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Abstract: A brief but comprehensive review of the averaged Hausdorff distances that have recently
been introduced as quality indicators in multi-objective optimization problems (MOPs) is presented.
First, we introduce all the necessary preliminaries, definitions, and known properties of these
distances in order to provide a stat-of-the-art overview of their behavior from a theoretical point of
view. The presentation treats separately the definitions of the (p, q)-distances GDp,q, IGDp,q, and ∆p,q

for finite sets and their generalization for arbitrary measurable sets that covers as an important
example the case of continuous sets. Among the presented results, we highlight the rigorous
consideration of metric properties of these definitions, including a proof of the triangle inequality
for distances between disjoint subsets when p, q > 1, and the study of the behavior of associated
indicators with respect to the notion of compliance to Pareto optimality. Illustration of these results
in particular situations are also provided. Finally, we discuss a collection of examples and numerical
results obtained for the discrete and continuous incarnations of these distances that allow for an
evaluation of their usefulness in concrete situations and for some interesting conclusions at the end,
justifying their use and further study.

Keywords: Averaged Hausdorff distance; evolutionary multi-objective optimization;
Pareto compliance; performance indicator; power means

1. Introduction

In many real-world applications, the problem of concurrent or simultaneous optimization of
several objectives is an essential task known as a multi-objective optimization problem (MOP).
One important problem in multi-objective optimization is to compute a suitable finite size
approximation of the solution set of a given MOP, the so-called Pareto set and its image, the Pareto front.

The Hausdorff distance dH (e.g., Reference [1]) measures how far two subsets of a metric
space are from each other. Due to its properties, it is frequently used in many research areas
such as computer vision [2–4], fractal geometry [5], the numerical computation of attractors in
dynamical systems [6–8], or convergence of multi-objective algorithms to the Pareto set/front of
a given multi-objective optimization problem [9–15]. One possible drawback of the classical Hausdorff
distance, however, is that it punishes single outliers which leads to inequitable performance evaluations
in some cases. As one example, we mention here multi-objective evolutionary algorithms. On the
one hand, such algorithms are known to be very effective in the (global) approximation of the Pareto
set/front. On the other hand, it is also known that the final approximations (populations) may contain
some outliers (e.g., Reference [16]). For such cases, the Hausdorff distance may indicate a “bad” match
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of population and Pareto set/front, while the approximation quality may be indeed “good”. To avoid
exactly this problem, Schütze et al. introduced the averaged Hausdorff distance ∆p in Reference [16],
but the initial definition only works for finite approximations of the solution set and does not behave
as a proper metric in the formal mathematical sense. In Reference [17], the indicator ∆p,q has been
proposed by the first two authors of this paper. ∆p,q is an averaged Hausdorff distance that fixes the
metric behavior of ∆p. Later, in Reference [18], a broader definition was given on metric measure
spaces, suitable for the consideration of continuous approximations of the solution set. Moreover, this
generalized indicator ∆p,q preserves the nice metric properties of the initial finite case and reduces to it
when using the standard discrete measure.

While the averaged Hausdorff distance has so far mostly been used for performance assessment of
multi-objective evolutionary algorithms (using benchmark functions), it has also been used on MOPs
coming from real-world problems including the multi-objective software next release problem [19],
arc routing problems [20], power flow problems [21], engineering design problems [22], foreground
detection [23], and contract design [24]. Several other indicators have also been proposed in the
literature, like the hypervolume indicator or R indicators, each one with its own advantages and
drawbacks, but their consideration is beyond the scope of this work. Information concerning other
indicators can be found, e.g., in References [25–27].

The material reviewed in this work is based on recently published works [17,18,28]. The remainder
of the document is organized as follows: in Section 2, we will briefly state the required background for
MOPs and power means. In Section 3, we review the p-averaged Hausdorff distance ∆p. In Section 4,
we will discuss its generalization, the (p, q)-averaged Hausdorff distance ∆p,q, explaining individually
the finite and continuous cases. In Section 5, we will consider some aspects of the metric properties of
∆p and ∆p,q. In Section 6, we study the Pareto compliance of the performance indicators related to ∆p

and ∆p,q. In Section 7, we will present some examples and numerical experiments. Finally, in Section 8,
we will draw our conclusions and will discuss possible paths for future research in this direction.

2. Preliminaries

In this review, we introduce tools from a metric perspective that deal with two related contexts:
distances between finite subsets of a metric space and distances between general measurable subsets
of a metric measure space. The second context actually contains the first, but we deal separately with
both of them, starting with the simpler setting of finite subsets before passing to the more general
situation of arbitrary measurable sets that also contains the important special case of continuous sets.
To emphasize each context, we use the convention that general sets will be denoted by X, Y, and Z,
but when they are finite, the labels A, B, and C will be used.

2.1. Multi-Objective Optimization

First, we briefly present some basic aspects of multi-objective optimization problems (MOPs)
required for the understanding of this paper. For a more thorough discussion, we refer the interested
reader, e.g., to References [12,29,30].

A continuous MOP is rigorously formalized as the minimization of an appropriate function:

min
x∈Q

F(x),

where F denotes a vector-valued function with components fi : Q→ R, for i = 1, . . . k, called objective
functions. Explicitly,

F : Q −→ Rk,

x 7−→ F(x) := ( f1(x), . . . , fk(x)).
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The optimality of a candidate solution to a MOP depends on a dominance relation [31] given in
terms of the partial order introduced below.

Definition 1. For x, y ∈ Q, the partial Pareto ordering � associated with the MOP determined by F is
defined as

x � y if and only if fi(x) 6 fi(y), for all i = 1, . . . , k.

For x, y, z ∈ Q and X, Y ⊂ Q, the following notions of dominance (≺) and non-dominance (⊀) are
standard in this context:

x is dominated by y, written y ≺ x if y � x and F(x) 6= F(y).

z is dominated by X, written X � z if x � z for some x ∈ X, otherwise X � z.

X is dominated by Y, written Y � X if ∀x ∈ X ∃y ∈ Y such that y � x, otherwise Y � X.

In addition, x ∈ Q is called a Pareto-optimal point if it is nondominated, i.e., @ y ∈ Q with y ≺ x.
Finally, the Pareto set P ⊂ Q consists of all Pareto-optimal points and the Pareto front is defined as its image
F(P) ⊂ Rk.

MOPs commonly possess the important characteristic that, when mild smoothness conditions are
fulfilled, the solution (or Pareto) set P and its image the Pareto front F(P) ⊂ Rk consist of d dimensional
subsets for d = k− 1 (or even less) when the problem involves k objective functions ([32]).

