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Abstract: The space Π of centered m-planes is considered in projective space Pn. A principal bundle is
associated with the space Π and a group connection is given on the principal bundle. The connection
is not uniquely induced at the normalization of the space Π. Semi-normalized spaces Π1, Π2 and
normalized space Π1,2 are investigated. By virtue of the Cartan–Laptev method, the dynamics of
changes of corresponding bundles, group connection objects, curvature and torsion of the connections
are discovered at a transition from the space Π to the normalized space Π1,2.
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1. Introduction

This paper refers to the field of differential geometry, or, more precisely, to the theory of
differentiable manifolds equipped with various “geometric structures” [1], such as connection,
curvature and torsion. We use the following methods: the moving frame method (the E. Cartan
method [2] of differential-geometric research) and the G. F. Laptev method of extensions and
envelopments, which includes the Cartan moving frame method and gives a universal character
to the first one. Universality and efficiency of the Cartan method were shown in many papers.
Upon use of this method, a research of geometry of a manifold with geometric structures fixed on it is
reduced to study of geometry of other manifolds (total space of frames above the given manifold or
subbundles of the bundle). Thus, automatically there is an analytical apparatus that is most adapted
to research of the initial structure [3]. The method of extensions and envelopments is based on the
invariant differential-algebraic apparatus of structure differential forms of considered bundles [4].
In this paper, the Cartan–Laptev method is applied to research of the centered m-planes space in
projective space Pn.

The connection theory (see, e.g., [5,6]) has an important place in differential geometry. A lot
of research devoted to the geometry of planes manifolds in classical spaces includes studying
connections. The connection theory also plays a fundamental role in physics.

Normalization of a manifold [7] of centered planes in projective space can be defined by an
analogy with the Norden normalization [8]. A. P. Norden has described the normalization of a surface.
A surface Xm can be considered as an m-dimensional manifold of m-dimensional centered planes
Tm [9]. Yu. G. Lumiste [10] has entered a similar normalization of a manifold of m-planes in projective
space. An analogue of this normalization is used in this paper. Thus, in our case, the normal of the
first kind (the first normal) is a subspace Nn−m of Pn having only one common point with a centered
m-plane Tm; and the normal of the second kind (the second normal) is a subspace Nm−1 of the centered
m-plane Tm not passing through its centre [11]. Moreover, we will also use a reduction that is frequently
applied in geometry (see, e.g., [4,12–17]).
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This paper is a continuation of author’s research [18,19]. Our purpose is to give the full analysis
of the dynamics of changes of bundles, connection, curvature and torsion at transition from the space
of centered planes to the normalized space.

The timeliness of the present paper is caused by the facts that the space of centered planes is a set
of all m-dimensional centered planes, which we may say about a communication with the Grassmann
manifold (the set of all m-planes) [20]. It is important to emphasize that the Grassmann manifold
plays a key role in topology and geometry as the base space of an universal vector bundle. Moreover,
Gr(1, n + 1) is projective space Pn.

2. Analytical Apparatus

Projective space Pn can be presented as the quotient space Ln+1/ ∼ of a vector space Ln+1 by
equivalence relation (collinearity) ∼ of nonzero vectors, i.e., Pn = (Ln+1 \ {0})/ ∼ (see, e.g., [21]).
Thus, we can set the quotient map by

Ln+1 \ {0} → Pn.

As is known [11], a projective frame in the space Pn is a system consisting of points AI′ , I′ = 0, ..., n,
and the unity point E. In the vector space Ln+1, linearly independent vectors eI′ correspond to the
points AI′ and the vector e = ∑n

I′=0 eI′ corresponds to the point E. These vectors are defined up to
a common factor in Ln+1. The unity point E is given along with the basis points AI′ , though we might
not mention it each time.

It is supposed that a frame in the vector space Ln+1 is normalized, i.e., e0 ∧ e1 ∧ ... ∧ en = 1,
where ∧ sets an exterior product.

The equations of infinitesimal displacements of the moving frame in Pn can be written in the
following way:

dAI′ = θ J′
I′AJ′ ,

I′ = 0, ..., n, with the condition of normalization A0 ∧ A1 ∧ ... ∧ An = 1. Here, d denotes ordinary
differentiation in Pn. The forms θ J′

I′ are linear differential forms; they depend on parameters u (defining
a location of the frame) and their differentials du.

The forms θ J′
I′ are connected by the relation θ0

0 + θ1
1 + ... + θn

n = 0. This condition is also necessary

for the number of linearly independent forms θ J′
I′ that became equal to the number of parameters on

which the group of projective transformations of space Pn depends.
The structure equations of projective space Pn have the form

Dθ J′
I′ = θK′

I′ ∧ θ J′
k′ ,

where D is a symbol of exterior derivative.
By the condition θ I′

I′ = 0 from the linear group GL(n + 1), it is possible to determine the special
linear group SGL(n + 1) [21] acting effectively in Pn.

Introducing the following new forms (see, e.g., [9,10]) ω I′
J′ = θ I′

J′ − δI′
J′ θ

0
0 and fixing the index

I′ = {0, I}, I = 1, ..., n, we can expand the forms ω I′
J′ as

ω I
0 = θ I

0, ω I
J = θ I

J − δI
J θ0

0 , ω0
I = θ0

I (ω0
0 = 0).

The formulas of infinitesimal displacements can be written in more detail:

dA = θA + ω I AI , dAI = θAI + ω J
I AJ + ωI A, (1)

where A = A0, ω I = ω I
0, ωI = ω0

I , and the form θ = θ0
0 plays the role of the proportionality coefficient.
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Introducing the basis forms ω and omitting, for simplicity, the index 0 in the notation of the forms
ω I

0 and ω0
I , the Cartan equations can be defined

Dω I = ω J ∧ω I
J , Dω I

J = ωK
J ∧ω I

K + δI
J ωK ∧ωK + ωJ ∧ω I , DωI = ω J

I ∧ωJ , (2)

where ω I , ω I
J , ωI are the basis forms of the projective group GP(n) acting effectively on Pn.

Remark 1. We employ the inhomogeneous analytic apparatus with the derivation formulas (1) and the structure
equations (2). By contrast to the homogeneous case, this apparatus is more convenient for investigation of
centered planes; and it was used in the previous author’s papers [22–25].

3. The Space of Centered Planes

For the purpose of this paper, the term “space of centered planes”, denoted by Π, will be taken
to mean a space of all m-dimensional centered planes P0

m in projective space Pn. The space Π is
a differentiable manifold and its points are m-dimensional centered planes.

Putting the vertice A of the moving frame on a m-plane Pm and fixing it as a centre, we get a centered
plane P0

m. Putting the vertices Aa of the frame on the plane P0
m, we fix index ranges 1 ≤ a, b, ... ≤ m and

m + 1 ≤ α, β, ... ≤ n. From the derivation formulas (1), we immediately get stationarity equations for the
centered plane. These equations have the form ωα = 0, ωα

a = 0, ωa = 0. The forms ωα, ωα
a , ωa are the

basis forms of the space Π; the rest forms ωa
b, ωa, ωα

β, ωa
α, ωα are secondary.

Remark 2. The dimension of the space Π of centered planes differs from the dimension of the Grassmann
manifold Gr(m, n) [26] by the size m [22], i.e., dim Π = dim Gr(m, n) + m = n + m(n−m).

