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Abstract: Our aim in this paper is to investigate the convergence behavior of the positive solutions
of a higher order fuzzy difference equation and show that all positive solutions of this equation
converge to its unique positive equilibrium under appropriate assumptions. Furthermore, we give
two examples to account for the applicability of the main result of this paper.
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1. Introduction

It is well known that nonlinear difference equations and systems of difference equations of order
greater than one are of great importance in applied sciences, where the n-st situation depends on the
previous k situations because many models in economics, biology, computer sciences, engineering, etc.
are represented by these equations naturally. For a detailed study of the theory of difference equations,
see the monographs [1-6] and References [7-15]).

Since the data that are observed in relation to a real world phenomenon that can be described by
a difference equation may be imprecise, this leads to introducing the fuzzification of the corresponding
crisp difference equations. For this reason, studies of linear and nonlinear fuzzy difference equations
(see [16-20]), and max-type fuzzy difference equations (see [21-23]), are more interesting as well as
complicated.

In 2002, Papaschinopoulos and Papadopoulos [24] investigated global behavior of the following
fuzzy difference equation:

Yurr = C+ 2 neNo={0,1,- -} M
Yn—k
under appropriate assumptions, where k € N = {1,2,- - - }, C and the initial values y; (i € [—k,0]z)
are positive fuzzy numbers, where [u,v]z = {u,- - - ,v} for any integers u < v.
In 2012, Zhang et al. [25] studied the existence, the boundedness and the asymptotic behavior of
the positive solutions of the following fuzzy nonlinear difference equation

a+ by,

, n € Np, 2
A+Yn " 0 @)

Yn+1 =

where g, b, A and the initial values y_1, yo are positive fuzzy numbers.
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Our aim in this paper is to investigate the global behavior of the positive solutions of the following
more general fuzzy difference equation:

Xn = F(Alr e /AS/ Xn—m, Bl/ te /Btl xnfk)/ ne NO/ (3)

where m, k € N, A; (i € [1,s]z) and B; (j € [1,t]z) are fuzzy numbers and the initial values x;(i €
[—d, —1]z) are positive fuzzy numbers with d = max{m, k} and F is the Zadeh’s extension of f :
G— Ry, whereG=J1 x - X i xRxKy x--xKi xR, Ry = (0,4),and J; (i € [1,s]z) and
K; (i € [1,t]z) are connected subsets of Ry = [0, +00), and R € {Rg, R+ }. In the following, we assume
that the following conditions hold:

(H1) f € C(G,Ry).

(Hp) f(uy,--- ,us,x,01,---,04,y) is strictly decreasing on x and strictly increasing on y, and is
decreasing on every u; (i € [1,s]z) and increasing on every v; (j € [1,t]z).

(H3) Foreveryx € Ry, f(uy,--- ,us,x,01,- -+ ,0t,Y)/y is decreasing on y in R..

This paper is arranged as follows. We give some necessary definitions and preliminary results
in Section 2. We show that under some conditions all positive solutions of (3) converge to its unique
positive equilibrium in Section 3. Finally, two examples are given to account for the applicability of the
main result of this paper.

2. Preliminaries

In this section, some definitions and preliminary results are given, which will be used in this
paper, for more details, see [26].

Let | be a connected subset of Rg. If A is a function from J into the interval [0, 1], then A is called
a fuzzy set (for J). A fuzzy set A is called fuzzy convex if, for every A € [0,1] and x,y € ], we have
A(Ax+ (1—A)y) > min{A(x), A(y) }. For a fuzzy set A, Ay = {x € ] : A(x) > a} is called the a-cuts
of A forany a € (0,1]. It is known that the a-cuts determine the fuzzy set A.

Definition 1. Let | be a connected subset of Ry and denote by K the closure of subset K of Rg. We say that
fuzzy set A is a fuzzy number (for ]) if the following conditions hold:

(1) A #Q.

(2)  Ais fuzzy convex.

(3)  Ais upper semi-continuous.

(4)  The support suppA = {x: A(x) > 0} of A is compact.

Denote by F(]) all fuzzy numbers (for J). If A € F(J), then A, is a closed interval for any

€ (0,1]. Write F*(J) = {A € F(J) : min(suppA) > 0}, which is called the set of positive fuzzy

numbers. If A € |, then A € F(J) with A, = [A, A] for any a € (0,1], which is called a trivial
fuzzy number.

