
1≤l≤k

cB′l
)− (a · cBz′

) ≤ V′2.

Therefore, from (8), we get

cMw ≤ V′2 + a · cBz′
+ a · ∑

1≤l≤k
cB′l

+ a · cBz

≤ a · [d n
m
e − (k + 2)] · cmax + a · cmax + a · k · cmax + a · cmax

= d n
m
e · a · cmax.

In addition, by (6), we have

MMC(σ′′1 ) = cMw ≤ d
n
m
e · (a · cmax).

Lemma 3 shows that
MMC(σ′′1 ) ≤ d

n
m
e ·MMC(π).

We know that k ≥ 1. When k = 0, similar to the above discussion, the conclusion also holds.
Overall, for problem Pm|online, p− batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or

cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H1 is a (1 + βm, d n
m e)-competitive online algorithm.

Combining theorem 1, we obtain that algorithm H1 is a best possible online algorithm.

Lemma 4. In algorithm H2, there are at most d n
m e batches on each machine.

Proof. When n ≤ m, there is at most one batch on each machine, so the conclusion holds naturally.
When n > m, suppose, after the kth batch has been processed, that there are at most d k

m e batches on
each machine, and m ≤ k ≤ n− 1. In the following, we have an induction on k, to prove that, after the
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(k + 1)th batch has been processed, there are at most d k+1
m e batches on each machine. The batches are

denoted by B1, B2, · · · , such that s1 < s2 < · · · .
Case 1 k = qm + l, and 1 ≤ q ≤ d n

m e − 1, 1 ≤ l ≤ m − 1, where q, l are integers—as after
the kth batch has been processed, there are k− qm = l machines in which their batch numbers are
d k

m e, and other m− (k − qm) = m− l machines in which their batch numbers are d k
m e − 1. Let sk

be the release time of kth batch, and rk+1 be the latest release time of jobs in (k + 1)th batch. Then,
we get rk+1 > sk; otherwise, jobs in the (k + 1)th batch will process with jobs in the kth batch, a
contradiction. Furthermore, by algorithm H1, we can get that the starting time of the (k + 1)th batch is
(1 + βm)rk+1 + βm. In addition, because

(1 + βm)rk+1 + βm > (1 + βm)sk + βm

= (1 + βm)
2rk + (1 + βm)βm + βm

> (1 + βm)
2sk−1 + (1 + βm)βm + βm

...

> (1 + βm)
msk+1−m +

m−1

∑
i=0

βm(1 + βm)
i

= (1 + βm)
msk+1−m + (1 + βm)

m − 1

=
βm + 2
βm + 1

(sk+1−m + 1)− 1

= sk+1−m +
sk+1−m + 1

βm + 1
≥ sk+1−m + 1,

(1 + βm)rk+1 + βm > sk+1−m + 1. (9)

We use sk+1−m to represent the starting time of the (k + 1 − m)th batch. From (9), it shows
that, when the (k + 1)th batch starts, the (k + 1 − m)th batch has been completed. Then, l
batches that start before the (k + 1 − m)th batch also have been completed. We define these l
batches as Bk+1−m−l , Bk+1−m−(l−1), · · ·, Bk−m. Then, when the (k + 1)th batch starts, l + 1 batches
Bk+1−m−l , Bk+1−m−(l−1), · · ·, Bk−m, Bk+1−m have been completed. In addition, because of k = qm + l,
when the (k + 1)th batch starts, there is at least one machine that is idle. In addition, it can be known,
by algorithm H2, that the number of batches on this idle machine is d k

m e − 1. Hence, after the (k + 1)th
batch is completed, the number of batches on this idle machine is d k

m e − 1 + 1 = d k
m e. Moreover,

because d k
m e = d

k+1
m e when k = qm + l, there are k− qm + 1 = l + 1 machines whose batch numbers

are d k+1
m e, and other m− (k− qm + 1) = m− l − 1 machines that have d k+1

m e − 1 batches. This means
that there are at most d k+1

m e batches on each machine. The result follows.
Case 2 k = qm and 1 ≤ q ≤ d n

m e − 1, where q is an integer. After the (k + 1)th batch is
processed, one machine has d k

m e+ 1 batches, and the number of batches on other machines is still d k
m e.

Furthermore, d k
m e+ 1 = d k+1

m e when k = qm. Thus, every machine has at most d k+1
m e batches. The

results follow.

Theorem 3. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H2 is the best possible online algorithm with a competitive ratio
of (1 + βm, d n

m e).

Proof. When cij = a + cj, suppose the schedule generated by algorithm H2 is σ′2. From Lemma 1 and
Lemma 2, we have

Cmax(σ
′
2) = (1 + βm)rmax + βm + 1 = (1 + βm)(rmax + 1) ≤ (1 + βm) · Cmax(π).
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In the following, we want to prove MMC(σ′2) ≤ d n
m e ·MMC(π).

Suppose machine Mx has the maximum machine cost, Then,

MMC(σ′2) = cMx . (10)

From Lemma 4, we know that the number of batches on machine Mx is no more than d n
m e; then,

from (10), we get

MMC(σ′2) = cMx

≤ d n
m
e · a + ∑

1≤l≤d n
m e

cBlx

≤ d n
m
e · a + d n

m
e · cmax

= d n
m
e · (a + cmax).

In addition, Lemma 3 shows that

MMC(σ′2) ≤ d
n
m
e ·MMC(π).

When cij = a · cj, suppose the schedule produced by algorithm H2 is σ′′2 . From Lemmas 1 and 2,
we can get Cmax(σ′′2 ) ≤ (1 + βm) · Cmax(π)—the following to prove MMC(σ′′2 ) ≤ d n

m e ·MMC(π).
Assume that machine Mw is the machine with the maximum cost, Then,

MMC(σ′′2 ) = cMw . (11)

From Lemma 4, we know that the number of batches on machine Mw is no more than d n
m e; then,

from (11), we get

MMC(σ′′2 ) = cMw

≤ ∑
1≤l≤d n

m e
a · cBlw

≤ d n
m
e · (a · cmax).

From Lemma 3, we have
MMC(σ′′2 ) ≤ d

n
m
e ·MMC(π).

To sum up, for problem Pm|online, p− batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj
or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H2 is an online algorithm with a competitive ratio of
(1 + βm, d n

m e).
Combining Theorem 1, it implies that algorithm H2 is a best possible online algorithm.

5. Conclusions

In this paper, we established two best possible online algorithms for problem Pm|online, p−
batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The algorithms provided in this paper are to minimize the maximum machine cost subject to the
makespan being at its minimum. They are extensions of the algorithm in [3], which is only minimizing
the makespan. Here, we suppose that all machines have the same fixed cost a; for further research,
extending this problem to different machine costs ai is still an important research topic that needs to
be studied.
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