4. Principal Bundle of the Space Π

The specification of the moving frame to the space Π yields the principal bundle G(Π), its typical
fiber is a stationary subgroup G of the centered plane P0

m and base space is the space Π; in addition,
thereto, dim G = n2 −mn + m2 + n. Total space of the bundle G(Π) [3] is the projective group GP(n)
and the projection π : GP(n)→ Π associates with each element of the group GP(n) the plane P0

m in Π,
which is invariant under the action of this element.

The basis forms ωα, ωa, ωα
a satisfy the Cartan structure equations

Dωα = ωa ∧ωα
a −ωα

β ∧ωβ, Dωa = ωb ∧ωa
b −ωa

α ∧ωα,

Dωα
a = (δα

βωb
a − δb

a ωα
β) ∧ω

β
b + ωa ∧ωα.

(3)

The exterior differentials of the secondary forms are as follows:

Dωa
b = ωc

b ∧ωa
c + (δa

c ωb + δa
bωc) ∧ωc + δa

bωα ∧ωα −ωa
α ∧ωα

b ; (4)

Dωa = ωb
a ∧ωb −ωα ∧ωα

a ; (5)

Dωα
β = ω

γ
β ∧ωα

γ + δα
βωa ∧ωa + (δα

γωβ + δα
βωγ) ∧ωγ + ωa

β ∧ωα
a ; (6)

Dωa
α = ωb

α ∧ωa
b + ω

β
α ∧ωa

β + ωα ∧ωa; (7)

Dωα = ωa
α ∧ωa + ω

β
α ∧ωβ.

Remark 3. The principal bundle G(Π) of the space Π contains the following five quotient bundles [22]:

1. Lm2(Pn) is the quotient bundle of linear plane frames belonging to the planes P0
m, its typical fiber is the

linear quotient group Lm2 = GL(m) acting on the pencil of lines on the plane P0
m with the structure

Equations (3) and (4);
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2. L(n−m)2(Pn) is the quotient bundle of normal linear frames; it is dual to the quotient bundle of linear plane
frames; the typical fiber is the linear quotient group L(n−m)2 = GL(n−m) acting on the quotient space
Pn−m−1 = Pn/P0

m with the structure Equations (3) and (6);
3. Cm(m+1)(Pn) is the quotient bundle of plane co-affine frames belonging to the plane P0

m; its typical fiber is
the co-affine quotient group Cm(m+1) = GA∗(m) acting on the plane P0

m and GL(m) ⊂ GA∗(m) ⊂ G.
This quotient bundle has the structure Equations (3)–(5);

4. Hk(Pn) is the affine quotient bundle whose typical fiber Hk (k = n(n−m) + m2) is an affine quotient
group [27] of the group Gr ⊂ GP(n) acting on the pencil of lines through A with the structure
Equations (3), (4), (6) and (7);

5. the maximal quotient bundle is made from the quotient bundle of plane co-affine frames and the affine
quotient bundle with the structure Equations (3)–(7).

Normalization of the space Π is made by the fields of the following geometric patterns: the first
kind normal, i.e., an (n−m)-plane Nn−m intersecting the plane P0

m only at the point A and the second
kind normal, i.e., an (m− 1)-plane Nm−1 contained in the centered plane P0

m and not passing through
its centre A (see, e.g., [11,28]).

Let us now analyze the dynamics of changes of the bundle G(Π) at the consecutive canonizations:

1. by placing the vertices Aα on the first normal Nn−m (the 1st canonization);
2. by placing the vertices Aa on the second normal Nm−1 (the 2nd canonization);
3. by simultaneous placing the vertices on the corresponding normals (full canonization).

Remark 4. The space Π1 or Π2 is said to be a semi-normalized space in the first or second case, respectively,
and the space Π1,2 is a normalized space in the third case.

4.1. The Bundle G1(Π)

We put the vertices Aα on the first normal Nn−m. Then, the following relations must hold:

ωa
α = ga

αβωβ + ga
αbωb + gab

αβω
β
b , (8)

with the differential congruences

∆ga
αβ + gab

αβωb ≡ 0, ∆ga
αb − δa

bωα ≡ 0, ∆gab
αβ ≡ 0 (mod ωα, ωα

a , ωa). (9)

Here, and subsequently, the differential operator ∆ acts in the standard way (see, e.g., [29])

∆ga
αβ = dga

αβ + gc
αβωa

c − ga
γβω

γ
α − ga

αγω
γ
β .

Taking into account (8), from the structure Equation (2), we have

Dωa
b = ωc

b ∧ωa
c + (δa

c ωb + δa
bωc) ∧ωc + δa

bωα ∧ωα+

(...)a
αβωα

b ∧ωβ + (...)a
αcωα

b ∧ωc + (...)ac
αβωα

b ∧ω
β
c ;

(10)

Dωa = ωb
a ∧ωb −ωα ∧ωα

a ; (11)

Dωα
β = ω

γ
β ∧ωα

γ + δα
βωa ∧ωa + (δα

γωβ + δα
βωγ) ∧ωγ+

(...)a
βγωγ ∧ωα

a + (...)a
βbωb ∧ωα

a + (...)ab
βγω

γ
b ∧ωα

a ;
(12)

Dωα = ω
β
α ∧ωβ + ωβ ∧ ga

αβωa + ωb ∧ ga
αbωa + ω

β
b ∧ gab

αβωa. (13)

From Equations (10)–(13), it can be argued that, at the first canonization, the principal bundle
G(Π) is narrowed to the principal bundle G1(Π); its typical fiber is the stationary subgroup G1 ⊂ G of
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a pair of the affine additional planes {Pm, Nn−m}. There are four quotient bundles in the subbundle
G1(Π):

1. the quotient bundle of plane linear frames with the structure Equations (3) and (10);
2. the quotient bundle of normal linear frames (3) and (12);
3. the quotient bundle of plane co-affine frames (3), (10), and (11);
4. the quotient bundle of normal co-affine frames (3), (12), and (13).

4.2. The Bundle G2(Π)

If we do not use the previous canonization and place the vertices Aa on the second normal Nm−1, then

ωa = gaαωα + gabωb + gb
aαωα

b (14)

and
∆gaα − gabωb

α ≡ 0, ∆gab ≡ 0, ∆gb
aα + δb

a ωα ≡ 0 (mod ωα, ωα
a , ωa). (15)

Then, from the structure Equation (2), we have

Dωa
b = ωc

b ∧ωa
c + ωα

b ∧ωa
α + δa

bωα ∧ωα+

(...)a
bαcωα ∧ωc + (...)a

bceωc ∧ωe + (...)ae
bcαωα

e ∧ωc;
(16)

Dωα
β = ω

γ
β ∧ωα

γ + (δα
γωβ + δα

βωγ) ∧ωγ −ωα
a ∧ωa

β+

(...)α
βγaωγ ∧ωa + (...)α

βbaωb ∧ωa + (...)αb
βγaω

γ
b ∧ωa;

(17)

Dωa
α = ωb

α ∧ωa
b + ω

β
α ∧ωa

β + ωα ∧ωa; (18)

Dωα = ω
β
α ∧ωβ −ωβ ∧ gaβωa

α −ωb ∧ gabωa
α −ω

β
b ∧ gb

aβωa
α. (19)

In fact, according to Equations (16)–(19), we can make a conclusion that, at the second
canonization, the principal bundle G(Π) is narrowed to the principal bundle G2(Π); its typical
fiber is the stationary subgroup G2 ⊂ G of the pair {A, Nm−1}. There are four quotient bundles in the
subbundle G2(Π):

1. the quotient bundle of plane linear frames with the structure Equations (3) and (16);
2. the quotient bundle of normal linear frames (3) and (17);
3. the bundle H(Π) (3), (16)–(18) whose typical fiber H is an affine quotient group of G2;
4. the bundle of normal co-affine frames (3), (17), and (19).