Definition 2 (see [24,27]). Let A, B € F(]) with Ay = [A} 4, Ara) and By = By 4, Bra| for any « € (0,1].
Then, we define the metric on F(]) as follows:

D(A,B) = sup max{|A;, — Bi4|,|Ara — Bral}- (4)

ae(0,1]

It is easy to see that (F(]), D) is a complete metric space.

Let f € C(G,Ry+) and write F(G) = F(J1) x - -+ x F(Js) Xx F(R) x F(Ky) X - -+ x F
We define a map F : F(G) — F(Ry) by, forany ¢ = (Ay,---,As,u1,By,---, B, up) € F(G) and
z € Ry,

=
X
-
e

(F(8))(z) = sup{min{ Ay (ay),..., As(as), u1(x1), B1(b1),- -+, Br(bt), u2(x2) }}, 5)
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where the sup is taken for all a = (ay,--- ,a5,x1,bq,- -+, b, x2) € G such that f(a) = z. Thus, F is
called the Zadeh's extension of f. By [28], we see that f is continuous if and only if F is continuous
and, by [24], we see that, for any « € (0,1],

[F(8))a = f([Ala, -+ [Asla, [t1]a [Balas -+ (Bl [2]a)- (6)

Definition 3. We say that a sequence of positive fuzzy numbers {x,}5°__, is a positive solution of (3) if it
satisfies (3). We say that x € F*(R) is a positive equilibrium of (3) if x = F(Aq,- -, As, x, By, -, B, x).

We say that a sequence of fuzzy numbers {x,} , (x, € F(R)) converges to x € F(R) with
respect to metric D if lim,, o D(xp, x) = 0.

Proposition 1. Let ¢ = (Ay,---,As,u1,B1,--- ,Br,up) € F(G) and uz € F(Ry), and [Aila =

14
[Aipar Airal (0 € [18]2), [Bile = [Bjta Bjral (7 € [Lt]z), [rla = [upsetnra] (A € [1,3]z) for
any « € (0,1]. If uz = F(g), then

{ uz i = f(Arrar  Asra W Biias s+ Brlasain), @
usra = f(Ariar s As i U, Lar Birar s Biras U2 ra)-
Proof. It follows from (6) that for any « € (0,1], we have
(U310 43,r0) = f([ALar ALrals o [Asiar Asral,
(11,100 1,r,0] [B1as Birals -/ [Beias Berals (U200 U2 ])- ®)

Let aira; € [Ai,l,arAi,r,a] (i € [1/ S}Z)rbjr b]/' € [Bj,l,ou B]',T’,ﬂt} (] € [Lﬂl)r PAs p% € [”A,l,ou ”/\,r,tx] (A €
[1,2]z) such that

u3,l,0( :f(all"' /aS/pllblr"' /thr)Z)/ (9)
/ ol I
Uz = flay, -, ag,py, by, by, py)
Then, according to (H;), we obtain
u?),l,lx = f(alr s, ds, pll bl/ Tty bt/ PZ)
> f(Al,r,zxr o rAS,‘r,tx/ Ulrur Bl,l,tx/ Tty Bt,l,ou uZ,l,zx) > Uz 1ur 10
u _ ({1’“'&/ "y /) (10)
3,1 f 17 s s, P1, 071, 104, Po
S f(Al,l,ou e /AS,I,DC/ ul,)’l,lX/ Bl,r,a/ g Bt,I’,lX/ uz,r,ﬂt) S u3,r,ou
from which it follows that
u3,l,tx = f(Al,r,uu e /As,r,ﬂcr ul,}’,lX/ Bl,l,{X! ttty Bt,l,ar uZ,l,a)/ (11)
Uz rou = f(Al,l,a/ Tty As,l,zx/ U1l ar Bl,r,ou “o+, Btra, ”2,r,1x)‘

Proposition 1 is proven. [

Proposition 2. Forgiven x_g4,--- ,x_1 € F " (R), (3) has one unique positive solution {x, }°__, with initial
values x_g,- -+ ,x_1.

