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Abstract: The space I1 of centered m-planes is considered in projective space P,,. A principal bundle is
associated with the space I1 and a group connection is given on the principal bundle. The connection
is not uniquely induced at the normalization of the space I1. Semi-normalized spaces IT!, I1? and
normalized space IT'? are investigated. By virtue of the Cartan-Laptev method, the dynamics of
changes of corresponding bundles, group connection objects, curvature and torsion of the connections
are discovered at a transition from the space IT to the normalized space I1'2.
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1. Introduction

This paper refers to the field of differential geometry, or, more precisely, to the theory of
differentiable manifolds equipped with various “geometric structures” [1], such as connection,
curvature and torsion. We use the following methods: the moving frame method (the E. Cartan
method [2] of differential-geometric research) and the G.F. Laptev method of extensions and
envelopments, which includes the Cartan moving frame method and gives a universal character
to the first one. Universality and efficiency of the Cartan method were shown in many papers.
Upon use of this method, a research of geometry of a manifold with geometric structures fixed on it is
reduced to study of geometry of other manifolds (total space of frames above the given manifold or
subbundles of the bundle). Thus, automatically there is an analytical apparatus that is most adapted
to research of the initial structure [3]. The method of extensions and envelopments is based on the
invariant differential-algebraic apparatus of structure differential forms of considered bundles [4].
In this paper, the Cartan-Laptev method is applied to research of the centered m-planes space in
projective space P;.

The connection theory (see, e.g., [5,6]) has an important place in differential geometry. A lot
of research devoted to the geometry of planes manifolds in classical spaces includes studying
connections. The connection theory also plays a fundamental role in physics.

Normalization of a manifold [7] of centered planes in projective space can be defined by an
analogy with the Norden normalization [8]. A.P. Norden has described the normalization of a surface.
A surface X;; can be considered as an m-dimensional manifold of m-dimensional centered planes
Ty [9]. Yu. G. Lumiste [10] has entered a similar normalization of a manifold of m-planes in projective
space. An analogue of this normalization is used in this paper. Thus, in our case, the normal of the
first kind (the first normal) is a subspace N, of P, having only one common point with a centered
m-plane T,,; and the normal of the second kind (the second normal) is a subspace N,,,_1 of the centered
m-plane T;, not passing through its centre [11]. Moreover, we will also use a reduction that is frequently
applied in geometry (see, e.g., [4,12-17]).
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This paper is a continuation of author’s research [18,19]. Our purpose is to give the full analysis
of the dynamics of changes of bundles, connection, curvature and torsion at transition from the space
of centered planes to the normalized space.

The timeliness of the present paper is caused by the facts that the space of centered planes is a set
of all m-dimensional centered planes, which we may say about a communication with the Grassmann
manifold (the set of all m-planes) [20]. It is important to emphasize that the Grassmann manifold
plays a key role in topology and geometry as the base space of an universal vector bundle. Moreover,
Gr(1,n+ 1) is projective space P,.

2. Analytical Apparatus

Projective space P, can be presented as the quotient space L, 11/ ~ of a vector space L, 11 by
equivalence relation (collinearity) ~ of nonzero vectors, i.e., P, = (L,4+1 \ {0})/ ~ (see, e.g., [21]).
Thus, we can set the quotient map by

L,11\ {0} — P,.

As is known [11], a projective frame in the space P, is a system consisting of points Ay, I’ =0, ..., 1,
and the unity point E. In the vector space L, 1, linearly independent vectors ey correspond to the
points A and the vector e = Y_},_ ey corresponds to the point E. These vectors are defined up to
a common factor in L, ;1. The unity point E is given along with the basis points Ay, though we might
not mention it each time.

It is supposed that a frame in the vector space L, is normalized, i.e,, eg Aey A ... ANey = 1,
where A sets an exterior product.

The equations of infinitesimal displacements of the moving frame in P, can be written in the
following way:

dAp = 6] Ay,
I' = 0,...,n, with the condition of normalization Ag A A1 A ... A A, = 1. Here, d denotes ordinary
differentiation in P,. The forms 9{,, are linear differential forms; they depend on parameters u (defining

a location of the f}'ame) and their differentials du.
The forms 6{, are connected by the relation 63 + 61 + ... + 6! = 0. This condition is also necessary

for the number of linearly independent forms 9{: that became equal to the number of parameters on
which the group of projective transformations of space P,, depends.
The structure equations of projective space P, have the form

] _ oK J
Do), = 6% A6,

where D is a symbol of exterior derivative.

By the condition 9},/ = 0 from the linear group GL(n + 1), it is possible to determine the special
linear group SGL(n + 1) [21] acting effectively in Py.

Introducing the following new forms (see, e.g., [9,10]) w}; = 6}/’ - 5}: 69 and fixing the index

I'={0,1},1=1,..,n, we can expand the forms w}: as
[ _ gl I _pl _ 510 0 _ g0 0
The formulas of infinitesimal displacements can be written in more detail:

dA = 0A+w A, dA; = 0A; + W] A; + wiA, 1)

where A = Ap, w! = w, w; = Y, and the form 6 = 6] plays the role of the proportionality coefficient.
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Introducing the basis forms w and omitting, for simplicity, the index 0 in the notation of the forms
w} and Y, the Cartan equations can be defined

Dw! =/ /\w}, Dw} = wf /\wII< +(5}w1< A wk +wj A w!, Dw;= w{ Nwy, (2)

I

where w”, w}, wy are the basis forms of the projective group GP(n) acting effectively on P,.