As an example, let us describe a simple unconstrained MOP [33,34] given by

f1, . . . , fk : Rn −→ R

fi(x) =
n

∑
j=1

(xj − ai
j)

2,

where ai = (ai
1, . . . , ai

n) ∈ Rn and i = 1, . . . , k. The ai’s correspond to the minimizers of each quadratic
objective fi, and the Pareto set of this problem consists of a (k− 1) simplex containing all the ai’s as
vertices, i.e.,

simpk−1 := simp(a1, . . . , ak) =

{ k

∑
i=1

µiai : µ1, . . . , µk > 0 and
k

∑
i=1

µi = 1
}

.

In the particular case when n = 1, k = 2, a1 = 0, and a2 = 2, the problem becomes

F : R −→ R2

F(x) = (x2, (x− 2)2).
(1)

This is the so-called Schaffers problem [35]. Figure 1 illustrates the objectives f1 and f2, and the Pareto
front F(P) for this MOP. In this case, the Pareto set corresponds to P = [0, 2] and the Pareto front is a
continuous convex curve in R2 joining (0, 4) with (4, 0).

In many real-world applications, MOPs arise naturally. As one example, in almost all scheduling
problems (e.g., References [36–41]), the total execution time (make-span) is of primary interest.
However, the consideration of this objective is in many cases not enough since other quantities
such as the tardiness or the energy consumption also play an important role and can consequently,
according to the given problem, also add objectives to the resulting multi-objective problem.

For the numerical treatment of MOPs, there exist already many established approaches.
For instance, there are mathematical programming techniques [29,42], point-wise iterative methods
that are capable of detecting single local solutions of a given MOP. Via use of a clever sequence of
these resulting scalar objective optimization problems, a suitable finite size approximation of the entire
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Pareto front can be computed in certain cases [43–46]. Multi-objective continuation methods take
advantage of the fact that the Pareto set at least locally forms a manifold [47–52]. Starting with an
initial (local) solution, further candidates are computed along the Pareto set of the given MOP. All
of these methods typically yield high convergence rates but are, in turn, of local nature. A possible
alternative is given by set oriented methods such as subdivision and cell mapping techniques [53,54]
and evolutionary algorithms [55–59] that are of global nature and are capable of computing a finite
size approximation of the Pareto front in one single run.

-� -� � � � � �
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Figure 1. Left: the objectives f1(x) = x2 and f2(x) = (x − 2)2 from a multi-objective optimization
problem (MOP; Equation (1)). Right: the corresponding Pareto set over the interval [0, 2].

2.2. Finite Power Means

A comprehensive reference on the theory and properties of means is given in Reference [60],
where proofs of the statements presented here for finite power means and for integral power means in
the following subsection can be found (see also Reference [18] for integral means).

For a finite set A ⊂ [0, ∞) and a nonzero real p, the p-average or the p power mean of A is
given by

Mp
a∈A

(a) :=
(

1
|A| ∑

a∈A
ap
) 1

p

,

where |A| denotes the cardinality of A. The simpler notation Mp(A) := Mp
a∈A

(a) will also be employed.

Moreover, in order to simplify the forthcoming expressions, we introduce the abbreviation

∑
a∈A

a :=
1
|A| ∑

a∈A
a

to denote the arithmetic mean of the elements of a finite set A ⊂ R>0.
It is well known that limit cases of power means recover familiar quantities, for example,

lim
q→0

Mp(A) =

(
∏
a∈A

a
) 1
|A|

,

is the standard geometric mean of the elements of A. The special case p = −1 corresponds to the
harmonic mean,

harm (A) := M−1(A).
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Moreover, the p-average of any finite set can also be defined for any p in the extended real line
R := [−∞, ∞] by taking appropriate limits.

lim
q→∞

Mp(A) = max (A), and lim
q→−∞

Mp(A) = min (A).

Proposition 1. Let A and B be finite subsets of [0, ∞) and p, q ∈ R be arbitrary constants. Then, the following
properties hold for finite power means:

1. Mp(A) 6 Mp(B).

2. For p 6 q: Mp(A) 6 Mq(A).

3. For a matrix of nonnegative elements D = (da,b) with a ∈ A and b ∈ B:

Mp(D) := Mp
a∈A

(
Mp
b∈B

(da,b)
)
= Mp

b∈B

(
Mp

a∈A
(da,b)

)
.

4. For p > 1: Mp({a + b | a ∈ A, b ∈ B}) 6 Mp(A) +Mp(B).

5. For the harmonic mean: harm (A) 6 |A|min (A).

2.3. Integral Power Means in Measure Spaces

In order to present this part with sufficient generality, let us denote by (S , µ) a measure space.
Let M(S) be the σ algebra of measurable subsets of S and M<∞(S) be the collection of those subsets
with finite measure.

Now, we recall some fundamental properties of integral power means in this setting needed for
the forthcoming sections. For p ∈ RK{0} and a measurable function f : X ⊂ S → [0, ∞) defined on a
subset X ∈M<∞(S), the p power mean or p-average of f over X is given by

Mp
x∈X

( f (x)) :=
(

1
µ(X)

∫
X

f (x)p dµ

) 1
p

. (2)

For convenience, RHS of Equation (2) will be denoted simply as

−
∫

X
f p dµ :=

1
|X|

∫
X

f (x)p dµ,

where |X| := µ(X) refers in this context to the measure of X and not to its cardinality as in the finite
case. For brevity, when the measure µ employed is clear, dµ will be abbreviated by dx to highlight the
variable being integrated. The shorthand Mp( f (X)) := Mp

x∈X
( f (x)) will also be employed.

For p > 1, the integral p mean corresponds to Mp( f (X)) = |X|−
1
p ‖ f ‖p, where ‖ · ‖p is the standard

p norm of the Lebesgue space Lp(X, µ). The cases p = ±∞ can also be included by taking the limits
p → ±∞. In fact, since the essential supremum of the function f on X is ‖ f ‖∞ = ess supx∈X f (x),
and when f is not identically zero its essential infimum is precisely ‖1/ f ‖−1

∞ = ess infx∈X f (x); by
calculating the limits, we obtain that

M∞
x∈X

( f (x)) := lim
p→∞

(
−
∫

X
f p dµ

)1
p

= ‖ f ‖∞,

and similarly,

M−∞
x∈X

( f (x)) := lim
p→−∞

(
−
∫

X
f p dµ

)1
p

=

∥∥∥∥ 1
f

∥∥∥∥−1

∞
.
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Note that ‖ · ‖∞ corresponds to the norm of the space L∞(X, µ). For p = 0, it is possible to define
Mp as the integral generalization of the notion of geometric mean, and it is given explicitly by

M0
x∈X

( f (x)) := exp
(
−
∫

X
log f dµ

)
.