4.3. The Bundle G1,2(Π)

Now, suppose that we have already made canonizations considered in items 4.1 and 4.2
simultaneously, that is, Aα ∈ Nn−m and Aa ∈ Nm−1. In this case, conditions (8) and (14) are satisfied
and the structure Equation (2) will become

Dωa
b = ωc

b ∧ωa
c + δa

bωα ∧ωα + (...)a
bcαωα ∧ωc + (...)a

bceωc ∧ωe+

(...)ae
bαcωα

e ∧ωc + (...)a
αβωα

b ∧ωβ + (...)ac
αβωα

b ∧ω
β
c ;

(20)

Dωα
β = ω

γ
β ∧ωα

γ + (δα
γωβ + δα

βωγ) ∧ωγ + (...)α
βγaωγ ∧ωa+

+(...)α
βbaωb ∧ωa + (...)αb

βγaω
γ
b ∧ωa + (...)a

βγωγ ∧ωα
a + (...)ab

βγω
γ
b ∧ωα

a ;
(21)

Dωα = ω
β
α ∧ωβ + (...)αβγωβ ∧ωγ + (...)αβbωβ ∧ωb + (...)b

αβγωβ ∧ω
γ
b +

(...)αbcωb ∧ωc + (...)c
αbβωb ∧ω

β
c + (...)bc

αβγω
β
b ∧ω

γ
c .

(22)
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Obviously, G1,2 is the stationary subgroup of the centered (n − m) pair {N∗n−m, Nm−1} [30]—
then at the full canonization from narrowing G1,2(Π) of the principal bundle G(Π). The following
three quotient bundles are allocated:

1. the bundle of plane linear frames (3) and (20);
2. the bundle of normal linear frames (3) and (21);
3. the bundle of normal co-affine frames (3), (21), and (22).

5. A Connection on the Bundle Associated with the Space Π

Using the Laptev–Lumiste method (see, e.g., [4,31]), on the principal bundle G(Π), we define
a fundamental-group connection by the forms

ω̃a
b = ωa

b − La
bαωα − La

bcωc − Γac
bαωα

c , ω̃α
β = ωα

β − Lα
βγωγ − Lα

βaωa − Γαa
βγω

γ
a ,

ω̃a
α = ωa

α − La
αβωβ − La

αbωb − Γab
αβω

β
b , ω̃a = ωa − Γaαωα − Γabωb −Πb

aαωα
b ,

ω̃α = ωα − Γαβωβ − Γαaωa −Πa
αβω

β
a .

(23)

The components of the connection object [4]

Γ = {La
bα, La

bc, Γac
bα, Lα

βγ, Lα
βa, Γαa

βγ, La
αβ, La

αb, Γab
αβ, Γaα, Γab, Πb

aα, Γαβ, Γαa, Πa
αβ}

satisfy the following differential congruences modulo the basis forms ωα, ωα
a , ωa:

∆La
bα − La

bcωc
α + Γac

bαωc − δa
bωα ≡ 0, ∆La

bc − δa
c ωb − δa

bωc ≡ 0, ∆Γac
bα + δc

bωa
α ≡ 0,

∆Lα
βγ − Lα

βaωa
γ + Γαa

βγωa − δα
βωγ − δα

γωβ ≡ 0, ∆Lα
βa − δα

βωa ≡ 0, ∆Γαa
βγ − δα

γωa
β ≡ 0,

∆La
αβ + Γab

αβωb − La
bβωb

α + Lγ
αβωa

γ − La
αbωb

β ≡ 0,

∆La
αb − La

cbωc
α + Lβ

αbωa
β − δa

bωα ≡ 0, ∆Γab
αβ − Γab

dβωd
α + Γγb

αβωa
γ ≡ 0,

∆Γaα − Γabωb
α + (Πb

aα + Lb
aα)ωb ≡ 0,

∆Γab + Lc
abωc ≡ 0, ∆Πb

aα + Γdb
aαωd + δb

a ωα ≡ 0,

∆Γαβ − Γαaωa
β + (Πa

αβ + La
αβ)ωa − Γaβωa

α + Lγ
αβωγ ≡ 0,

∆Γαa − Γbaωb
α + Lb

αaωb + Lβ
αaωβ ≡ 0, ∆Πa

αβ + Γba
αβωb −Πa

cβωc
α + Γγa

αβωγ ≡ 0.

(24)

Remark 5. The connection object Γ contains the following five geometric subobjects Γ1 = {La
bα, La

bc, Γac
bα},

Γ2 = {Lα
βγ, Lα

βa, Γαa
βγ}, Γ3 = {Γ1, Γaα, Γab, Πb

aα}, Γ4 = {Γ1, Γ2, La
αβ, La

αb, Γab
αβ}, and Γ5 = {Γ3 \ Γ1, Γ4}.

These subobjects determine connections on the corresponding (see Remark 3) quotient bundles.

Let us consider the dynamics of changes of the connection Γ at consecutive canonizations and we
will be convinced that the connection Γ is not uniquely induced at the normalization of the space Π.

5.1. The Connection Object at Adaptation of the Moving Frame to the First Normal

By placing the vertices Aα on the first normal Nn−m, condition (8) is satisfied, that is, the forms
ωa

α become principal and the connection object Γ is narrowed to the object Γ1 = Γ \ (Γ4 \ (Γ1 ∪ Γ2));
and differential congruences for its components have the form
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∆La
bα + Γac

bαωc − δa
bωα ≡ 0, ∆La

bc − δa
c ωb − δa

bωc ≡ 0, ∆Γac
bα ≡ 0,

∆Lα
βγ + Γαa

βγωa − δα
βωγ − δα

γωβ ≡ 0, ∆Lα
βa − δα

βωa ≡ 0, ∆Γαa
βγ ≡ 0,

∆Γaα + (Πb
aα + Lb

aα)ωb ≡ 0, ∆Γab + Lc
abωc ≡ 0,

∆Πb
aα + Γdb

aαωd + δb
a ωα ≡ 0, ∆Γαβ + (Πa

αβ + ga
αβ)ωa + Lγ

αβωγ ≡ 0,

∆Γαa + Lβ
αaωβ + gb

αaωb ≡ 0, ∆Πa
αβ + Γγa

αβωγ + gba
αβωb ≡ 0.

(25)

All of this points to the fact that the following theorem holds.

Theorem 1. At an adaptation of the moving frame to a field of the first normals the connection object Γ is
reduced to the object Γ1. The object Γ1 contains three subobjects Γ1

1, Γ1
2, Γ1

3 that set connections on the quotient
bundles of plane linear frames, normal linear frames, and plane co-affine frames, respectively.