Remark 1. We employ the inhomogeneous analytic apparatus with the derivation formulas (1) and the structure
equations (2). By contrast to the homogeneous case, this apparatus is more convenient for investigation of
centered planes; and it was used in the previous author’s papers [22-25].

3. The Space of Centered Planes

For the purpose of this paper, the term “space of centered planes”, denoted by I1, will be taken
to mean a space of all m-dimensional centered planes PY, in projective space P,. The space I is
a differentiable manifold and its points are m-dimensional centered planes.

Putting the vertice A of the moving frame on a m-plane P, and fixing it as a centre, we get a centered
plane P,%. Putting the vertices A, of the frame on the plane P,%, we fix index ranges 1 < 4,b,... < mand
m-+1 < «,p,... < n. From the derivation formulas (1), we immediately get stationarity equations for the
centered plane. These equations have the form w* = 0, wj = 0, w? = 0. The forms w*, w;, w” are the
basis forms of the space IT; the rest forms wy, w,, wg, w4, w, are secondary.

Remark 2. The dimension of the space 11 of centered planes differs from the dimension of the Grassmann
manifold Gr(m,n) [26] by the size m [22], i.e., dim IT = dim Gr(m,n) + m = n+ m(n — m).

4. Principal Bundle of the Space I1

The specification of the moving frame to the space I yields the principal bundle G(IT), its typical
fiber is a stationary subgroup G of the centered plane P, and base space is the space IT; in addition,
thereto, dim G = n? — mn + m? + n. Total space of the bundle G(I1) [3] is the projective group GP ()
and the projection 77 : GP(n) — I1 associates with each element of the group GP(n) the plane PY, in I1,
which is invariant under the action of this element.

The basis forms w*, w”, w} satisfy the Cartan structure equations

Dw* :w“/\wZ‘—ngwﬁ, Dw”:wawZ—wﬁAw“,

3)
Dws = (8wt — s5wh) Aw] +wa A",

The exterior differentials of the secondary forms are as follows:

Dwj = wy A wi + (8¢wy, + dpwe) A wb + djwa A w® — wy A wy; 4)
Dw, = wh A wy — wy AW ®)

Dwg = wg AWy + S5wa A w” + (Fywp + 05wy ) A wT + wi Awg; (6)
Dwﬁzwg/\wngwf/\wquwaAw“; (7)

Dwa:ngwﬂ+wawﬂ.

Remark 3. The principal bundle G(I1) of the space I1 contains the following five quotient bundles [22]:

1. L,.2(Py) is the quotient bundle of linear plane frames belonging to the planes PY, its typical fiber is the
linear quotient group L,» = GL(m) acting on the pencil of lines on the plane PY, with the structure
Equations (3) and (4);
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2. Ly (Py) is the quotient bundle of normal linear frames; it is dual to the quotient bundle of linear plane
frames; the typical fiber is the linear quotient group L, > = GL(n — m) acting on the quotient space
Py_p—1 = P,/ P% with the structure Equations (3) and (6);

3. Chu(ms1)(Pn) is the quotient bundle of plane co-affine frames belonging to the plane PY; its typical fiber is
the co-affine quotient group C,,(,,.11) = GA™(m) acting on the plane PY and GL(m) C GA*(m) C G.
This quotient bundle has the structure Equations (3)—(5);

4. Hy(Py,) is the affine quotient bundle whose typical fiber Hy (k = n(n — m) + m?) is an affine quotient
group [27] of the group Gr C GP(n) acting on the pencil of lines through A with the structure
Equations (3), (4), (6) and (7);

5. the maximal quotient bundle is made from the quotient bundle of plane co-affine frames and the affine
quotient bundle with the structure Equations (3)—(7).

Normalization of the space IT is made by the fields of the following geometric patterns: the first
kind normal, i.e., an (n — m)-plane N,_, intersecting the plane PJ, only at the point A and the second
kind normal, i.e., an (m — 1)-plane N,,_; contained in the centered plane PY and not passing through
its centre A (see, e.g., [11,28]).

Let us now analyze the dynamics of changes of the bundle G(IT) at the consecutive canonizations:

1. by placing the vertices A, on the first normal N, (the 1st canonization);
2. by placing the vertices A, on the second normal N,,_; (the 2nd canonization);
3. by simultaneous placing the vertices on the corresponding normals (full canonization).

Remark 4. The space T1' or T1? is said to be a semi-normalized space in the first or second case, respectively,
and the space T1'2 is a normalized space in the third case.