Proposition 2. For subsets X, Y ∈M<∞(Rk), nonnegative measurable functions f , g : X → [0, ∞), and any
product-measurable function d : X×Y → [0, ∞), the integral power mean Mp satisfies that

1. For p ∈ R, k ∈ [0, ∞): Mp
x∈X

(k) = k and Mp
x∈X

(k f (x)) = k Mp
x∈X

( f (x)).

2. For p ∈ R: Mp
x∈X

(
Mp

y∈Y
(d(x, y))

)
= Mp

y∈Y

(
Mp

x∈X
(d(x, y))

)
.

3. For p ∈ [1, ∞]: Mp
x∈X

( f (x) + g(x)) 6 Mp
x∈X

( f (x)) +Mp
x∈X

(g(x)).

4. For p ∈ R and f 6 g: Mp
x∈X

( f (x)) 6 Mp
x∈X

(g(x)).

5. For p, q ∈ [0, ∞] with p 6 q: Mp
x∈X

( f (x)) 6 Mq
x∈X

( f (x)).

3. The ppp -Averaged Hausdorff Distance

When trying to measure the distance between subsets of Euclidean space or even an arbitrary
metric space, a natural choice is the well-known Hausdorff distance dH that is extensively employed in
many different contexts. However, its use is of limited practical value to measure the distance to the
Pareto set/front in typical MOPs, such as stochastic search methods implemented by an evolutionary
algorithm. This is due to the fact that these algorithms may produce a set of outliers that can be heavily
punished by dH . As a partial remedy, the use of an averaged Hausdorff distance ∆p was first proposed
in Reference [16] to replace dH .

Let d : S × S → [0, ∞) denote a distance function on a metric space S for which the standard
properties of the identity of indiscernibles, nonnegativity, symmetry, and subadditivity (more
commonly known as the triangle inequality) are satisfied.

Definition 2. Given a point x0 ∈ S and subsets X, Y ⊂ S , we have

1. A pointwise distance to sets: d(x0, X) := inf {d(x0, x) | x ∈ X}.
2. A pre-distance between sets: d(Y, X) := sup {d(y, X) | y ∈ Y}.
3. The Hausdorff distance between sets: dH(X, Y) := max {d(X, Y), d(Y, X)}.

For simplicity, throughout the text, the metric d can be assumed to be the standard Euclidean
distance d(x, y) := ‖x− y‖ induced on some S ⊂ Rk by the Euclidean 2 norm of Rk, but the theory
carries over to any general metric space (S , d).

Definition 3. Let p ∈ N. For finite subsets A, B ⊂ S , their (modified) p generational distance is

GDp(A, B) :=
(

1
|A| ∑

a∈A
d(a, B)p

)1
p

,

and their (modified) p inverted generational distance is

IGDp(A, B) :=
(

1
|B| ∑

b∈B
d(b, A)p

)1
p

.
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From them, the p averaged Hausdorff distance is obtained by taking the maximum

∆p(A, B) := max {GDp(A, B), IGDp(A, B)}.

The indicators GDp and IGDp in Definition 3 correspond to simple adjustments to the definitions
of the generational distance [61] and the inverted generational distance [62].

The standard Hausdorff distance is recoverable from ∆p by taking the limit limp→∞ ∆p = dH ,
but for any finite value of p, the distance ∆p is obtained from standard p power means of all the
distances employed to calculate the supremum in part 2 of Definition 2, which is needed to define dH .

The advantage of using ∆p as an indicator is that it does not immediately disqualify a few outliers
in a candidate set, contrary to what dH does and that, among the possible configurations of (finite)
candidate solutions to a MOP, it assigns lesser distances to the Pareto front to those solutions appearing
evenly spread along its whole domain (see, e.g., Reference [63]). The behavior of ∆p as a quality
indicator is studied, e.g., in References [16,28], and it corresponds to the particular case q→ −∞ of the
results for general (p, q)-indicators presented in Section 6.

Concerning its metric properties, ∆p has the drawback of not being a proper metric in the usual
sense because for any non-unit set A ⊂ S the distance ∆p(A, A) > 0. This problem will be fixed in the
following section with a simple modification. Nevertheless, independently from that, for a positive
number p, the distance ∆p does not satisfy the triangle inequality but only a weaker version of it.
Indeed, as a consequence of Corollary 3, we have that

∆p(A, C) 6 Nα
(

∆p(A, C) + ∆p(B, C)
)

,

where N = max{|A|, |B|, |C|} > 1 and α = 1/p.
For further details concerning ∆p, its properties, and its relation to other indicators, the reader can

consult, e.g., References [16,63].

4. The (p, q)(p, q)(p, q)-Averaged Hausdorff Distance

To better evaluate the optimality of a certain candidate set to approximate the Pareto set/front of
a MOP, several generalizations of the averaged Hausdorff distance ∆p have been recently introduced.

4.1. (p, q)-Distances between Finite Sets

Definition 4. For p, q ∈ RK{0}, the generational (p, q)-distance GDp,q(A, B) between two finite subsets
A, B ⊂ S is given by

GDp,q(A, B) :=
(

∑
a∈A

(
∑
b∈B

d(a, b)q
)p

q
)1

p
.

The distance GDp,q(A, B) can be extended for values of p = 0 or q = 0, by taking the limits p→ 0
or q→ 0, respectively. In such cases, properties of finite power means suggest the following definitions:

GDp,0(A, B) :=
(

∑
a∈A

(
∏
b∈B

d(a, b)
) p
|B|
)1

p
, when p 6= 0,

GD0,q(A, B) :=
(

∏
a∈A

(
∑
b∈B

d(a, b)q
)1

q
) 1
|A| , when q 6= 0, and

GD0,0(A, B) :=
(

∏
a∈A

(
∏
b∈B

d(a, b)
) 1
|B|
) 1
|A| if p = q = 0.
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We can also calculate GDp,q when p→ ±∞ or q→ ±∞ by changing the corresponding sum with
a minimum or a maximum according to the case. In particular, we have the nice relation

lim
q→−∞

GDp,q(A, B) = GDp(A, B). (3)

Note that the definition of GDp,q has two drawbacks, namely GDp,q(A, B) does not necessarily
vanish if A = B and in general GDp,q(A, B) 6= GDp,q(B, A), hence it does not define a proper metric.
In order to get one, a slight modification is needed.