5.2. Connection Object at Adaptation of the Moving Frame to the Second Normal

Without using the previous canonization and placing the vertices Aa on the second normal Nm−1,
we get condition (14). The connection object Γ is narrowed to the object Γ2 = Γ \ (Γ3 \ Γ1) with the
following congruences for its components:

∆La
bα − La

bcωc
α − δa

bωα ≡ 0, ∆La
bc ≡ 0, ∆Γac

bα + δc
bωa

α ≡ 0,

∆Lα
βγ − Lα

βaωa
γ − δα

βωγ − δα
γωβ ≡ 0, ∆Lα

βa ≡ 0, ∆Γαa
βγ − δα

γωa
β ≡ 0,

∆La
αβ − La

bβωb
α − La

αbωb
β + Lγ

αβωa
γ ≡ 0, ∆La

αb − La
cbωc

α + Lβ
αbωa

β − δa
bωα ≡ 0,

∆Γab
αβ − Γab

dβωd
α + Γγb

αβωa
γ ≡ 0, ∆Γαβ − Γαaωa

β + Lγ
αβωγ − gaβωa

α ≡ 0,

∆Γαa + Lβ
αaωβ − gbaωb

α ≡ 0, ∆Πa
αβ + Γγa

αβωγ − ga
bβωb

α ≡ 0.

(26)

The arguments given above prove Theorem 2.

Theorem 2. At an adaptation of the moving frame to a field of the second normals, the connection object Γ is
reduced to the object Γ2. The object Γ2 contains three subobjects Γ2

1, Γ2
2, Γ2

3 that set connections on the quotient
bundles of plane linear frames, normal linear frames, and affine quotient bundle, respectively.

5.3. Connection Object at Normalization

By making both canonizations simultaneously, that is, placing the vertices Aα on the first normal
Nn−m and the vertices Aa on the second normal Nm−1, the differential congruences for object’s
Γ1,2 = Γ \ ((Γ4 \ (Γ1 ∪ Γ2)) ∪ (Γ3 \ Γ1)) components will become

∆La
bα − δa

bωα ≡ 0, ∆La
bc ≡ 0, ∆Γac

bα ≡ 0, ∆Lα
βγ − δα

βωγ − δα
γωβ ≡ 0, ∆Lα

βa ≡ 0,

∆Γαa
βγ ≡ 0, ∆Γαβ + Lγ

αβωγ ≡ 0, ∆Γαa + Lβ
αaωβ ≡ 0, ∆Πa

αβ + Γγa
αβωγ ≡ 0.

(27)

In addition, we have the following theorem.

Theorem 3. At an adaptation of the moving frame to normalization of the space Π, the connection object Γ is
reduced to the object Γ1,2. The object Γ1,2 contains two subobjects Γ1,2

1 , Γ1,2
2 that set connections on the quotient

bundles of plane and normal linear frames.

5.4. Reduced Connection Objects

With the help of conditions (8), the forms ωa
α become principal, and, therefore, congruences

for the components La
αβ, La

αb, Γab
αβ in (24) will be carried out identically and they can be omitted.
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Using conditions (8) in the rest of the differential congruences (24), the components of the reduced
connection object ΓI will satisfy (25) if the following conditions hold:

ga
αβ = La

αβ, gb
αa = Lb

αa, gab
αβ = Γab

αβ. (28)

Theorem 4. The reduced object ΓI coincides with the object Γ1 only if conditions (28) hold, where the object
Γ1 gives a connection on the reduced bundle that arises at the adaptation of the moving frame to a field of the
first normals.

By substituting conditions (14) into the differential congruences for components of the connection
object Γ, we get congruences (26) with conditions

gaβ = Γaβ, gab = Γab, ga
bα = Πa

bα (29)

for the components of the reduced connection object ΓI I .

Theorem 5. The reduced object ΓII coincides with the object Γ2 only in the case (29), where the object Γ2 gives
a connection on the reduced bundle that arises at the adaptation of the moving frame to a field of the second normals.

Taking into account conditions (8) and (14) in the first six and last three differential
congruences (24), we have that the components of the reduced connection object ΓI,I I satisfy the
differential congruences (27).

Theorem 6. The reduced connection object ΓI,I I coincides with the object Γ1,2, which gives a connection on the
reduced bundle at the adaptation of the moving frame to the normalization of the space Π.

Remark 6. Adaptations of the moving frame cause the reductions of associated bundle and differential
congruences for components of group connection object. Semi-canonizations (the first and second canonizations)
lead to reductions of bundle and connection object, but, according to Theorems 4 and 5, the reduced connection
objects can differ from the objects specifying connections on the reduced bundles.

6. Curvature and Torsion Objects

Let us now consider curvature and torsion objects [4] of group connection on the bundle associated
with the space Π of centered planes at a transition to the normalized space Π1,2.

6.1. Curvature Objects

Generic curvature R of the connection Γ of the space Π was studied in [22]. Denote by R1 and R2

the objects of reduced curvature on the bundle associated with the space Π.

6.1.1. Curvature Object at the First Canonization

At the adaptation of the moving frame to a field of the first normals, we have

Dω̃a = ω̃b
a ∧ ω̃b + Raαβωα ∧ωβ + Rabcωb ∧ωc + Raαbωα ∧ωb+

Kb
aαβωα ∧ω

β
b + Rc

abαωb ∧ωα
c + Kbc

aαβωα
b ∧ω

β
c ,

Dω̃a
b = ω̃c

b ∧ ω̃a
c + Ra

bαβωα ∧ωβ + Ra
bceωc ∧ωe + Ra

bαcωα ∧ωc+

Rac
bαβωα ∧ω

β
c + Rad

bcαωc ∧ωα
d + Racd

bαβωα
c ∧ω

β
d ,

Dω̃α
β = ω̃

γ
β ∧ ω̃α

γ + Rα
βγµωγ ∧ωµ + Rα

βa bωa ∧ωb + Rα
βγaωγ ∧ωa+

Rαa
βγµωγ ∧ω

µ
a + Rαb

βaγωa ∧ω
γ
b + Rαa b

βγµω
γ
a ∧ω

µ
b ,
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Dω̃α = ω̃a
α ∧ ω̃a + ω̃

β
α ∧ ω̃β + Rαβγωβ ∧ωγ + Rαa bωa ∧ωb + Rαβaωβ ∧ωa+

Ka
αβγωβ ∧ω

γ
a + Rb

αaβωa ∧ω
β
b + Kab

αβγω
β
a ∧ω

γ
b .

The components of the curvature object R are determined by the following relations:

Raαβ = Γa[αβ] − Γabgb
[αβ] − Lb

a[αΓbβ], Raαb = Γaαb − Γabα − Γacgc
αb − Lc

aαΓcb + Lc
abΓcα,

Rabc = Γa[bc] − Le
a[bΓec], Kb

aαβ = Γb
aαβ −Πb

aβα − Γacgcb
αβ − Lc

aαΠb
cβ + Γcb

aβΓcα,

Rc
abα = Γc

abα −Πc
aαb + Γec

aαΓeb − Le
abΠc

eα − δc
bΓaα, Kbc

aαβ = Πa[
bc
αβ]− Γe

a[
b
αΠc

eβ],

Ra
bαβ = La

b[αβ] − Lc
b[αLa

cβ] − La
bcgc

[αβ], Ra
bce = La

b[ce] − Ld
b[cLa

de],

Ra
bαc = La

bαc − La
bcα − Le

bαLa
ec + Le

bcLa
eα − La

bege
αc,

Rac
bαβ = Lac

bαβ − Γac
bβα − Le

bαΓac
eβ + Γec

bβLa
eα − La

begec
αβ − δc

bga
βα,

Rad
bcα = Lad

bcα − Γad
bαc − δd

c La
bα − Le

bcΓad
eα + Γed

bαLa
ec − δd

b ga
αc,

Racd
bαβ = Γa

b[
cd
αβ]− Γe

b[
c
αΓad

eβ] + δ
dc
b gad
bαβ],

Rα
βγµ = Lα

β[γµ] − Lη

β[γ
Lα

ηµ] − Lα
βaga

[γµ], Rα
βab = Lα

β[ab] − Lγ
β[aLα

γb],

Rα
βγa = Lα

βγa − Lα
βaγ − Lµ

βγLα
µa + Lµ

βaLα
µγ − Lα

βbgb
γa,

Rαa
βγµ = Lαa

βγµ − Γαa
βµγ − Lη

βγΓαa
ηµ + Γηa

βµLα
ηγ − Lα

βbgba
γµ + δα

µga
βγ,

Rαb
βaγ = Lαb

βaγ − Γαb
βγa − Lµ

βaΓαb
µγ + Γµb

βγLα
µa − δb

a Lα
βγ + δα

γgb
βa,

Rαab
βγµ = Γα

β[
ab
γµ]− Γη

β[
a
γΓαb

ηµ]− δα
bγgdab

βµ ], Rαβγ = Γα[βγ] − Lµ

α[β
Γµγ] − Γαaga

[βγ], Rαab = Γα[ab] − Lβ

α[aΓβb],

Rαβa = Γαβa − Γαaβ − Lγ
αβΓγa + Lγ

αaΓγβ − Γαbgb
βa,

Ka
αβγ = Γa

αβγ −Πa
αγβ − Lµ

αβΠa
µγ + Γµa

αγΓµβ − Γαbgba
βγ,

Rb
αaβ = Γb

αaβ −Πb
αβa − Lγ

αaΠb
γβ + Γγb

αβΓγa − δb
a Γαβ, Kab

αβγ = Πα[
ab
βγ]− Γµ

α [
a
βΠb

µγ].

Here, and in what follows, square brackets mean alternation over extreme indices.

Theorem 7. The curvature R is reduced to the object R1 = {Raαβ, Rabc, Raαb, Kb
aαβ, Rc

abα, Kbc
aαβ, Ra

bαβ, Ra
bce,

Ra
bαc, Rac

bαβ, Rad
bcα, Racd

bαβ, Rα
βγµ, Rα

βa b, Rα
βγa, Rαa

βγµ, Rab
βaγ, Rαa b

βγµ, Rαβγ, Rαa b, Rαβa, Ka
αβγ, Rb

αaβ, Kab
αβγ}; and the

reduced curvature object R1 of the semi-normalized space Π1 is a quasi-tensor together with the quasi-tensor
{ga

αβ, ga
αb, gab

αβ}. The object R1 contains three subtensors that are curvature objects of subconnections on the
bundles of plane linear frames, normal linear frames, and plane co-affine frames.

Proof of Theorem 7. Extending the differential equations for components of the connection object Γ
and using (9), the differential congruences of curvature object components may be written as

∆Raαβ + Kb
a[αβ]ωb + Rb

aαβωb ≡ 0, ∆Raαb − (Rc
abα − Rc

aαb)ωc ≡ 0, ∆Rabc + Re
abcωe ≡ 0,

∆Kb
aαβ + (2Kcb

aαβ + Rcb
aαβ)ωc ≡ 0, ∆Rc

abα + Rec
abαωe ≡ 0, ∆Kbc

aαβ + Rebc
aαβωe ≡ 0,

∆Ra
bαβ + Rac

b[αβ]ωc ≡ 0, ∆Ra
bce ≡ 0, ∆Ra

bαc − Rae
bcαωe ≡ 0, ∆Rac

bαβ + 2Raec
bαβωe ≡ 0,

∆Rad
bcα ≡ 0, ∆Race

bαβ ≡ 0, ∆Rα
βγµ + Rαa

β[γµ]ωa ≡ 0, ∆Rα
βab ≡ 0, ∆Rα

βγa − Rαb
βaγωb ≡ 0,

∆Rαa
βγµ − 2Rαab

βµγωb ≡ 0, ∆Rαb
βaγ ≡ 0, ∆Rαab

βγµ ≡ 0,

∆Rαβγ + Rµ
αβγωµ + (Ka

α[βγ] + ga
α[βγ] − ga

αbgb
[βγ])ωa ≡ 0, ∆Rαab + Rβ

αabωβ + gc
α[ab]ωc ≡ 0,

∆Rαβa + (gb
αβa − gb

αaβ − gb
αcgc

βa − Rb
αaβ)ωb + Rγ

αβaωγ ≡ 0,
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∆Ka
αβγ + (2Kba

αβγ + gba
αβγ − gba

αγβ − gb
αcgca

βγ)ωb + Rµa
αβγωµ ≡ 0,

∆Rb
αaβ + Rγb

αaβωγ + (gcb
αaβ − gcb

αβa − δb
a gc

αβ)ωc ≡ 0, ∆Kab
αβγ + Rµab

αβγωµ + gc
α[

ab
βγ]ωc ≡ 0,

which proves the theorem.

6.1.2. Curvature Object at the Second Canonization

At the adaptation of the moving frame to a field of the second normals, we get

Dω̃a
b = ω̃c

b ∧ ω̃a
c + Ra

bαβωα ∧ωβ + Ra
bceωc ∧ωe + Ra

bαcωα ∧ωc+

Rac
bαβωα ∧ω

β
c + Rad

bcαωc ∧ωα
d + Racd

bαβωα
c ∧ω

β
d ,

Dω̃α
β = ω̃

γ
β ∧ ω̃α

γ + Rα
βγµωγ ∧ωµ + Rα

βa bωa ∧ωb + Rα
βγaωγ ∧ωa+

Rαa
βγµωγ ∧ω

µ
a + Rαb

βaγωa ∧ω
γ
b + Rαa b

βγµω
γ
a ∧ω

µ
b ,

Dω̃a
α = ω̃b

α ∧ ω̃a
b + ω̃

β
α ∧ ω̃a

β + Ra
αβγωβ ∧ωγ + Ra

αbcωb ∧ωc + Ra
αβbωβ ∧ωb+

Rac
αbβωb ∧ω

β
c + Rab

αβγωβ ∧ω
γ
b + Rabc

αβγω
β
b ∧ω

γ
c ,

Dω̃α = ω̃a
α ∧ ω̃a + ω̃

β
α ∧ ω̃β + Rαβγωβ ∧ωγ + Rαa bωa ∧ωb + Rαβaωβ ∧ωa+

Ka
αβγωβ ∧ω

γ
a + Rb

αaβωa ∧ω
β
b + Kab

αβγω
β
a ∧ω

γ
b .