4.1. The Bundle G'(IT)

We put the vertices A, on the first normal Nj,_,. Then, the following relations must hold:
W = ggﬁwﬁ + gibwb + gﬁ%wf, ®)
with the differential congruences
Aggﬁ —l—gﬁ%wb =0, Ay, —dpwa =0, Agi% =0 (mod w*, wj, w"). )
Here, and subsequently, the differential operator A acts in the standard way (see, e.g., [29])
Agap = dgup + 8apwi — §5Wd — gﬁng-
Taking into account (8), from the structure Equation (2), we have

Dwj = wj A wi + (Sewy + dfwe) A w' + 6wy A w*+

a B a .o c ac , ,u B. (10)
(- )apwpy NP + (L )aewy AW + (- )ggwy Awe;

Dw, = wfl’/\wb — Wy ANWS; (11)

Dwp = wg A wiy + Sgwa A w® + (04 wp + Sgwy) N wT+ 12
()@ A + ()’ Al + () frwy Awh;

Dw, = wf N wg + wP /\ggﬁwg +wl A Sapwa + wf A g‘jf,’;w,l. (13)

From Equations (10)—(13), it can be argued that, at the first canonization, the principal bundle
G(IT) is narrowed to the principal bundle G!(I1); its typical fiber is the stationary subgroup G C G of
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a pair of the affine additional planes { P,;, N;—y, }. There are four quotient bundles in the subbundle
G (11):

the quotient bundle of plane linear frames with the structure Equations (3) and (10);
the quotient bundle of normal linear frames (3) and (12);
the quotient bundle of plane co-affine frames (3), (10), and (11);

Ll .

the quotient bundle of normal co-affine frames (3), (12), and (13).

4.2. The Bundle G?(IT)

If we do not use the previous canonization and place the vertices A, on the second normal N,;,_1, then
Wo = Quaw® + gapw’ + glﬂ’aw;’j (14)

and
Agan —gabwg =0, Agp =0, Agga + nga =0 (mod w*, wj, w"). (15)

Then, from the structure Equation (2), we have

Dwy = wj A wi + wpy A wy + djwa A w*+

(16)
( )bzxcw A w* +( )bcew A w* +( )bczxw /\w
Dwg = wg/\wi—i- (5“w,g+5gwy)Aw7—w"‘/\w§+ a7
() By A + (.. )ﬁbgw ANw' + (.. )ﬁvuwb Aw"
Dwﬁzwz/\wz—kngwg—i—wa/\w“; (18)
Dw, = wh A wp — wP A SapWy — Wb A gapw? — wf A gzﬁwg. (19)

In fact, according to Equations (16)-(19), we can make a conclusion that, at the second
canonization, the principal bundle G(IT) is narrowed to the principal bundle G?(I1); its typical
fiber is the stationary subgroup G? C G of the pair { A, N,,_1}. There are four quotient bundles in the
subbundle G?(I1):

the quotient bundle of plane linear frames with the structure Equations (3) and (16);
the quotient bundle of normal linear frames (3) and (17);

the bundle H(IT) (3), (16)—~(18) whose typical fiber H is an affine quotient group of G;
the bundle of normal co-affine frames (3), (17), and (19).

L .

4.3. The Bundle G'2(11)

Now, suppose that we have already made canonizations considered in items 4.1 and 4.2
simultaneously, that is, Ay € Ny—; and A; € Ny,,_1. In this case, conditions (8) and (14) are satisfied
and the structure Equation (2) will become

Dwjy = wj A wf + 6fwa N w® + (o) fe ™ A w4 () pew A+
()il A + ()2pwh AP + (L)W A wh; 20)
Dwg = wg Awiy + (8ywp + 0wy ) AT + (o) gy,w0” Aw'+ 2
+(...)%hawb Aw" + ()g?yawz ANw® + (. )gyw? ANwy + ()‘/zgl,ijg A wy;
Dwe = wh A wp + (...),xma)/5 ANwT + (...)aﬁhwﬁ Awb + (...)zma)ﬁ Aw]+ 22

()abew? A + () ppw? Aewf + (L0 wf Aw].
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Obviously, G1? is the stationary subgroup of the centered (n — m) pair {N;;_,,, N,,_1} [30]—
then at the full canonization from narrowing G'2(I1) of the principal bundle G(IT). The following
three quotient bundles are allocated:

1.  the bundle of plane linear frames (3) and (20);
2. the bundle of normal linear frames (3) and (21);
3.  the bundle of normal co-affine frames (3), (21), and (22).

5. A Connection on the Bundle Associated with the Space I1

Using the Laptev—Lumiste method (see, e.g., [4,31]), on the principal bundle G(I1), we define
a fundamental-group connection by the forms

~a __ .4 14 .0 74 _ Tac, & ~0 N T Y _7& .4 __ yaa, Y
Wy = wy, — Ly, w* — Ly w baWe, Wg=wpg—Lgw’—Lgw By Wa s
wh = wh — L”ﬁwﬁ Lib F”ﬁwf, Qg = wy — L™ — l”ubwh - Hzawg‘, (23)

Oy = Wy — aﬁwﬁ — The” — Hiﬁwff.

The components of the connection object [4]
F - {Lblxl ber Fb“r /57/ lgur ‘B'uy/ Z‘Br wb’ F,X/g/ rﬂﬂ(l I—‘ab/ me/ Focﬁr rlxﬂr HZﬁ}

satisfy the following differential congruences modulo the basis forms w®, wj, w*:

ALy, — Li.wy + T we —jwa =0, ALj. — 6wy, — fjwe. =0, Al + opwy =0,
AL%W — ﬁua) + mea (5ga),y — (S“wﬁ =0, AL%, — (5§a)a =0, 137 - (5"‘wﬁ =0,
b
b,.d _
ALS, — LS + Lhyw§ — 8jwy =0,  ATS — Tl + TThw! =0, o

ATaq — Ty + (I + Lig)wy =0,
AT+ LSywe =0, AT, +T%w, + 6lwy =0,
AT,p — mel‘g + (H?ng + Ll,‘ﬁ)wbZ - aﬁw,x + leﬂwv =0,
ATy — Tpow? + LYy + Lbywp =0,  ATT + Ty, — T + Tiwy, =0.