Definition 5. Let p, q ∈ RK{0}. For finite subsets A, B ⊂ S , their (p, q)-averaged Hausdorff distance is

∆p,q(A, B) := max{GDp,q(A, BKA), GDp,q(B, AKB)}.

Notice that GDp(A, B) = GDp(A, BKA) when A∩ B = ∅, thus using Equation (3) and Definition 5,
we easily obtain

lim
q→−∞

∆p,q(A, B) = ∆p(A, B).

In this way, for finite and disjoint sets, the indicator ∆p,q is a generalization of ∆p. Similarly to
the relation

GDp(A, B) = |A|−
1
p ‖DAB‖p,

between the GDp(A, B) and the matrix `p norm ‖DAB‖p of the distance matrix DAB := [d(a, b)]a,b

for a ∈ A and b ∈ B, we also have the following relation between the (p, q)-generational distance
GDp,q(A, B) and the matrix `p,q norm ‖DAB‖p,q, where the definition of the latter is precisely that of
GDp,q but replacing all the normalized sums ∑ by standard ones ∑ (see, e.g., Reference [64]):

GDp,q(A, B) = Mp
a∈A

(
Mq
b∈B

(d(a, b))
)
= |A|−

1
p |B|−

1
q ‖DAB‖p,q.

A useful property of the distance ∆p,q is that the parameters can be adjusted independently to
achieve some desired spread of the archives by choosing an appropriate q and that they can be located
with custom closeness to the Pareto front of a MOP by an adequate choice of p.

4.2. (p, q)-Distances between Measurable Sets

With the aid of Proposition 2, the results of the previous section can be generalized to subsets of
a metric space (S , d) endowed with an appropriate measure µ. For concreteness, S can be taken to
be a subset of Rk carrying the metric induced from the Euclidean metric of Rk and endowed with an
appropriate non-null measure µ. Notice that, in our intended applications, µ will not be the restriction
of the standard Lebesgue measure of Rk to S for the simple reason that it can easily vanish as it
happens on any hypersurface or lower dimensional subsets of Rk. In this case, a lower dimensional
measure is needed and alternatives like the Hausdorff measure on S can be used, since it gives rise
to the standard notion of d dimensional volume for d submanifolds of Rk. When these submanifolds
are parametrized by functions from subsets of Rd, the same volume will be obtained by a change of
variable formulae from the standard Lebesgue measure on those subsets of Rd.

A very important observation in this context is that any set-theoretic relation obtained from
measure-related calculations needs to be understood to hold almost everywhere (a.e.). Therefore, for
X, Y ∈M<∞(S), the statements X = Y or X ⊂ Y mean that the relations hold a.e., i.e., µ{X 6= Y} = 0
or µ{X * Y} = 0, respectively. In other words, in this setting, we will always identify X ∈M<∞(S)
with its equivalence class [X] := {Y | X = Y, a.e.}. This means that those classes will be regarded as
the elements of M<∞(S), removing the need to carry the abbreviation a.e. all the time. Henceforth,
to simplify complicated formulae, d(x, y) will be shortened to dx,y.
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Definition 6. Let p, q ∈ RK{0}. For finite-measure subsets X, Y ∈ M<∞(S), their generational
(p, q)-distance is given by

GDp,q(X, Y) := Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
=

(
−
∫

X

(
−
∫

Y
d q

x,y dy
)p

q

dx
)1

p

.

The cases p < 0 or q < 0 are well defined only if X and Y are disjoint subsets.

Similarly to the finite case, GDp,q can be extended to values of p, q ∈ R, but there are two
drawbacks: GDp,q(X, X) = 0 only if X is a unit-set or singleton, and GDp,q(X, Y) can differ from
GDp,q(Y, X). To fix this undesirable behavior, we repeat the strategy used in the finite case as follows.

Definition 7. Let p, q ∈ RK{0}. For finite-measure subsets X, Y ∈M<∞(S), their (p, q)-averaged Hausdorff
distance is given by

∆p,q(X, Y) := max {GDp,q(X, YKX), GDp,q(Y, XKY)}.

Remark 1. In general, the (p, q)-distances are maps: M<∞(S) ×M<∞(S) → [0, ∞). On the collection
of finite subsets of S , the standard counting measure can be taken as the underlying one needed for these
measure-theoretic notions of GDp,q and ∆p,q, and in this case, these distances become precisely the finite-case
distances given in Definitions 4 and 5.

Remark 2. For disjoint subsets X and Y, Definition 5 in the finite case and Definition 7 above in the measurable
case reduce to the simpler form

∆p,q(X, Y) := max{GDp,q(X, Y), GDp,q(Y, X)},

which is the one we will actually use in most situations. The more general definition for non-disjoint subsets
is given with the purpose that the distance so-defined changes continuously as one set approaches the other
until their distance vanishes. In other words, the general definition allows the distance to become a continuous
function with respect to the metric topology that it determines. Nevertheless, for practical purposes dealing with
applications and for most of the results presented below, the simpler definition between disjoint subsets suffices.

5. Metric Properties

To explain some of the terminology used in this section, we recall to the reader that the standard
triangle inequality for a distance function d : S × S → [0, ∞) is usually weakened in two different but
related ways by postulating the existence of a constant C > 0 such that, for any points x, y, z ∈ S , one
of the following conditions hold:

• The C relaxed triangle inequality: d(x, z) 6 C(d(x, y) + d(y, z)).
• The C inframetric inequality: d(x, z) 6 C max{d(x, y), d(y, z)}.

Since the second condition implies the first one by using the very same constant C > 0 and,
reciprocally, the C relaxed triangle inequality implies the 2C inframetric one, both conditions are
equivalent for an appropriate choice of constants. A semimetric satisfying any one of these conditions
will be simply called an inframetric.

For arbitrary measurable sets in S , the following results summarize the metric properties of GDp,q

and ∆p,q. Using the counting measure, these properties also apply to finite sets. For more details, see
Reference [17] in the finite case and Reference [18] in the generalized measure-theoretic context.