The components of the curvature object have the form

Ra
bαβ = La

b[αβ] − Lc
b[αLa

cβ] + Γac
b[αgcβ], Ra

bce = La
b[ce] − Ld

b[cLa
de] − δa

[cgbe] − δa
b g[ce],

Ra
bαc = La

bαc − La
bcα − Le

bαLa
ec + Le

bcLa
eα + Γae

bαgec + δa
c gbα + δa

b gcα,

Rac
bαβ = Lac

bαβ − Γac
bβα − Le

bαΓac
eβ + Γec

bβLa
eα + Γae

bαgc
eβ,

Rad
bcα = Lad

bcα − Γad
bαc − δd

c La
bα − Le

bcΓad
eα + Γed

bαLa
ec − δa

c gd
bα − δa

b gd
cα, Racd

bαβ = Γa
b[

cd
αβ]− Γe

b[
c
αΓad

eβ],

Rα
βγµ = Lα

β[γµ] − Lη

β[γ
Lα

ηµ] + Γαa
β[γgaµ], Rα

βab = Lα
β[ab] − Lγ

β[aLα
γb] − δα

βg[ab],

Rα
βγa = Lα

βγa − Lα
βaγ − Lµ

βγLα
µa + Lµ

βaLα
µγ + Γαb

βγgba + δα
βgaγ,

Rαa
βγµ = Lαa

βγµ − Γαa
βµγ − Lη

βγΓαa
ηµ + Γηa

βµLα
ηγ + Γαb

βγga
bµ,

Rαb
βaγ = Lαb

βaγ − Γαb
βγa − Lµ

βaΓαb
µγ + Γµb

βγLα
µa − δb

a Lα
βγ − δα

βgb
aγ, Rαab

βγµ = Γα
β[

ab
γµ]− Γη

β[
a
γΓαb

ηµ],

Ra
αβγ = La

α[βγ] − Lb
α[βLa

bγ] − Lµ

α[β
La

µγ] + Γab
α[βgbγ], Ra

αbc = La
α[bc] − Le

α[bLa
ec] − Lβ

α[bLa
βc],

Ra
αβb = La

αβb − La
αbβ − Le

αβLa
eb + Lc

αbLa
cβ − Lγ

αβLa
γb + Lµ

αbLa
µβ + Γac

αβgcb,

Rac
αbβ = Lac

αbβ − Γac
αβb − Le

αbΓac
eβ + Γec

αβLa
eb − Lγ

αbΓac
γβ + Γγc

αβLa
γb − δc

bLa
αβ,

Rab
αβγ = Lab

αβγ − Γab
αγβ − Lc

αβΓab
cγ + Γcb

αγLa
cβ − Lµ

αβΓab
µγ + Γµb

αγLa
µβ + Γac

αβgb
cγ,

Rabc
αβγ = Γa

α[
bc
βγ]− Γe

α[
b
βΓac

eγ]− Γµ
α [

b
βΓac

µγ], Rαβγ = Γα[βγ] − Lµ

α[β
Γµγ] + Πa

α[βgaγ],

Rαab = Γα[ab] − Lβ

α[aΓβb], Rαβa = Γαβa − Γαaβ − Lγ
αβΓγa + Lγ

αaΓγβ + Πb
αβgba,

Ka
αβγ = Γa

αβγ −Πa
αγβ − Lµ

αβΠa
µγ + Γµa

αγΓµβ + Πb
αβga

bγ,

Rb
αaβ = Γb

αaβ −Πb
αβa − Lγ

αaΠb
γβ + Γγb

αβΓγa − δb
a Γαβ, Kab

αβγ = Πα[
ab
βγ]− Γµ

α [
a
βΠb

µγ].

Theorem 8. The curvature R is reduced to the object R2 = {Ra
bαβ, Ra

bce, Ra
bαc, Rac

bαβ, Rad
bcα, Racd

bαβ, Rα
βγµ, Rα

βa b,

Rα
βγa, Rαa

βγµ, Rab
βaγ, Rαa b

βγµ, Ra
αβγ, Ra

αbc, Ra
αβb, Rac

αbβ, Rab
αβγ, Rabc

αβγ, Rαβγ, Rαa b, Rαβa, Ka
αβγ, Rb

αaβ, Kab
αβγ}; and the

reduced curvature object R2 of the semi-normalized space Π2 is a quasi-tensor together with the quasi-tensor
{gaα, gab, gb

aα}. The object R2 contains three subtensors that are curvature objects of subconnections on the
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bundles of plane and normal linear frames, and also on the bundle H(Π2), where H is an affine quotent group of
the stationary group of the pair {A, Nm−1}.

Proof of Theorem 8. The proof of this theorem is not fundamentally different from the proof of
Theorem 7, but now we use conditions (15). We obtain

∆Ra
bαβ − Ra

b[αcωc
β] ≡ 0, ∆Ra

bce ≡ 0, ∆Ra
bαc + 2Ra

bceωe
α ≡ 0, ∆Rac

bαβ − Rac
beβωe

α ≡ 0,

∆Rad
bcα ≡ 0, ∆Race

bαβ ≡ 0, ∆Rα
βγµ − Rα

β[γaωa
µ] ≡ 0, ∆Rα

βab ≡ 0,

∆Rα
βγa + 2Rα

βabωb
γ ≡ 0, ∆Rαa

βγµ − Rαa
βbµωb

γ ≡ 0, ∆Rαb
βaγ ≡ 0, ∆Rαab

βγµ ≡ 0,

∆Ra
αβγ − Ra

α[βbωb
γ] − Ra

bβγωb
α + Rµ

αβγωa
µ ≡ 0, ∆Ra

αbc − Ra
ebcωe

α + Rβ
αbcωa

β ≡ 0,

∆Ra
αβb − 2Ra

αcbωc
β − Ra

cβbωc
α + Rγ

αβbωa
γ ≡ 0, ∆Rac

αbβ − Rac
ebβωe

α + Rγc
αbβωa

γ ≡ 0,

∆Rab
αβγ − Rab

αcγωc
β + Rµb

αβγωa
µ − Rab

cβγωc
α ≡ 0, ∆Rabc

αβγ − Rabc
eβγωe

α + Rµbc
αβγωa

µ ≡ 0,

∆Rαβγ + Rµ
αβγωµ − Rα[βaωa

γ] − ga[βγ]ω
a
α − ga

b[βgaγ]ω
b
α ≡ 0, ∆Rαab + Rβ

αabωβ − gc[ab]ω
c
α ≡ 0,

∆Rαβa + 2Rαabωb
β + Rγ

αβaωγ + (gbaβ − gbβa − gc
bβgca)ω

b
α ≡ 0,

∆Ka
αβγ − Ra

αbγωb
β + Rµa

αβγωµ + (ga
bγβ − ga

bβγ − gc
bβga

cγ)ω
b
α ≡ 0,

∆Rb
αaβ + Rγb

αaβωγ + (gb
cβa − gb

caβ + δb
a gcβ)ω

c
α ≡ 0, ∆Kab

αβγ + Rµab
αβγωµ − gc[

ab
βγ]ω

c
α ≡ 0.

These differential congruences prove the theorem.

6.1.3. Curvature Object at the Full Canonization

At the normalization of the space Π, that is, at the conditions Aα ∈ Nn−m and Aa ∈ Nm−1, we have

Dω̃a
b = ω̃c

b ∧ ω̃a
c + Ra

bαβωα ∧ωβ + Ra
bceωc ∧ωe + Ra

bαcωα ∧ωc+

Rac
bαβωα ∧ω

β
c + Rad

bcαωc ∧ωα
d + Racd

bαβωα
c ∧ω

β
d ,

Dω̃α
β = ω̃

γ
β ∧ ω̃α

γ + Rα
βγµωγ ∧ωµ + Rα

βa bωa ∧ωb + Rα
βγaωγ ∧ωa+

Rαa
βγµωγ ∧ω

µ
a + Rαb

βaγωa ∧ω
γ
b + Rαa b

βγµω
γ
a ∧ω

µ
b ,

Dω̃α = ω̃a
α ∧ ω̃a + ω̃

β
α ∧ ω̃β + Rαβγωβ ∧ωγ + Rαa bωa ∧ωb + Rαβaωβ ∧ωa+

Ka
αβγωβ ∧ω

γ
a + Rb

αaβωa ∧ω
β
b + Kab

αβγω
β
a ∧ω

γ
b .