Remark 5. The connection object I' contains the following five geometrzc subob]ects Iy = {Lj,, Ly TS}
r2 - {ng,)// ﬁal rau} r3 - {rll ravu abrs mx} F4 - {Fll r2/ Lﬂ(ﬁ’ ab’ I"u } Hnd FS - {r3 \ rlr r4}
These subobjects determme connections on the corresponding (see Remark 3) quotzent bundles.

Let us consider the dynamics of changes of the connection I at consecutive canonizations and we
will be convinced that the connection I' is not uniquely induced at the normalization of the space I1.

5.1. The Connection Object at Adaptation of the Moving Frame to the First Normal

By placing the vertices A, on the first normal N;,_,,, condition (8) is satisfied, that is, the forms
w" become principal and the connection object T is narrowed to the object T' =T\ (T4 \ (T1 UTy));
and differential congruences for its components have the form
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AL}, + T we — 6jwy =0, AL}, — 6fwy — 6jwe. =0, Al =0,

AL%7 + gf’yw,l — 5gw7 —0qwp =0, ALy, — 5gwa =0, A gilr =0,
ATg + (T, + L8 )y, =0, AT, + LSwe =0, (25)

AT, +Thiwy + Shwa =0, ATy + (TThg + g25)wa + Lygwy =0,

Al'gq + Lgaw/; +gbw, =0, AH”ﬁ + F“Bwv + gz%wb =0.

All of this points to the fact that the following theorem holds.

Theorem 1. At an adaptation of the moving frame to a field of the first normals the connection object T is
reduced to the object T'*. The object T'' contains three subobjects T'}, T}, T3 that set connections on the quotient
bundles of plane linear frames, normal linear frames, and plane co-affine frames, respectively.

5.2. Connection Object at Adaptation of the Moving Frame to the Second Normal

Without using the previous canonization and placing the vertices A, on the second normal Ny,_1,
we get condition (14). The connection object I is narrowed to the object T? = T'\ (I'3 \ T;) with the
following congruences for its components:

AL}, — L} wi — dpwa =0, ALhC =0, Al +dowy =0,
AL%,Y — Bﬂ (5ﬁw7 0% wwp =0, ga =0, /37 - (5%)/5 =0,
Lig— Lbﬁw Loywh + LYyt =0, ALL, — Ly + Lh wf — 8fwe = 0, (26)
AT — Tobwd + TT0ws =0, ATy — Ty + LYgwy — gapwi =0,
ATaq + Lhawp — g5 =0, ATl + TTiw, — gl = 0.

The arguments given above prove Theorem 2.

Theorem 2. At an adaptation of the moving frame to a field of the second normals, the connection object I' is
reduced to the object T2. The object T contains three subobjects I3, T3, T3 that set connections on the quotient
bundles of plane linear frames, normal linear frames, and affine quotient bundle, respectively.

5.3. Connection Object at Normalization

By making both canonizations simultaneously, that is, placing the vertices A, on the first normal
Nyu—n and the vertices A, on the second normal N,,_1, the differential congruences for object’s
2 =1\ ((Ty\ (T1UT2)) U (T3\Ty)) components will become

ALy, —6ywa =0, AL =0, Al =0, ALf —0fw, —ws =0, AL, =0, o

AT% =0, Alyp+Llgw, =0, Ala+Lhawp =0, ATl +T 6w, =0,

In addition, we have the following theorem.

Theorem 3. At an adaptation of the moving frame to normalization of the space 11, the connection object I' is
reduced to the object TV, The object T\ contains two subobjects 1"1 2 1"1 2 that set connections on the quotient
bundles of plane and normal linear frames.

5.4. Reduced Connection Objects

With the help of conditions (8), the forms wj become principal, and, therefore, congruences
for the components L} B L3, F“b in (24) will be carried out identically and they can be omitted.
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Using conditions (8) in the rest of the differential congruences (24), the components of the reduced
connection object I'! will satisfy (25) if the following conditions hold:

8ig=Lig gh =Ll gih =T (28)

Theorem 4. The reduced object T coincides with the object T only if conditions (28) hold, where the object
T'! gives a connection on the reduced bundle that arises at the adaptation of the moving frame to a field of the
first normals.

By substituting conditions (14) into the differential congruences for components of the connection
object I', we get congruences (26) with conditions

8ap = Faﬁr Sav = Top, gza = Hztx (29)
for the components of the reduced connection object T''/.

Theorem 5. The reduced object T'! coincides with the object T? only in the case (29), where the object T? gives
a connection on the reduced bundle that arises at the adaptation of the moving frame to a field of the second normals.

Taking into account conditions (8) and (14) in the first six and last three differential
congruences (24), we have that the components of the reduced connection object T'/!!
differential congruences (27).

satisfy the

Theorem 6. The reduced connection object T'"!! coincides with the object T'?, which gives a connection on the
reduced bundle at the adaptation of the moving frame to the normalization of the space I1.