Theorem 1. For p, q ∈ [1, ∞], the generational (p, q)-distance GDp,q is subadditive in M<∞(S), i.e., for any
X, Y, Z ∈M<∞(S), the triangle inequality holds true:

GDp,q(X, Z) 6 GDp,q(X, Y) + GDp,q(Y, Z).
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Proof. The proof follows easily by simple steps using the properties in Proposition 2. We start from
the standard triangle inequality for d(·, ·):

dx,z 6 dx,y + dy,z (x ∈ X, y ∈ Y, z ∈ Z),

taking at both sides the q-average over Z and using 1–3 of Proposition 2 to arrive at

Mq
z∈Z

(dx,z) 6 Mq
z∈Z

(dx,y + dy,z) 6 Mq
z∈Z

(dx,y) +Mq
z∈Z

(dy,z) = dx,y +Mq
z∈Z

(dy,z). (4)

Now, there are two independent cases for the parameters p, q ∈ [1, ∞). We explain here only the
case p 6 q, but the case q < p follows by similar arguments; see Thm. 2 in Reference [18]. Calculating
the p-average over X at both sides of Equation (4) and using 1, 3, and 5 of Proposition 2, we get

Mp
x∈X

(
Mq

z∈Z
(dx,z)

)
6 Mp

x∈X

(
dx,y +Mq

z∈Z
(dy,z)

)
= Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z). (5)

Since the LHS of Equation (5) is GDp,q(X, Z), after a further p-average over Y at both sides of
Equation (5) and parts 1, 3, and 5 of Proposition 2, we obtain

GDp,q(X, Z) 6 Mp
y∈Y

(
Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z)

)
= Mp

y∈Y

(
Mp

x∈X
(dx,y)

)
+ GDp,q(Y, Z).

But from 2, 4, and 5 of Proposition 2, the first term at the RHS above satisfies

Mp
y∈Y

(
Mp

x∈X
(dx,y)

)
= Mp

x∈X

(
Mp

y∈Y
(dx,y)

)
6 Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
= GDp,q(X, Y).

Corollary 1. If p, q ∈ RK{0}, the (p, q)-averaged Hausdorff distance ∆p,q is a semimetric on the space
M<∞(S) of finite-measure subsets of S . Furthermore, if p, q ∈ [1, ∞) the distance ∆p,q behaves as a proper
metric when it is restricted to disjoint subsets of M<∞(S).

Proof. From Definition 7, we obtain the relations ∆p,q(·, ·) > 0 and ∆p,q(X, Y) = ∆p,q(Y, X) for any
X, Y ∈M<∞(S) and all p, q ∈ RK{0}. Moreover, from Definition 6, it follows that GDp,q(X, YKX) = 0
if and only if X = ∅ or Y ⊆ X (hence, YKX = ∅). Therefore, for X, Y 6= ∅,

∆p,q(X, Y) = 0 ⇐⇒ X = Y,

i.e., ∆p,q is a semimetric on the collection of finite-measure subsets M<∞(S). Finally, for disjoint X and
Y, it is clear that GDp,q(X, YKX) = GDp,q(X, Y); thus, by Theorem 1, the triangle inequality holds for
both arguments inside the maximum that defines ∆p,q when p, q ∈ [1, ∞). This implies that the triangle
inequality is also valid for ∆p,q.

Theorem 2. Let X, Y, Z ∈M<∞(S) be subsets admitting positive constants r < R such that r 6 du,v 6 R
for any u ∈ X ∪ Y and v ∈ Y ∪ Z. Then, for all p, q ∈ RK{0}, |p|, |q| > 1 and at least one of them negative
a relaxed triangle inequality holds for GDp,q, namely

GDp,q(X, Z) 6
R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Proof. Step 1: Let p ∈ RK{0}, and suppose that q < 0. We will prove that

GDp,|q|(X, Y) 6
R
r

GDp,q(X, Y). (6)
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For all x ∈ X and y, z ∈ Y, we have r
R
6

dx,y

dx,z
6

R
r

. Thus,

R
r
>
(
−
∫

Y
−
∫

Y

[
dx,y

dx,z

]|q|
dy dz

) 1
|q|

=

(
−
∫

Y
d|q|x,y dy

) 1
|q|
(
−
∫

Y
d −|q|x,z dz

) 1
|q|

.

Since q = −|q|, this means that M|q|
y∈Y

(dx,y) 6
R
r
Mq
y∈Y

(dx,y). Taking the p-average Mp
x∈X

at both sides

and from 1 and 4 of Proposition 2, we find Mp
x∈X

(
M|q|
y∈Y

(dx,y)
)
6

R
r

Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
, which is exactly

Equation (6).

Step 2: Now, for q ∈ RK{0} and p < 0, we will prove that

GD|p|,q(X, Y) 6
R
r

GDp,q(X, Y). (7)

By assumption, we have r
R
6

dx,y

du,y
6

R
r

for any y ∈ Y and all x, u ∈ X. Similarly as before and using 1

and 4 of Proposition 2, we conclude from the RHS part that Mq
y∈Y

(dx,y) 6
R
r
Mq

y∈Y
(du,y). However, since

p = −|p|, after taking a p-average of the quotient of means, it follows from

(
−
∫

X

(
Mq

y∈Y
(dx,y)

)|p|
dx
) 1
|p|
(
−
∫

X

(
Mq

y∈Y
(du,y)

)p
du
) 1
|p|

=

(
−
∫

X
−
∫

X

[ Mq
y∈Y

(dx,y)

Mq
y∈Y

(du,y)

]|p|
dx du

) 1
|p|

6
R
r

,

that M|p|
x∈X

(
Mq

y∈Y
(dx,y)

)
6

R
r
Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
, which is now (7).

Step 3: The previous steps can be summarized in the expression

GD|p|,|q|(X, Y) 6
R
r

GD|p|,q(X, Y) 6
R2

r2 GDp,q(X, Y). (8)

Using again 4 of Proposition 2 and Definition 6, we get GDp,q(X, Z) 6 GD|p|,|q|(X, Z). From this, the
subadditivity for GD|p|,|q| (Theorem 1), and Equation (8), we conclude

GDp,q(X, Z) 6 GD|p|,|q|(X, Y) + GD|p|,|q|(Y, Z) 6
R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Remark 3. For parameters (p, q) ∈ R2 that lie in the orange or blue sectors in Figure 2, the distance GDp,q

fulfills a C relaxed triangle inequality for a constant C = R2/r2 only if the condition r 6 du,v 6 R holds for all
u ∈ X ∪Y and v ∈ Y ∪ Z. On bounded and topologically separated sets (i.e., not having common limit points),
this condition always holds, and on them, ∆p,q becomes an inframetric as explained below.
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p

q

∞−∞ −1 1

∞

−∞

−1

1

Figure 2. According to Corollary 1, when acting on disjoint subsets, ∆p,q behaves as a proper metric if
(p, q) lies in the blue sector, and according to Corollary 2, it behaves like an inframetric if (p, q) lies in
the orange sectors.