Proof. For any a € (0,1], write

[xA]a = [y)»,wz)\,a] ()L € [_dr_l]z)/
[Aile = [Ai1a Airal (i € [1,8]z), (12)
[Bj]lx = [Bj,l,ou Bj,r,zx] (] € [1/ t]Z)'
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Let {(Yna zna)}y 4@ € (0,1]) is the unique solution of the following system of
difference equations:

Yna = f(Al,r,ou' o /As,r,arzn—m,a/ Bl,l,tx/' T Bt,l/w]/nfk,ﬂc)f (13)
Zna = f(Al,l,txl Tty As,l,pcrynfm,oc/ Bl,r,ocr Tty Bt,r,m Zn—k,oc)r

with initial values (v; 4, ziq) (i € [—d, —1]z). Since (A1, -+, As, X—m,B1,- -+ ,Bt,x_§) € F(J1) x -+ %
F(Js) x FT(R) x F(Kq) x - x F(Ky) x FF(R), there exist 0 < Ly < Mpand 0 < L < Mj such
that, for any aq,a; € (0,1] with a3 < ap, we have

Ly < Ai,l,rxl < Ai,l,az < Ai,r,ag < Ai,’r‘,&q < My (i € [LS]Z)r
Lo < Bi,l,le < Bi,l,az < Bi,?’,Déz < Bi,r,/xl < My (i € [1/ t]Z)/ (14)
0< L(/) < Viay < VYigy < Zigy < Zigg S M6 < Mé’ (i = —m,—k).

It follows from (Hj) and (Hy) that, for any a1, ap € (0,1] with a3 < ap, we have

0< f(Mo,' .- ,Mo,Mg,Lo,‘ .- ,LQ,L6) <
Ly = f(Mo,--- ,MO,M(/),LO,- - ,Lo,Lé) <
Yo,uqy = f(Al,r,ucll sy, As,r,rxlzzfm,txlr Bl,l,lel' Ty Bt,l,oq/]/—k,oq) <
You, = f(Al,}',azl Tty AS,?’,(Xz/Z—m,Déz/ Bl,l,txzr‘ Tty Bt,l,nclzryfk,zxz) < (15)
20,0y = f(Al,l,thl Ty As,l,a2/ Y—mazs Blrays s Btray, Z—k,:xz) <
20,01 = f(Al,l,uq/ te /As,l,alfl/fm,oq/ Bl,r,alr' Tty Bt,r,txllz—k,le) <
f(Lo, -, Lo, Ly, My, -+, Mo, Mjj) = M;.

It is easy to see that Yo ., 2o« are left continuous on a € (0,1] (see [29]) and Uy (01] Y0, Znal C [L1, Mi]

(i-e., Uye(01[Y0,u20,4] is compact). Hence, [yo., 20| determines a unique xo € F*(R) such that
[%0]a = [Yo,a,20,4] for all & € (0, 1] (see [29]).
Moreover, by mathematical induction, we can prove that:

(i) Foreveryn € N, there exist 0 < L,,11 < M,,41 such that, for any a1, a; € (0,1] with a1 < ap, we
have L,,11 < Ynm <Ynay < Zpay < Zn,nq < My

(ii) For every n € N, Yy« and z, are left continuous on « € (0, 1].
Hence, for every n € N, Uyc(0.1] [Ynar Zna) C [Lut1, My 1] is compact, and [yn,a, Zn,e] determines
a unique x, € F1(R) such that [x,]x = [Vn, zn«] for every a € (0,1], from which it follows that
{xn }5__; is the unique positive solution of (3) with initial values x; (i € [—d, —1]z).

Proposition 2 is proven. [

3. Main Result

In this section, we investigate the convergence behavior of the positive solutions of (3). For any
positive solution {x,,}5°__, of (3) with initial values x; € F*(R) (i € [~d, +0)z) and any « € (0,1],
we write

[X¥nla = [YnarZna] (n € [—d,—1]z),
[Aila = [Aijas Airal (i € [L,5]z), (16)
[Bjla = [Bjar Bjral (j €[Ltz)-

By Proposition 1, we see that {(yna, zna) } 5 _;(a € (0,1]) satisfies the following system

Yna = f(Al,r,ou' o Asras Zn—mu Bl,l,le' Tty Bt,l,wyn—k,zx)/ 17)
Zna = f(Al,l,tx/' Tty As,l,tx/yﬂ*m,ﬂér Bl,r,ou Tty Bt,r,ﬂuzn—k,a)/
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with initial values (y;,,zi,) (i € [—d, —1]z). For the convenience, we write