Remark 6. Adaptations of the moving frame cause the reductions of associated bundle and differential
congruences for components of group connection object. Semi-canonizations (the first and second canonizations)
lead to reductions of bundle and connection object, but, according to Theorems 4 and 5, the reduced connection
objects can differ from the objects specifying connections on the reduced bundles.

6. Curvature and Torsion Objects

Let us now consider curvature and torsion objects [4] of group connection on the bundle associated
with the space IT of centered planes at a transition to the normalized space IT"2.
6.1. Curvature Objects

Generic curvature R of the connection I' of the space I1 was studied in [22]. Denote by R! and R?
the objects of reduced curvature on the bundle associated with the space I1.
6.1.1. Curvature Object at the First Canonization

At the adaptation of the moving frame to a field of the first normals, we have

D@, = @2 A @y + Raapw™ N WP + Rype? A + Ry A b+

Ksaﬁw”‘ A wf + RS, WP A w? + Kggﬁwg‘ Awb,

abu

D@y = @y A @f 4 Ryypw™ A WP + RE W A w4 RE, W AW+

0 s A wb + R ¢ A wl + REGwE A,
Dag = ng A @y + R, 7 Al + R,y A wb + R, w" N w'+
M b i b, v H
Rg’lwaﬂ Awh + Rgmw“ Nw, + Rg‘fmwﬂ A wy,
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D@y = @2 N @q + @8 A @p + RapyP A + Ry p0® Al + RypaP A+

wﬁ/\a)a —i—RZaﬁaJ /\w£+K w,’lgAwZ.

a
aBy apy

The components of the curvature object R are determined by the following relations:
Raap = Tafup) — TabSlup) — LaaTop)  Raad = Tand = Tabe = Tac8p = LinTet + LipTews
Rape = ru[bc] - LZ[brec]/ Kga/s = rzaﬁ - HZ[; Facg ap LC H cB + Ff,l;;rcuu
Ritn = Tt = Miap + TiTep = Ly Tey = Taa,  Kip = Thaly] — Ta[TTEg),

szxﬁ Lb[zxﬁ] [aUclﬁ] o Lchixﬁ}’ Rbce = L bce] Lb[ Lde]’
b:xc = Lhrxc bc:x - fnngc + LZCLZa - hegzxcr

Rpag = Lbap — FZ%,X oLop + Thplen — Lbe8up — O58par
Rid, = Lidy — Tinc — 5d — Lj, T + T3A LY — 87ghc,
R{ct, =T3[4 - zr rod) + 6,87 ],
B~ Lo Loy — LpaStny Rbaw = Lty — LyaLAar
Bra = Lpya = Loy — szLtfm + L, Lyy = f;bgléa,
B = L — Ty — Loy T + T Ly — 8T, + 5185,

— # ab jib b
R‘Ba'y L‘Bﬂ’)’ F‘B’Yﬂ L'Bara +F)57Lﬁa _(5 +5'B;g/3a’

b _ b b [ab _ _ B
R%zru - Fg [Zru] - rﬂ [VF%] - 50[ gﬁy] Rapy = Lajpy) — a[ﬁ Ly = Tuag] [Bv) Ruap = Tafap) — sz[urﬁb]’

o _
ﬁwa

uc‘Ba = thﬁa - raaﬁ - Lzlgr’yu + LZary,B - rahggw

_ b
apy = Lapy = Hap sz;s oy + TanTup — Tang s

Rbys = T8, s —T10g — LTI + rgﬁrw —0Tap,  Kib =TL[R] — Th[EIT,, ).

Here, and in what follows, square brackets mean alternation over extreme indices.

apy —

Theorem 7. The curvature R is reduced to the object Rl = {R,mﬁ, Raver Rawn, I(fl’lxﬁ, Zba, sgﬁ, R‘g“ﬁ, Rgce,

d d b b b
Riwer Riap Rier Ritlyr Riyr Ra v Ryar RESyr R RE 1 Rupys Raa vr Rupar Ky Ragp, Ky, b and the
reduced curvature object R of the semi-normalized space T1' is a quasi-tensor together with the quasi-tensor
{g4 B/ b gglbg} The object R contains three subtensors that are curvature objects of subconnections on the

bundles of plane linear frames, normal linear frames, and plane co-affine frames.

Proof of Theorem 7. Extending the differential equations for components of the connection object I
and using (9), the differential congruences of curvature object components may be written as

aba Raab)wc =0, ARgpc+ Rgbcwe =0,

AKDs + (2Kg + Ring)we =0, ARG, + RS
ARZ(){ﬁ + RZTDL[B](UC = O, ARbCE = O, ARthC

ARqap + Kl 10 + Riygwp =0, ARy — (RS

aba

we =0, AR} bap + 2Rg§fﬁwe =0,

o

we =0, AKjs+ Ropgwe =0,

bax

ad — ace — — _ _
ARthX =V, ARb(Xﬁ = 0, AR‘B')’]/I + Rﬂ[,ﬂl]wa = O, ARﬁﬂh = 0 ﬁ'}‘ﬂ — R‘Ba'ywb = O,
wab — ab — vazb —
ARGy — 2Rgynwp =0, ARgy, =0, ARgy, =