Corollary 2. Under the same hypotheses of Theorem 2, the (p, q)-averaged Hausdorff distance ∆p,q satisfies

∆p,q(X, Z) 6
R2

r2

(
∆p,q(X, Y) + ∆p,q(Y, Z)

)
.

Proof. It is immediate using Theorem 2 and Definition 7.

When the involved sets are finite, a generally sharper inframetric relation holds. For emphasis,
we employ in this context the notation A, B, C for those subsets of S .

Theorem 3. If p, q ∈ R and |p|, |q| > 1, the (p, q)-distance GDp,q satisfies the relaxed triangle inequality

GDp,q(A, C) 6 Nα
(

GDp,q(A, B) + GDp,q(B, C)
)

,

for all finite subsets A, B, C ⊂ S , where N := max{|A|, |B|, |C|} > 1 and α := |p|−1 + |q|−1.

Proof. For arbitrary p 6= 0, let us assume that q < 0, so that |q| = −q. We can write

GDp,|q|(A, B) =
(

∑
a∈A

([
∑
b∈B

d(a, b)−q
]−1)p

q
)1

p
=
(

∑
a∈A

(
|B|−2 harm

b∈B

{
d(a, b)q

})p
q
)1

p
,

which, when combined with property 5 of Proposition 1, yields

GDp,|q|(A, B) 6
(

∑
a∈A

(
|B|−1min

b∈B

{
d(a, b)q

})p
q
)1

p
6 |B|

1
|q|
(

∑
a∈A

(
∑
b∈B

d(a, b)q
)p

q
)1

p
= |B|

1
|q| GDp,q(A, B).

A similar relation is true for any q 6= 0 if p < 0. In conclusion, GD|p|,|q|(A, B) 6 Nα GDp,q(A, B), where

α :=

 |min{p, q}|−1 if pq < 0,

|p|−1 + |q|−1 if p < 0, q < 0.

If Nα does not need to be sharp, α can always be chosen to take the larger value |p|−1 + |q|−1.
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Now, for |p|, |q| > 1, the final result follows from the triangle inequality for GD|p|,|q|:

GDp,q(A, C) 6 GD|p|,|q|(A, C) 6 Nα
(

GDp,q(A, B) + GDp,q(B, C)
)

.

Corollary 3. If p, q ∈ R and|p|, |q| > 1, the (p, q)-distance ∆p,q satisfies the relaxed triangle inequality:

∆p,q(A, C) 6 Nα
(

∆p,q(A, B) + ∆p,q(B, C)
)

,

for all finite subsets A, B, C ⊂ S , with N := max{|A|, |B|, |C|} > 1, and α := |p|−1 + |q|−1.

Proof. The corollary follows immediately from Theorem 3 and Definition 5.

To conclude this section, we return to the general setting of arbitrary measurable sets to explain
the behavior of ∆p,q when changing the value of its parameters p and q.

Theorem 4. Let X, Y ∈M<∞(S) and suppose that p, p′, q, q′ ∈ R satisfy p 6 p′ and q 6 q′. Then,

∆p,q(X, Y) 6 ∆p′,q(X, Y) and ∆p,q(X, Y) 6 ∆p,q′(X, Y).

Proof. It follows easily from part 5 of Proposition 2 and Definition 7.

6. The (p, q)(p, q)(p, q)-Distances as Quality Indicators

Let Q be a decision space Q and F : Q→ Rk be a multi-objective function on it, of which the
associated MOP consists in the simultaneous minimization of its k component functions f1, . . . , fk.
A candidate solution to this problem is Pareto-optimal if all elements of its image in F(Q) ⊂ Rk are
nondominated in the sense of Pareto [31]; see Definition 1. For the forthcoming discussion, let us
introduce the following abbreviated and useful notation. For X, Y ⊂ Q and any z ∈ Q, we define the
following

X�z := {x ∈ X | x � z}, X�Y := {x ∈ X | ∃y ∈ Y : x � y},
X�z := {x ∈ X | x � z}, X�Y := {x ∈ X | @y ∈ Y : x � y}.

From these definitions, it follows that, for arbitrary z ∈ Q and X, Y ⊂ Q, there are partitions:

X = X�z t X�z, and X = X�Y t X�Y,

where t stands for the disjoint union of subsets. A similar notation with the subindices ≺, �, and �
can also be used in an analogous way. Let us recall that an archive X ⊂ Q is, by definition, a subset
of mutually non-dominated points; therefore, for any x, x′ ∈ X, the condition x � x′ implies x = x′.
This basic property implies that F : Q→ Rk is a bijection when restricted to any archive X ⊂ Q and,
therefore, the points in F(X) ⊂ F(Q) can be univocally labeled by the elements of X. Moreover, for a
finite archive A ⊂ Q, both sets have the same number of elements |A| = |F(A)|.

Now, we introduce a couple of strengthened notions of dominance between sets (archives) that
are required for the validity of most of the results in this section.

Definition 8. An archive X is well-dominated by an archive Y if

1. X is dominated by Y, written Y � X, i.e., ∀x ∈ X, ∃y ∈ Y s.t. y � x, and
2. Y consists only of dominating points of X, i.e., ∀y ∈ Y, ∃x ∈ X s.t. y � x.

Moreover, X is said to be strictly well dominated by Y if

3. ∃y ∈ YKX, ∃x ∈ XKY such that y ≺ x.
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For an archive X ⊂ Q, the GDp,q, IGDp,q, and ∆p,q quality (or performance) indicators assigned to
it will be defined as the distance of its image F(X) to the Pareto front F(P), i.e.,

IGD
p,q (X) := GDp,q(F(X), F(P)), I IGD

p,q (X) := IGDp,q(F(X), F(P)),

and I∆
p,q(X) := ∆p,q(F(X), F(P)).

In this section, we study the behavior of IGD
p,q , I IGD

p,q , and I∆
p,q as performance indicators.

An example of a weakly Pareto-compliant performance indicator is the Degree of Approximation
(DOA; see Reference [10]).

6.1. Pareto Compliance of (p, q)-Indicators in the Finite Case

In order to obtain general conclusions on the features of the averaged Hausdorff distance ∆p,q

as a quality indicator, we consider first the behavior of GDp,q. For additional details on the material
presented in this section and other related results in the context of the p-averaged Hausdorff Distance
∆p, the reader is referred to Reference [28].