Yna = f(Al,r,uu' e /As,r,uu Zn—m,ur Bl,l,uu' Tty Bt,l,ar]/nfk,zx) = h(zn—m,a/ ynfk,rx)/ (18)
Zna = f(Al,l,zx/ ce /As,l,ou Yn—mar Blras s Bras Zn—k,zx) = g(ynfm,m Zn—k,zx)‘

Lemma 1. Assume that (Hy)—(Hj3) hold, and h and g satisfy the following hypotheses:
(Ha4) System of equations

Yo = h(za, Ya), 19
{ Zo = §(Ya, Za) 19)

has a unique positive solution

Ya = y(Al,r,zX/ te /As,r,ou Bl,l,ou Tty Bt,l,uu Al,l,ar e /AS,I,DU Bl,r,m Tty Bt,r,a)r (20)
Zy = Z(Al,r,ou te /AS,T,IXI Bl,l,vu Tty Bt,l,ou Al,l,ou Tty As,l,le Bl,r,vu Tty Bt,i’,tx)/
and Yo,z € C(EXE,Ry)and E=J1 X --- X Js x Ky X -+ - X K}.
(Hs)
P1a = P1 (Al,r,uu t rAS,‘f,tXr Bl,l,zxr Tty Bt,l,lX) = inf(z,y)e%x% h(zfy) eR, (21)
P20 = pZ(Al,l,ou' e /As,l,zx/ Biyus - /Bt,T,lX) = inf(y,z)eg?xé)%g(y/ z) € R
h(p2a,y) = y has only one solution q1, = q1(Atrar- - AsrarP2arBiias - Biiy) in interval

(P10, +00), and g(p1,4,2) = z has only one solution G0 = qo(A11u - » Asiw PlasBirasr+  Bira)
in interval (pa,q, +09).
Then,
h(@2,00 P1e) < Ya < q1ar 22)
(@1 P2a) < Za < G2

Proof. For the convenience, we write g2, = 42, P14 = P1,Ya = Y, 91« = 91, P20 = P2,2a = Z. By
(Hz), (Hs) and (Hs), we have

z=g(y,z) > h(y+2,2) > p2.

Suppose for the sake of contradiction that y > g7. Then, it follows from (21) and (Hy)-(Hs), that

h(z, h(z,
q1 = h(p2,q1) > h(z,q1) = ¢ (qlql) >q (yy) =q1, (24)

which is a contradiction. Therefore, y < q;. In a similar fashion, we can obtain z < g,. Thus, by
(H),(Hy) and (Hs), we have that

h(g2,p1) < h(z,y) =y < q1, 25)
g(q1,p2) <gly,z) =z < qo.

Lemma 1 is proven. [J

Lemma 2. Let Iy = [p14, M1,) and Jo = [poa, Moy with My, > q14 and My, > o Assume that
(H1)—(Hs) hold. If (Y 0, Zin) € In % Ja (i € [—d, —1]z), then (Yna, Zna) € In X Ju for any n € No.
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Proof. By (Hy), (H3) and (Hs), we have

h M h '
Pia < You = N(Z-marY—in) < MMM < MMM = My,

( Ml],\a;’[ ) ( q1,a ) (26)
P2a < 204 = g(yfm,m ka,rx) < %#MMZ,IX < %MZJX = Mp,.

By mathematical induction, we can obtain (Yn, zZna) € Ix X Jo for any n € Ny. Lemma 2
is proven. [

Suppose that I, and ], are as in Lemma 2. Let ug , = p1, Upa = M1a, Y00 = P2 and Vo, = Mo,
and, for any n € N,
Upe = h(vn—l,m un—l,oc)r Una = h(Vn—l,zxr ”n—l,rx)r 27)
Vn,a = g(un—l,ou Vn—l,zx)/ Ono = g(un—l,zx/ Un—l,zx)'

Lemma 3. Let I, and |, be as in Lemma 2. Assume that (Hy)—(Hs) hold. Suppose that h and g satisfy the
following hypotheses:
(He) If Uy, uy € Iy with uy < Uy and Vi, vy € Jo with v, < Vy are a solution of the system

(28)

U, = h(va/ uzx)r Uy = h(vm ”ac)r
Vo = g(ulx, Vt’é)/ Oy = g(Ua, U:x)/

then U, = u, and V, = v,.
Then, limy,—yoo Uy = limy o0 Upp = Yo and limy 00 Vip = limy 00 Vg = Za.