b _ ﬁ _
ARypy + Riigy @y + (Kijg) + 8515y — 8ab8[p))Wa = 00 ARuap + Ry p + 8510 @e =0,
ARrxﬁa + (gfcﬁa - gfmﬂ - ggcg%a - Rfcaﬁ)wb + RZﬁaw’Y =0,
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b _
K, + (2K, + 84y — 8ayp — Sac8fy ) + Ripy @i =0,
b b
ARZaﬁ + RZaﬁw’Y + (gle;ﬁ - g;l;%u - (52g;ﬁ)w6 =0, Asz/S’y + sz;n,wu + ggc [uﬁlf]y]wc =0,

which proves the theorem. [J

6.1.2. Curvature Object at the Second Canonization

At the adaptation of the moving frame to a field of the second normals, we get

Dy = @) A @¢ + Ry pw “AwP + RE,W AW+ RE W AW+

bap Awf—FRbmw /\wd—i—RZ;’fgw /\wg,
D@,%:@EA 5+ Ry w’ Awh + R, Awb + Ry, A '+

¥ a Y 4 Ruab ’Y
W A wh —l—Rﬁmw Nwy + Rgo @
P

D@y = @) A@f + @y N @G + RigwP Aw” + REpwb Aw’ + RE g Awb+

By Nwy,

abplY bAwh + Ramwﬁ ANw) + Ri’l’;ﬁrwf ANwl,
D&y = @5 N\ @q —i—wff A @p+ Rypy WP A w4 Ryp p® N + R,Xﬁawﬁ AW+

RN —i—RfmﬁaJ /\wbﬁ—FK w,’lg/\wg.

a
apy apy

The components of the curvature object have the form
d
Riwp = Lyjup) — LpwLeg) T Toja8cplr Rbce = Lojee) = LijeLae] = 9(c8be) — 058 cels

bac = Lbucc bca - ZaLgC + Le La zigec + (Sggbﬂl + 5choc/
ﬁ - Lbzxﬂ bﬁtx - Zargg + b‘Bngx foggﬁ’

Ry = Lid, —Thd — 0fLg, — Lg Tid + ThaLi. — 0igh, — 0580, Rioh = ThlSH] — THIETe],
B = Lt — Lppy Lw] + Tl 8as Riav = L) — LgaLos) — 958t}
Bra = Liya = Lbay — Ly Ljia + Lo Ly + Fﬂvgbﬂ + g8,
B = Loy — Ty — Ly D + T Ly + T8 b
Rﬁfw - Lﬁu“r rﬁw Ll};ar% F?Wia h 5b Br — ﬁgw' ggrbu - Fg [ab] -T /Z [71" %]
Ry = Lijpy) — Ll — sy + Talp@ims Rise = L — Lkl — Lo

Ragy = Lagy — Lavg — LapLey T LipLes — LagLiy + Ly Lys + Ta58cbs

aop = Lavg — Tago — LapTep +TasLey — Ly, ruﬂ+rlxﬁ b — OpLaps

b
Régy = Luy — Tanp — LagpTe + oy L Lgﬁr;bﬁrgy up T Tepses
b
Rzﬁcv =TI [ﬁcv] Ta [51“%} —Th [ﬁr%]' Rupy =Tupy) — a[ﬁ Lygy + er[ﬁgm]'

Ruyap = Fa[ah] - Lf[urﬁb]r szﬁa = raﬁa - thaﬁ - LZ/;F’Y'J + LZur'yﬁ + Hgﬁgbar
— M j’"” b
RE5 =Thes — 15, — LMHb b+ r”’ﬁrw — 00T, Kl =TL[§] — TA[3IT), ).

apy —
Theorem 8. The curvature R is reduced to the object R? = {Rba/s' Ry Ryer Rgiﬂ, R‘gfﬂ, RZ;‘E, ng Rga b
b b b
Reyar Rpowr Rpays Ry Rapy Raver Rapy Rabp Ragy aﬂcv’ apys Rua b Rapar Ky, aﬂﬁ’ aﬁv} and the

reduced curvature object R? of the semi-normalized space T1% is a quasi-tensor together with the quasi-tensor
{aa, Sap, 88} The object R? contains three subtensors that are curvature objects of subconnections on the
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bundles of plane and normal linear frames, and also on the bundle H(T1?), where H is an affine quotent group of
the stationary group of the pair {A, Ny, _1 }.

Proof of Theorem 8. The proof of this theorem is not fundamentally different from the proof of
Theorem 7, but now we use conditions (15). We obtain

ARjys — Ry =0, ARf, =0, ARj, +2R} w; =0, e — RIS =0,
ARfG, =0, ARG =0, ARpy, — /S[W W =0 ARgy; =0,

AR§,, +2Rﬁubw7 =0, ARf, — RW 5=0, AR} =0, AR =0,

ARGy — Z[ﬁbw ] Rhﬁyw + R,Xm W =0, ARy, — Rpwy + becwg =0,

ARG gy = 2RG @ — Rigpwi + Rig o =0, ARGy — Rigpwp + R0y =0,

AR®, — R w§ + Rl w

b i — RIS @i =0, AR — RO ws + RIS wf =0,

g ’ apy  Tepy apy“n

ARqpy + Rig, @ — Rafpathy = 8alpy) Wi — 8hipSar)Wa =0, ARygp + RP w5 — Gl =0,
ARupq +2Rpapwf + Ry 5,0y + (8bap — bpa — 8hp8ca)wyy =0,
AKZ gy — Ry + Riﬁfﬂwu + (8byp — 8bpy — giﬁgﬁv)wz =0,

b
ARbaﬁ + Rau‘Bw’Y (gcﬁa B g(l;aﬁ + 51117gcl3)w§¢ =0, AKa/S'y + Rzgy gc[uﬁby]wgc =0.