For the following statements, we will abbreviate δq(a, B) := (∑b∈B d(a, b)q)
1
q . Clearly, with this

notation, IGD
p,q (A) = (∑a∈A δq(F(a), F(P))p)

1
p , where in the averaged sum ∑, we are labeling the points

in F(A) by the elements of the archive A, taking advantage of the fact that |A| = |F(A)|, as it also will
be done with all the averages in this section.

Theorem 5. Let A, B ⊂ Q be finite archives with A strictly well dominated by B. For all a ∈ A and b ∈ B,

1. b ≺ a implies that δq(F(b), F(P)) < δq(F(a), F(P));

2. b � a implies that
|B�a|
|B| 6

|A�b|
|A| (or equivalently an strict equality);

then, IGD
p,q (B) < IGD

p,q (A).

Proof. By condition 1, for all a ∈ A and b ∈ B�a, the inequality δq(F(b), F(P))p 6 δq(F(a), F(P))p

holds true. After averaging over all b ∈ B�a at both sides, we have

∑
b∈B�a

δq(F(b), F(P))p 6 δq(F(a), F(P))p,

and averaging once again over all a ∈ A produces

∑
a∈A

(
∑

b∈B�a

δq(F(b), F(P))p
)
6 ∑

a∈A
δq(F(a), F(P))p. (9)

From property 2 and noticing that each b ∈ B appears |A�b| times in the initial sum,
the LHS becomes

∑
a∈A

∑
b∈B�a

1
|B�a|

δq(F(b), F(P))p > ∑
a∈A

∑
b∈B�a

|A|
|B|

1
|A�b|

δq(F(b), F(P))p = ∑
b∈B

δq(F(b), F(P))p.

Returning to Equation (9), we conclude that IGD
p,q (B) 6 IGD

p,q (A). Lastly, part 3 of Definition 8 for
strictly well-dominated sets guarantees that this is an strict inequality, proving the assertion.

Remark 4. Since we are dealing with finite archives, condition 2 of Theorem 5 regarding the relative size of
some of their parts is equivalent to the condition |F(B�a)|/|F(B)| 6 |F(A�b)|/|F(A)| regarding the relative
size of their images. This is not necessarily the case in the context of measurable subsets, but see Remark 5.
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Figure 3 shows examples where Theorem 5 holds with q → −∞. In this case, the q-averaged
distance δq(a, B) becomes the standard distance d(a, B) between a point and a set.

F (B)
F (A)

F (B)
F (A)

F (B)
F (A)

F (B)
F (A)

Figure 3. Different scenarios where the GDp value of archive B is better (smaller) than the GDp value
of archive A independently of the Pareto set and where the additional assumptions made in Theorem 5
are easily verifiable.

For the inverted generational distance IGDp,q in the finite case, we provide here two useful results
without explicit proofs. The necessary steps are similar to the arguments used to prove the analogous
statements for IGDp in Prop. 3.8 of Reference [28] and Thm. 3.9 in Reference [28]. Those statements
correspond here to the limit q → −∞, and the main difference in the proofs is that the Euclidean
distante d(a, B) needs to be changed everywhere by the q-average δq(a, B), as it was done above for
the proof of Theorem 5 that generalizes the proof of Thm. 3.4 in Reference [28]. The reader can also
find there additional remarks on similar hypotheses to the ones needed for Theorem 6 below.

Proposition 3. Let A, B ⊂ Q be finite and strictly well-dominated archives with B � A such that for all
a ∈ A, b ∈ B, and x ∈ P:

b ≺ a implies δq(F(b), F(x)) < δq(F(a), F(x));

then, I IGD
p,q (B) < I IGD

p,q (A).

Figure 4 illustrates two situations where the hypotheses of Proposition 3 are satisfied. Now,
to state a more general result concerning the Pareto compliance of the IGDp,q indicator, we will further
abbreviate the minimal p-average of distances δq(F(a), F(P�B)) by

δA := min
a∈A

{(
∑

x∈P�B

δq(F(x), F(a))p
) 1

p
}

= min
a∈A

IGDp,q(F(a), F(P�B)).
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F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

Figure 4. Two situations where IGDp,q(B) is better (smaller) than IGDp,q(A) for sufficiently negative q:
Here, the hypotheses of Proposition 3 hold true.

Theorem 6. Let A, B ⊂ Q be finite and strictly well-dominated archives such that B � A. If at least one of the
following conditions is satisfied,

1. ∀a ∈ A, ∀b ∈ B: b ≺ a implies IGDp,q(F(b), F(P�B)) < IGDp,q(F(a), F(P�B));
2. ∃a0 ∈ A such that ∀x ∈ P�B: a0 ∈ arg mina∈A δq(F(x), F(a));
3. ∀x ∈ P�B: δq(F(A), F(x)) = δA;

then I IGD
p,q (B) < I IGD

p,q (A).

Finally, a general statement on the Pareto compliance of the finite case of the (p, q)-averaged
Hausdorff distance ∆p,q follows as a consequence of Theorems 5 and 6.

Theorem 7. Let A, B ⊂ Q be finite and well-dominated archives such that B � A. If for all a ∈ A, b ∈ B:

b � a implies
|B�a|
|B| =

|A�b|
|A| ,

and at least one of the following conditions is satisfied:

1. ∀a ∈ A, ∀b ∈ B, ∀x ∈ P: b ≺ a implies δq(F(b), F(x)) < δq(F(a), F(x));
2. ∃a0 ∈ A such that ∀x ∈ P�B: a0 ∈ arg mina∈A δq(F(x), F(a));
3. ∀x ∈ P�B: δq(F(A), F(x)) = δA;

then, I∆
p,q(B) < I∆

p,q(A).

Figure 5 illustrates four situations where Theorems 6 and 7 apply with very large q. In the first
row, the left diagram is a modification of the second case in Figure 4 where condition 1 holds. In the
right diagram, the diamond lying at the lower left corner of F(A) represents the image F(a0) of a point
a0 satisfying condition 2. Finally, both diagrams in the second row exhibit cases where the points
of F(P) are equidistant to corresponding points in F(A), making condition 3 valid, with δA being
this distance.
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F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

Figure 5. Four examples where IGDp(B) is smaller (better) than IGDp,q(A) for sufficiently negative q:
In each case, at least one of the requirements of Theorem 6 is satisfied.

6.2. Pareto Compliance of (p, q)-Indicators in the General Case

We consider now the behavior of the generalized GDp,q distance with respect to the
Pareto-compliance, concentrating on the most important aspects that describe its characteristics and
using similar hypotheses to the ones needed in the previous section for ∆p,q in the finite case.