Proof. For the convenience, we write Uy, » = Uy, UVnay = Un, Una = Un, Vao = Vi, Yo = yand z, = z.
By Lemmas 1 and 2, we obtain

g < up = h(V(), Mo) < h(Z,y) =y < h(vo, UO) = U1 < UQ, (29)
vy < vy = g(Up,v0) < g(y,2) =z < gup, Vo) = Vi < W,
and
uy = h(Vo,uo) <up = h(Vl,ul) < h(Z,y) =y < h(vl, Ul) = UQ < ]’l(vo, U(]) = Ul, (30)
v1 = g(Uo,v0) < va = g(Uy,v1) < g(y,2z) =z < g(u1, V1) = Vo < g(uo, Vo) = V1.
By mathematical induction, we can obtain
uw<uy < Sup <<y << U << Uy < U, 31)
<< <y <<z SV < SV S
Let
lim, o Uy = U, lim, oty =u, (32)
lim, . V,=V, lim, v, =0.
By (27), we have
U=h(v,U), u=h(V,u), (33)
V=guV), v=gU,vo).

It follows from (Hg) that U = u and V = v, which with (Hy) impliesU =v=yand V =0 = z.
Lemma 3 is proven. [

Lemma 4. Let {(Yna,zZna) o, be a positive solution of (16). Then, limy, oo (Ynar Zna) = (Yar Za)-
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Proof. Let {(Vna,zna)};__,; be a positive solution of (16), and My, = max{you -, Ydu Jia},
My = max{zo, - ,Zdu 2,0} aNd Uy a, Upa, Una, Ve be the same as (27) and Lemma 3. By Lemma 2
we have v, . € [Uon, Uou] = [P1a M1g) and z,a € [00,0, Vo,u] = (P20, M2,] for any n € N. Moreover,
we have

Uln = h<VO,ou uO,a) < h(zdfm,tx/ ydfk,u) =Yin < h(UO,tx/ UO,!X) = ul,ou (34)
U1a = g(Uo,a, vO,zx) < g(ydfm,rxr dek,rx) =2Zju < h(uO,oc/ VO,oc) = Vl,oc-

In similar fashion, we may show yu . € [U1,, Ui s] and z,4 € [014, V1,] for any n > d. By
mathematical induction, we can show that, for any n > kd,

Yna € [”k,m uk,rx]/ Zn,n € [vk,lX/ Vk,uc}' (35)
It follows from Lemma 3 that lim, 0 Yn,a = Yo and limy, o 25,4 = Z4. Lemma 4 is proven. O

Now, we state and show the main result of this paper.

Theorem 1. Assume that (Hy)—(He) hold. Then, every positive solution of (3) converges to the unique positive
equilibrium of (3).

Proof. Let {x,}%°_, be a positive solution of (3) with initial values x; € F"(Ry) (i € [-d, —1]z). By
(16), we see Ynu; < Ynay < Znay < Zna, for any aj, ap € (0,1] with a3 < ay. Then, it follows from
Lemma 4 that

lim = < lim = < lim z =2y, < lim z = Zy,. 36
o Yy = Yo S M Yy = Yap S M Znay ap S UM Zney ay (36)

Let suppA; = [a;,4}] (i € [1,5]z) and suppB; = [b;, bﬂ (j € [1,t]z). Then, for any a € (0,1],

[Aijar Aipa] C suppA; = [a;,a]] C J; (i € [L,5]z), 37)
[Bj,l,ou B]'/,/“] C SllppB] = [b], bﬂ C K] (] € [1, t]z).
By (Hy4), we see that for any a € (0, 1], the following system
Ya = f(Al,r,uu e rAS,T’,tX/ Zy, Bl,l,tx/ Tty Bt,l,ouya)/ (38)
Zp = f(Al,l,uu ce IAS,l,tX/ Ya, Bl,r,zx/ <o+, Bira, Za)
has a unique positive solution
Yo = ]/(Al,r,zx/ oty As,r,ac/ Bl,l,zx/ oty Bt,l,uu Al,l,ou te /As,l,ou Bl,r,au ety Bt,r,a)/ (39)
Zy = Z(Al,r,zxr te rAS,r,txl Bl,l,:xr te rBt,l,oc/Al,l,ou' v /AS,I,IX/ Bl,r,ucr' Tty Bt,i’,tx)r
and v,z € C(S,Ry), where S = [ay,a]] x -+ X [as,a;] x [by, b]] x -+ x [by, by] x [a7,a]] x --- X
[as, al] x [by, b}] x - - x [by, bj]. Let
M = maxz(x), m = miny(a). (40)