The components of the curvature object are defined by the following relations:

Ra
bαβ = La

b[αβ] − Lc
b[αLa

cβ] − La
bcgc

αβ] + Γac
b[αgcβ], Ra

bce = La
b[ce] − Ld

b[cLa
de] − δa

[cgbe] − δa
b g[ce],

Ra
bαc = La

bαc − La
bcα − Le

bαLa
ec + Le

bcLa
eα − La

bege
αc + Γae

bαgec + δa
c gbα + δa

b gcα,

Rac
bαβ = Lac

bαβ − Γac
bβα − Le

bαΓac
eβ + Γec

bβLa
eα − La

begec
αβ − δc

bga
βα + Γae

bαgc
eβ,

Rad
bcα = Lad

bcα − Γad
bαc − δd

c La
bα − Le

bcΓad
eα + Γed

bαLa
ec − δd

b ga
αc − δa

c gd
bα − δa

b gd
cα,

Racd
bαβ = Γa

b[
cd
αβ]− Γe

b[
c
αΓad

eβ] + δ
dc
b gad
bαβ],

Rα
βγµ = Lα

β[γµ] − Lη

β[γ
Lα

ηµ] − Lα
βaga

[γµ] + Γαa
β[γgaµ], Rα

βab = Lα
β[ab] − Lγ

β[aLα
γb] − δα

βg[ab],

Rα
βγa = Lα

βγa − Lα
βaγ − Lµ

βγLα
µa + Lµ

βaLα
µγ − Lα

βbgb
γa + Γαb

βγgba + δα
βgaγ,
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Rαa
βγµ = Lαa

βγµ − Γαa
βµγ − Lη

βγΓαa
ηµ + Γηa

βµLα
ηγ − Lα

βbgba
γµ + δα

µga
βγ + Γαb

βγga
bµ,

Rαb
βaγ = Lαb

βaγ − Γαb
βγa − Lµ

βaΓαb
µγ + Γµb

βγLα
µa − δb

a Lα
βγ + δα

γgb
βa − δα

βgb
aγ,

Rαab
βγµ = Γα

β[
ab
γµ]− Γη

β[
a
γΓαb

ηµ]− δα
bγgdab

βµ ],

Rαβγ = Γα[βγ] − Lµ

α[β
Γµγ] − Γαaga

[βγ] + ga
α[βgaγ] + Πa

α[βgaγ], Rαab = Γα[ab] − Lβ

α[aΓβb] + gc
α[agcb],

Rαβa = Γαβa − Γαaβ − Lγ
αβΓγa + Lγ

αaΓγβ − Γαbgb
βa + gb

αβgba − gb
αagbβ + Πb

αβgba,

Ka
αβγ = Γa

αβγ −Πa
αγβ − Lµ

αβΠa
µγ + Γµa

αγΓµβ − Γαbgba
βγ + gb

αβga
bγ − gba

αγgbβ + Πb
αβga

bγ,

Rb
αaβ = Γb

αaβ −Πb
αβa − Lγ

αaΠb
γβ + Γγb

αβΓγa − δb
a Γαβ + gc

αagb
cβ − gcb

αβgca,

Kab
αβγ = Πα[

ab
βγ]− Γµ

α [
a
βΠb

µγ] + gc
α[

a
βgb

cγ].

Theorem 9. The curvature R is reduced to the object R1,2 = {Ra
bαβ, Ra

bce, Ra
bαc, Rac

bαβ, Rad
bcα, Racd

bαβ, Rα
βγµ, Rα

βa b,

Rα
βγa, Rαa

βγµ, Rab
βaγ, Rαa b

βγµ, Rαβγ, Rαa b, Rαβa, Ka
αβγ, Rb

αaβ, Kab
αβγ}. The curvature object R1,2 of the normalized

space Π1,2 is a tensor. The tensor R1,2 contains two subtensors on the bundles of plane and normal linear frames,
and also one curvature subtensor on the bundle of normal co-affine frames.

Proof of Theorem 9. Indeed,

∆Ra
bαβ ≡ 0, ∆Ra

bce ≡ 0, ∆Ra
bαc ≡ 0, ∆Rac

bαβ ≡ 0, ∆Rad
bcα ≡ 0, ∆Racd

bαβ ≡ 0,

∆Rα
βγµ ≡ 0, ∆Rα

βab ≡ 0, ∆Rα
βγa ≡ 0, ∆Rαa

βγµ ≡ 0, ∆Rαb
βaγ ≡ 0, ∆Rαab

βγµ ≡ 0,

∆Rαβγ + Rµ
αβγωµ ≡ 0, ∆Rαab + Rβ

αabωβ ≡ 0, ∆Rαβa + Rγ
αβaωγ ≡ 0,

∆Ka
αβγ + Rµa

αβγωµ ≡ 0, ∆Rb
αaβ + Rγb

αaβωγ ≡ 0, ∆Kab
αβγ + Rµab

αβγωµ ≡ 0.

These congruences conclude the proof.

6.2. Torsion Objects

The following equations are a result of substituting the connection forms (23) into the structure
equations of basis forms of the space Π.

Dωα = ωa ∧ωα
a − ω̃α

β ∧ωβ + Sα
βγωβ ∧ωγ + Sα

βaωβ ∧ωa + Sαa
βγωβ ∧ω

γ
a ,

Dωa = ωb ∧ ω̃a
b + ωα ∧ ω̃a

α + Sa
bcωb ∧ωc + Sa

bαωb ∧ωα + Sa
αβωα ∧ωβ + Sac

bαωb ∧ωα
c + Sab

αβωα ∧ω
β
b ,

Dωα
a = ω̃b

a ∧ωα
b − ω̃α

β ∧ω
β
a + ω̃a ∧ωα + Sα

aβγωβ ∧ωγ + Sα
abβωb ∧ωβ + Sαb

aβγωβ ∧ω
γ
b +

Sαb
aβcωc ∧ω

β
b + Sαbc

aβγω
β
b ∧ω

γ
c ,

where the object’s S components are defined as follows:

Sα
βγ = Lα

[βγ], Sα
βa = Lα

βa, Sαa
βγ = Γαa

βγ, Sa
bc = La

[bc], Sa
bα = La

bα − La
αb, Sa

αβ = La
[αβ],

Sac
bα = Γac

bα, Sab
αβ = Γab

αβ, Sα
aβγ = δα

[γΓaβ], Sα
abγ = δα

γΓab,

Sαb
aβγ = δα

γLb
aβ − δb

a Lα
γβ − δα

βΠb
aγ, Sαb

aβc = δα
βLb

ac − δb
a Lα

βc, Sαbc
aβγ = −δα

bβΓdbc
aγ ] + δ

db
a Γαc
bβγ].