These differential congruences prove the theorem. [

6.1.3. Curvature Object at the Full Canonization

At the normalization of the space I, that is, at the conditions A, € N, and A; € Ny,_1, we have

D@j = @ A @2 + Ryypw® A wP + Ri,w® Aw’ + Rip w0 A+
Ziﬁw“ /\cuclS +Rbcaw A wj —l—RZ;’éw /\wf,
~a_ ~TY Y y a
Dag = wg AN@ +Rﬁww A wh +Rﬁahw A wb +Rﬂww A w'+
b
ﬁw(’ﬂ A wh +Rﬁmw“ /\wb +Rg’fm /\wb,
D&, = @ N @ + w,f A @p + R,xﬁ,ywﬁ AW + Ry p® Aw? + Ra/;aw*8 AW+

gﬁvwﬁ Awl + Rbaﬁw /\wf + Ka,s'ng Aw].

The components of the curvature object are defined by the following relations:

bap = Lijup) — LiiuLlp) — LocSap) + Toia8elr Rbce = Lijee) — LifcLti) — c8bel — 0581cels
bec = Lpac = Lbew — LiaLec + LpcLew — Zeggcc + Tpa8ec + 67 8ba + OpGeas
Rppp = Liug — T hfm balep + TopLlea — Lbe8ap — 0588a + Ihaeps
Rye, = Ly —Thtc — ‘5d - Lj raa + AL — Sigh: — 008t — 08k,
Rish = e 4] — Ty Ted] + 6 g1,
= Lhju — Ly Ly — Lpa8h + Tplo8ans Rpaw = Lijan) — Lpa Loy — 958 1an)
fra = Lpya = Lpay — Lngfm + LyaLl;w - gbgga + Tﬁigba + 058y

14
Bru
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aa  __ raa xa 1 ywaa nay o « ba ® a ab a
Ry = Lo = Uy = Ly e + Uy Lipy = Ligp8pu 048y + Ty 8bpr

Bru Bru Buy By 1 Buny
b b b b b b b b
Ry = Liay = Tya — Lﬁuf% + szLgm — 04 Lg + 09850 — 0p8urs
b _ b 17 b [ab
R%# - l"g [aw] - Fﬁ [avr%} o yfvgﬁﬂ 2

Rupy = Taipy) ~ LyjaTun) — Taalpy) + 84(p8ar) + aipSants  Raab = Tufar) — Ly, Lol + S8t
Raﬁa = thﬁa - raaﬁ - Lzlgr'yu + Lt;rar'yﬁ - rabggu + gZ‘nga - gtl;cagbﬁ + Hgﬁgbw

Ki‘B'y = rgﬁy - ngﬁ - Lgﬁni'y + FZ’L;F]J;? - rabggbfly + gZﬁgZ'y B ggczygbﬁ + HZﬁgZ'y'
b b b b b b b b
Rmﬁ = Faaﬁ - Hoc[%a - LZﬂnyﬁ + FZ‘BF’W - ‘Saraﬁ + ggcagcﬁ - g;ﬁgcm

K2, = I, [32] — TL3I1E, ] + g5 [agh )

d d
RZ;[Z’ Ran’ RZtcxﬁ’ R%yy’ R%a b’

b b b : 1,2 :
Rg‘fw, Rupyr Rua vr Rupas Kgéﬁv’ Rmﬁ, Kgﬁ,y}. The curvature object R** of the normalized

; ; 12 _
Theorem 9. The curvature R is reduced to the object R** = {Rgaﬁ, Rgce, Rgm,
« wa ab
Riar Rpoyr Rpays
space IT'2 is a tensor. The tensor RY? contains two subtensors on the bundles of plane and normal linear frames,
and also one curvature subtensor on the bundle of normal co-affine frames.

Proof of Theorem 9. Indeed,

AR}, =0, AR}, =0, AR}, =0, ARJS,=0, AR{ =0, AR} =0,

AR}, =0, ARy, =0, ARf,=0, ARy, =0, ARj, =0, ARy =0,
ARygy + Ry 0y =0, ARygy+RE w5 =0, ARyps+ Rlg wy =0,
AKZM + Rzgywy =0, ARfmﬂ + stﬁw7 =0, AK(‘;%7 + Rﬁfgiwu =0.

These congruences conclude the proof. [

6.2. Torsion Objects

The following equations are a result of substituting the connection forms (23) into the structure
equations of basis forms of the space IT.