aES aEeS

Then, we see 0 < m < M < +oo, and that y, and z, are left continuous on « € (0,1], and
Use(01)[Var2a] C [m, M] (e, Uye(o)[Yas za] is compact). Therefore, (3) has the unique positive
equilibrium x € F* (R ) such that x, = [y4, za] for any a € (0, 1]. Furthermore, by Lemma 4, we see

lim D(x,,x) = n@w sup max{|Yna — Yal, |Zna — 2«|} = 0. (41)

e x€(0,1]

Theorem 1 is proven. [



Mathematics 2019, 7, 938 8of 11

4. Examples

In this section, we give two examples to account for the applicability of Theorem 1.

Example 1. Let

B+ Cx,_
xn = F(A, XnmB,C, 1) = #, n € Ny, 42)
n—m

where m,k € N, A,C € FT(Ry) with max(suppC) < min(suppA), and B € F(Ry), and the initial
values x; € FT(Ry) (i € [—d, —1]z) with d = max{m, k}. Then, all positive solutions of (42) converge to
its unique positive equilibrium as n — oo.

Proof. For the convenience, for any a € (0,1], we write Ay = [A1,4,A2s] = [A1,A2],By =
[B1,a, Bow] = [B1, Bz] and Cy = [C1 4, Con] = [C1, Co). Let

v+ wy
u+x

flu,x,0,w,y) = (43)

In the following, we verify that (H;) — (Hg) hold.

(1) f € C(R+ x Rp x Rg x Ry X Rg, Ry ) is strictly decreasing on every u € {u,x}, and strictly
increasing on every v € {v,w,y}.

(2) Forevery x € Ry, f(u,x,v,w,y)/y is decreasing on y in R.

(3)  System of equations

Yo = Bi+Ciya

x — A +z,

T (44)
T At

has a unique positive solution

Yo =Y(A1,B1,C1, A2, By, Cp)
_ Bi—By—(A1—-Cy)(A2—C1)++/(Bi—B2)2+(A1—C2)2(A2—C1)2+2(B1 +B2) (A1 —C2) (A2—C1)
- 2(Ax—Cy) ’ (45)

Zy = Z(Alr Bl/ Clr AZ/ BZ/ CZ)
_ By—B1—(A1—-Cy)(A2—C1)++/(Bi—B2)2+(A1—C2)2(A2—C1)?+2(B1 +B2) (A1 —C2) (A2 —C1)
- 2(A1—C2)

and Ya,Za € C(R+ X RO X R+ X R+ X RO X R+,R+).
4)

. Bi+C
Pra = P1(A1, Az, By, By, C1, Cp) = inf(; ) croxr, —ret = 0 € Ry, (46)
P2 = pa(A1, Az, By, By, C1, Cp) = inf(, -)cro xR, Bﬂfﬁz =0€Ry.

h(p2ay) = (B1+ Ciy)/Az = y has only one solution g1, = g1(A1, A2, B1,B,C1,Cp) =
B/ (A — Cy) ininterval (p1 4, +00), and g(p1,4,2) = (B2 + Caz)/ A1 = z has only one solution
J1a = q1(A1,A2,B1, By, C1,Cy) = By/ (A1 — Co) ininterval (ppq, +00).

(®5) Letu=u, <Uy =Uand v =19, <V, =V be asolution of the system

U = h(v,U) = 21,

B1+C
w=h(V,u) = J, 47)
V = g(u’ V) _ B+GV

Then,

{ U(Ay +0) = B + GiU, v(A;+U) = By + Gyo, a8)

V(A1 + u) =B+ GV, M(Az + V) = By + Ciu.
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From the above, we have

UAy —vAy = B1 +CU — By — Cyy, (49)
VA1 —uAy; = By + GV — By — Cqu.
Thus,
0<(U—-u)(A2—C1)=(v—V)(A1—C) <0. (50)

Since 0 < C; < Gy < A1 < Ay, we obtain U = u and V = v. It follows from Theorem 1 that all
positive solutions of (42) converge to its unique positive equilibrium as n — oo.
O

Remark 1. When k = 1 and m = 2, the fuzzy difference Equation (42) is the fuzzy difference Equation (4)
investigated in [25].