(30)

The right-hand sides of equalities (30) contain only components of the subobject Γ1, and, therefore,
let object S be a torsion object of linear subconnection Γ1 of the group connection Γ in the space Π of
centered planes P0

m.
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Taking into account congruences (24) for the components of subobject Γ1, the congruences modulo
the basis forms

∆Sα
βγ + Sαa

[βγ]ωa − Sα
[βaωa

γ] ≡ 0, ∆Sα
βa − δα

βωa ≡ 0, ∆Sαa
βγ − δα

γωa
β ≡ 0, ∆Sa

bc ≡ 0,

∆Sa
bα − 2Sa

bcωc
α + Sac

bαωc − Sβ
αbωa

β ≡ 0, ∆Sa
αβ + Sa

b[αωb
β] + Sγ

αβωa
γ + Sab

[αβ]ωb ≡ 0,

∆Sac
bα + δc

bωa
α ≡ 0, ∆Sab

αβ − Sab
cβωc

α + Sγb
αβωa

γ ≡ 0, ∆Sα
aβγ + Sα

ab[βωb
γ] + Sαb

a[βγ]ωb − Sα
βγωa ≡ 0,

∆Sα
abβ + Sαc

aβbωc + Sα
βbωa ≡ 0, ∆Sαb

aβc − δb
c δα

βωa ≡ 0, ∆Sαbc
aβγ ≡ 0,

∆Sαb
aβγ − Sαb

aγcωc
β − 2δα

bβSdcb
aγ ]ωc − δb

a Sαc
γβωc ≡ 0

(31)

are obtained. Now, it is evident that the following theorem holds.

Theorem 10. The torsion object S of the subconnection Γ1 is a quasi-tensor containing the tensors Sa
bc, Sαbc

aβγ

and the quasi-tensors Sα
βa, Sαa

βγ, Sac
bα, Sαa

bβc, {Sα
βa, Sαa

βγ, Sα
βγ}, {Sa

bc, Sac
bα, Sβ

αb, Sa
bα}, {S

ab
cβ, Sγb

αβ, Sab
αβ}, {Sαc

aβb, Sα
βb,

Sα
abβ}, {S

αb
aγc, Scb

aγ, Sαc
γβ, Sαb

aβγ}.

Remark 7. Because of Theorem 10, the connection Γ1 is always with torsion (see [32], cf. [33]) as the torsion
object S of connection Γ1 is a quasi-tensor.

It remains to consider the dynamics of changes of the torsion quasi-tensor S at
consecutive canonizations.

6.2.1. The First Canonization

We put the vertices Aα on the first normal Nn−m; then, conditions (8) can be written as

ωa
α ≡ 0 (mod ωα, ωα

a , ωa). (32)

Using congruences (32), the differential congruences (31) will be written in the form:

∆Sα
βγ + Sαa

[βγ]ωa ≡ 0, ∆Sα
βa − δα

βωa ≡ 0, ∆Sαa
βγ ≡ 0, ∆Sa

bc ≡ 0,

∆Sa
bα + Sac

bαωc ≡ 0, ∆Sa
αβ + Sab

[αβ]ωb ≡ 0, ∆Sac
bα ≡ 0, ∆Sab

αβ ≡ 0,

∆Sα
aβγ + Sαb

a[βγ]ωb − Sα
βγωa ≡ 0, ∆Sα

abβ + Sαc
aβbωc + Sα

βbωa ≡ 0,

∆Sαb
aβc − δb

c δα
βωa ≡ 0, ∆Sαbc

aβγ ≡ 0, ∆Sαb
aβγ − 2δα

bβSdcb
aγ ]ωc − δb

a Sαc
γβωc ≡ 0.

(33)

Theorem 11. Suppose that the components of the torsion quasi-tensor S satisfy congruences (31); then, S is
reduced to the quasi-tensor S1 with congruences (33) at the adaptation of the moving frame to a field of the first
normals Nn−m. The quasi-tensor S1 contains the tensors Sαa

βγ, Sa
bc, Sac

bα, Sab
αβ, Sαbc

aβγ, {Sαa
βγ, Sα

βγ}, {Sab
αβ, Sa

αβ},
{Sac

bα, Sa
bα}, {S

cb
aγ, Sαc

γβ, Sαb
aβγ} and the quasi-tensors Sα

βa, Sαb
aβc, {Sαc

aγb, Sα
γb, Sα

abγ}.

6.2.2. The Second Canonization

Without using the previous canonization, we put the vertices Aa on the second normal Nm−1,
then conditions (8) can be written as

ωa ≡ 0 (mod ωα, ωα
a , ωa). (34)

Taking into account condition (34), the differential congruences for the components of the torsion
object S have the form
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∆Sα
βγ − Sα

[βaωa
γ] ≡ 0, ∆Sα

βa ≡ 0, ∆Sαa
βγ − δα

γωa
β ≡ 0, ∆Sa

bc ≡ 0,

∆Sa
bα − 2Sa

bcωc
α − Sβ

αbωa
β ≡ 0, ∆Sa

αβ + Sa
b[αωb

β] + Sγ
αβωa

γ ≡ 0,

∆Sac
bα + δc

bωa
α ≡ 0, ∆Sab

αβ − Sab
cβωc

α + Sγb
αβωa

γ ≡ 0, ∆Sα
aβγ + Sα

ab[βωb
γ] ≡ 0,

∆Sα
abβ ≡ 0, ∆Sαb

aβγ − Sαb
aγcωc

β ≡ 0, ∆Sαb
aβc ≡ 0, ∆Sαbc

aβγ ≡ 0.

(35)

Thus, Theorem 12 follows from these congruences.

Theorem 12. Suppose that the components of the torsion quasi-tensor S satisfy congruences (31); then S is
reduced to the quasi-tensor S2 with congruences (35) at the adaptation of the moving frame to a field of the
second normals Nm−1. The quasi-tensor S2 contains the tensors Sα

βa, Sa
bc, Sαbc

aβγ, Sαb
aβc, Sα

abγ, {Sα
βa, Sα

βγ}, {Sa
bc,

Sβ
αb, Sa

bα}, {S
αb
aγc, Sαb

aβγ}, {Sα
abβ, Sα

aβγ} and the quasi-tensors Sαa
βγ, Sac

bα, {Sab
cβ, Sγb

αβ, Sab
αβ}.

6.2.3. The Full Canonization

After all, if Aα ∈ Pn−m and Aa ∈ Pm−1, then conditions (32) and (34) hold and the differential
congruences of the torsion object components have the form

∆Sα
βγ ≡ 0, ∆Sα

βa ≡ 0, ∆Sαa
βγ ≡ 0, ∆Sa

bc ≡ 0, ∆Sa
bα ≡ 0, ∆Sa

αβ ≡ 0, ∆Sac
bα ≡ 0,

∆Sab
αβ ≡ 0, ∆Sα

aβγ ≡ 0, ∆Sα
abβ ≡ 0, ∆Sαb

aβγ ≡ 0, ∆Sαb
aβc ≡ 0, ∆Sαbc

aβγ ≡ 0.

Theorem 13. At the adaptation of the moving frame to the normalization of the space Π, the torsion quasi-tensor
S becomes a tensor; furthermore, all its components are the one-component tensors (cf. in Theorems 11 and 12,
the quasi-tensors S1 and S2 contain also multi-component tensors and quasi-tensors).

Remark 8. It is true that, at the considered canonizations, the number of components of the torsion object S does
not change, in contrast to the reduced objects of curvature and connection, yet the fact remains that differential
congruences of its components differ from congruences (31). This testifies to possible change of properties of
torsion for semi-normalized spaces Π1, Π2 and also for the normalized space Π1,2.
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