Dw® = w* Nwy — g A wbP + ngwﬁ AW + 8% wP A w4 Sg‘;wﬁ Awy,
Dw” = W A @8 + w® A @8 + SE.w? A wC + S wb Aw® + Sapw" A WP 4+ SfC Wb A W + Sﬁ%w”‘ A wf,
Dw? = @Y AW — @p A Wh + @ A W + Sg‘mwﬂ NwT + sz‘bﬁwh AwP + Sf{g,ywﬁ Aw]+
Sggcwc A wf + Sggfwa Awy,
where the object’s S components are defined as follows:

a

g“Y - L?ﬁﬂ/ Sga = %a' gfly - rgzﬂ be = L?bc]’ ba = Lpw = L Siﬁ - L["‘ﬁ]'

bo = Thar S Z% - FZZ, apy = Oy Tag)r Savy = O Tabs (30)
b b
Seb = oLy — obL8, —sAIIb,,  Sth = oLb LY, sibe = —JfﬁrL;] nyl res |,

The right-hand sides of equalities (30) contain only components of the subobject I';, and, therefore,
let object S be a torsion object of linear subconnection I'; of the group connection I' in the space IT of
centered planes PJ),.
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Taking into account congruences (24) for the components of subobject I';, the congruences modulo
the basis forms

AS [ﬁw] ‘["ﬁaw% =0, ASj,— §gwa =0, m - (5"‘a)ﬁ =0, AS;, =0,

ASﬂbﬁ + Saﬁbwc + Sﬂbwa =0, AS}. — 5%5% =0, Asgg; =0

Ssz

Sa/}'y aryc

w§ — 2685815 we — 658w, = 0
are obtained. Now, it is evident that the following theorem holds.

Theorem 10. The torsion object S of the subconnection I'y is a quasi-tensor containing the tensors Sj,, gake

apy
b
and the quasi-tensors S§,, S§2, Si¢, Sp6, {1k, Sk S} {Sher St sP, s, {52, Sag Sap}, {856 Sk
Sys ), {SiL, 2k, 5%, 53k ).
Remark 7. Because of Theorem 10, the connection I'y is always with torsion (see [32], cf. [33]) as the torsion
object S of connection I'y is a quasi-tensor.

It remains to consider the dynamics of changes of the torsion quasi-tensor S at
consecutive canonizations.

6.2.1. The First Canonization

We put the vertices A, on the first normal N;,_,;; then, conditions (8) can be written as
wh =0 (mod w*, Wi, ). (32)
Using congruences (32), the differential congruences (31) will be written in the form:

ASB7 + S[ | Wa = 0, AS%H - (SEa)u =0, AS%’,’Y =0, AS). =

ASE, + Sbawf =0, ASi+Silmw, =0, ASH =0, g% =0, )

AShp. — 008fw, =0, ASyE =0,

she = — 2685, Jwe — 005 we = 0.

aﬁ'r [p-a

Theorem 11. Suppose that the components of the torsion quasi-tensor S satisfy congruences (31); then, S is
reduced to the quasi-tensor S with congruences (33) at the adaptation of the moving frame to a field of the first
normals Ny . The quasi-tensor S' contains the tensors Sgﬁ;, St She, Sb gabe fgaa S”‘ } {Saﬁ, Zcﬁ}’

ap’ “apy” =gy’
{Sz;, Sa} {Scb gac Slxb Su

ayr Syps aﬁv} and the quasi-tensors Sg,, Sg,gc/ {guc ,, S

ayb’ aby}

6.2.2. The Second Canonization

Without using the previous canonization, we put the vertices A, on the second normal N,,_1,
then conditions (8) can be written as

wa =0 (mod w*, wi, w). (34)

Taking into account condition (34), the differential congruences for the components of the torsion
object S have the form
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AS [‘Bﬂ ] = 0 Asaa = 0, ﬁ"f 5“ ,B = ASgC = U,
ASM — 258 Wt — sﬁbwg =0, ASI+ Swh+ saﬁ 2 =0, -
ASE + 55wl =0, aﬁ S“ﬁw + sgg ,”y =0, Asam + 5" [ﬁwg] =0,

— b — b — be —

Thus, Theorem 12 follows from these congruences.

Theorem 12. Suppose that the components of the torsion quasi-tensor S satisfy congruences (31); then S is
reduced to the quasi-tensor S? with congruences (35) at the adaptation of the moving frame to a ﬁeld of the
second normals N,,_1. The quasi-tensor S? contains the tensors SBar Sper Sfl‘gc7 Sg‘gc, Sy {Sﬁu, 1 {She

. b
th, Stets {S;“f;c, Sg‘gﬂy} {Subﬁ, Z‘m} and the quasi-tensors SgZ , S, {Sgg, SZﬁ' S“%}
6.2.3. The Full Canonization

After all, if A, € P,_,, and A, € P,_1, then conditions (32) and (34) hold and the differential
congruences of the torsion object components have the form

AS%W =0, AS =0, g‘; =0, AS) = AS;, =0, AS’ZB =0, AS;,=0
_ b _ be _—
ASH =0, ASt, =0, ASh;=0, ASH% =0, ASH =0, ASHE =0.

Theorem 13. At the adaptation of the moving frame to the normalization of the space 11, the torsion quasi-tensor
S becomes a tensor; furthermore, all its components are the one-component tensors (cf. in Theorems 11 and 12,
the quasi-tensors S' and S* contain also multi-component tensors and quasi-tensors).

Remark 8. It is true that, at the considered canonizations, the number of components of the torsion object S does
not change, in contrast to the reduced objects of curvature and connection, yet the fact remains that differential
congruences of its components differ from congruences (31). This testifies to possible change of properties of
torsion for semi-normalized spaces T1', T12 and also for the normalized space T1'2.
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