Example 2. Let
n B+ Cx,_y

Xn—m

Xn = F(Xp—m, A,B,C,x, ) = A , n € Ny, (51)
where m,k € N, A,C € F*(R4) with max(suppC) < min(suppA), and B € F(Ry), and the initial
values x; € FT(Ry) (i € [—d, —1|z) with d = max{m, k}. Then, all positive solutions of (51) converge to
its unique positive equilibrium as n — oo.

Proof. For the convenience, for any a € (0,1], we write Ay = [A1,,A2s] = [A1,A2], By =
[Bi,a, Bo,u] = [B1,By] and Cy = [C14, Con] = [C1, Cy]. Let

v+ wy

flx,u,0,w,y) =u+ (52)

In the following, we verify that (H;)-(Hg) hold.

(1) feC(Ry xRy xRpx Ry x Ry, Ry) is strictly decreasing on x and strictly increasing on every
ve{uvwy}
(2) Forevery x € Ry, f(x,u,v,w,y)/y is decreasing on y in R.
(38) System of equations
e =

53
Zy = Ap + 73255?22"‘ 3)

has a unique positive solution

yﬂt - y(Alf Bl/ Cl/ AZ/ BZ/ CZ)

_ Bi—By+A1Ay—C1Co+/(By—B1+B1By—A1A2)2+4(Ay—C1) (B2 A1 —B1Ca)

o 2(Ax—Cy) ’ (54)
zy = 2(A1,B1,Cy, A2, By, C2)
_ By—Bi+A1Ay—C1Cot/(By—B1+B1By—A1A2)2+4(Ay—C1) (B2 A1 —B1C2)
o 2(A1—By)

and Ya,Za € C(R+ X RO X R+ X R+ X RO X R+,R+).
(4)
{ P1a = p1(A1, Az, By, By, C1, Cp) = inf(, )R, xR, (A1 + BtGvy = Ay e Ry, (55)

PZ,tX == PZ(AerZI Bl/ BZ/ Cl/ CZ) == inf(]/,z)eRJr xRy (AZ + BZ+TC22) = A2 € R-I-'

h(paay) = A1+ (B1 + Cry)/ Az = y has only one solution g1, = q1(A1, Az, By, By, C1,C2) =
(A1Az + B1)/(Az — Cq) ininterval (py o, +00), and §(p1,4,2) = Az + (B2 + C2z) /A1 = zhas only
one solution o = Q1(A1, Ay, By, By, Cq, Cz) = (A1A2 + Bz)/(Al — Cz) in interval (pz,a, +OO)
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(5) Letu=u, <Uy=Uandv =19, <V, =V bea solution of the system

u= h(v, U) = Al + 7Bl+vclu,
w=h(V,u) = A+ Bxan,

56
V=g(u, V)= A+ 222V %)
v=g¢(U,0v) = A+ W.
Then,
Uv = Ajv+ B+ C U, vU= AU+ By, + Cyo, 57)
Vu=Au+ B+ GV, uV =A1V + By + Cju.
From the above, we have
A1v+ B+ CU = AU + By + Gy, (58)
Ayu+ By +CV = A1V + By + Cu.
Thus,
0<(U—-u)(A2—C) =(v—V)(A —C) <0. (59)

Since 0 < C; < Gy < A1 < Ay, we obtain U = u and V = v. It follows from Theorem 1 that all
positive solutions of (51) converge to its unique positive equilibrium as n — oo.
O

Remark 2. When B = 0,C = 1 and k = 1, the fuzzy difference Equation (51) is the fuzzy difference
Equation (1.3) investigated in [24].

5. Conclusions

In this study, we investigate the convergence behavior of the positive solutions of the higher order
fuzzy difference Equation (3) and show that all positive solutions of (3) converge to its unique positive
equilibrium as n — oo under appropriate assumptions. Finally, two examples are given to account for
the applicability of the main result (Theorem 1) of this paper. In the future, we intend to investigate the
existence, the boundedness and the asymptotic behavior of the more general fuzzy difference equation
xy, = F(Aq, - s As, Xn—my,  Xn—my, Bl By X gy, ,xn_ky) under appropriate assumptions.
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