Here, we will continue to assume that the decision space Q with objective function F : Q→ Rk

defining the MOP under consideration has a Pareto set P ⊂ Q with corresponding Pareto front
F(P) ⊂ F(Q). Also, we assume that the objective space F(Q) ⊂ Rk carries a metric d that, for
simplicity, can be taken to be the one inherited from the Euclidean distance d(·, ·) in Rk. In addition,
to define the (p, q)-indicators on MOPs that require general non-finite sets, we need a measure space
(S , µ), that here will be taken to be S := F(Q) endowed with a non-null measure µ according to the
comments at the beginning of Section 4.2. In this context X, Y ⊂ Q will denote arbitrary subsets such
that F(X), F(Y) ⊂ F(Q) are measurable with non-null and finite measures.

Remark 5. Recall that, here, |F(X)| = µ(F(X)) denotes the measure of F(X) ⊂ S . In this context, Q will
not be asked to carry a measure and the notation |X| will have no a priori meaning for X ⊂ Q. Nevertheless, it
is possible to induce a measure on those subsets of Q where F is bijective by taking the pullback µ∗ of µ to them,
making the identity |X| = µ∗(X) := µ(X) = |F(X)| trivially true. This can be done for all archives but not
for subsets where F is not bijective. When it is Q that carries a measure, a push-forward measure can be always
defined on its image F(Q), making this identity true for all sets. This was implicitly assumed in the presentation
provided in Reference [18] (Section 3.4). For clarity, we avoid here this identification and state everything from
the assumption that the measure µ is defined only on S := F(Q).

Before stating the complete result, let us recall that a partition of a set X is a collection of disjoint
and non-empty subsets of X whose union is the whole of X and a partition of an archive X ⊂ Q induces
a partition of F(X) ⊂ F(Q) by the bijectivity of F restricted to X. For convenience, we abbreviate
the measure-theoretic q-averaged distance from a point F(x) ∈ F(Q) to a set F(Z) ⊂ F(Q) by
δq(F(x), F(Z)) := (−

∫
v∈F(Z) d(F(x), v)q)

1
q .
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Theorem 8. For p, q ∈ R, let X, Y ⊂ Q denote archives of which the images F(X) and F(Y) are of non-null
finite measures in F(Q). Moreover, assume that

1. there exist finite partitions X =
⊔m

i=1 Xi and Y =
⊔m

i=1 Yi such that ∀i ∈ {1, . . . , m}:

(a) F(Xi) ⊂ F(X) and F(Yi) ⊂ F(Y) are subsets of non-null finite measure in F(Q);

(b) ∀x ∈ Xi, ∀y ∈ Yi: x � y;

2. ∀x ∈ X, ∀y ∈ Y: x � y implies δq(F(x), F(P)) 6 δq(F(y), F(P));

then, IGD
p,q (X) 6 IGD

p,q (Y).

Proof. By 1(a) of Theorem 8, the sets X and Y can be subdivided into the same number m of subsets,
and by 1(b), if x ∈ Xi and y ∈ Yi for any i ∈ {1, . . . , m}, then δq(F(x), F(P)) 6 δq(F(y), F(P)).
Therefore, we can take successive integral p-averages over F(Xi) and, afterwards, over F(Yi) at both
sides of this inequality to find that, for each i, we have

ap
i :=

1
|F(Xi)|

∫
F(Xi)

δq(v, F(P))p dv 6
1

|F(Yi)|

∫
F(Yi)

δq(v, F(P))p dv =: bp
i . (10)

For those i ∈ {1, . . . , m} violating the inequality |Xi |
|X| 6

|Yi |
|Y| , we subdivide Xi into a sufficiently

large partition of mi subsets Xi,1, Xi,2, . . . , Xi,mi , with images by F of non-null finite measure, so as to
guarantee that, for all j ∈ {1, . . . , m}, we get

wi,j :=
|F(Xi,j)|
|F(X)| 6

|F(Yi)|
|F(Y)| =

: w̃i. (11)

Notice that this is indeed possible because each F(Xi) is of non-null finite measure. Since ∀x ∈ Xi,j,
∀y ∈ Yi, we have x � y, an inequality similar to Equation (10) also holds for them, i.e.,

ap
i,j :=

1
|F(Xi,j)|

∫
F(Xi,j)

δq(v, F(P))p dv 6
1

|F(Yi)|

∫
F(Yi)

δq(v, F(P))p dv =: bp
i ,

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , mi}. However, |F(X)| = ∑m
i=1 |F(Xi)|, where |F(Xi)| = ∑mi

j=1 |F(Xi,j)|
and |F(Y)| = ∑m

i=1 |F(Yi)|. Therefore, with the notation of Equation (11), a simple calculation shows
that ∑m

i=1 ∑mi
j=1 wi,j = ∑m

i=1 w̃i = 1, implying that wi,j and w̃i are normalized weights useful for weighted
averages. Since 0 6 ai,j 6 bi and 0 6 wi,j 6 w̃i 6 1, simple properties of discrete weighted power mean
imply the inequality ∑m

i=1 ∑mi
j=1 wi,j ap

i,j 6 ∑m
i=1 w̃i bp

i . Thus, we can finally write

IGD
p,q (F(Y))p =

1
|F(X)|

m

∑
i=1

mi

∑
j=1

∫
F(Xi,j)

δq(v, F(P))p dv =
m

∑
i=1

mj

∑
j=1

|F(Xi,j)|
|F(X)| ap

i,j =
m

∑
i=1

mi

∑
j=1

wi,j ap
i,j

6
m

∑
i=1

w̃i bp
i =

m

∑
i=1

|F(Yi)|
|F(Y)| bp

i =
1

|F(Y)|
m

∑
i=1

∫
F(Yi)

δq(v, F(P))p dv = IGD
p,q (Y)

p.

Remark 6. From condition 1 of Theorem 8, it follows the simpler (and somewhat weaker) dominance conditions:

(a′) X � Y (i.e., ∀y ∈ Y, ∃x ∈ X such that x � y), and
(b′) ∀x ∈ X, ∃y ∈ Y such that x � y.

For simple situations where (a′) and (b′) are valid, the partitions needed for part 1 of Theorem 8 are not difficult
to find; however, this is not always possible as the right side of Figure 6 indicates. Indeed, Figure 6 presents
some examples where (a′) and (b′) hold true, but IGD

p,q (X) 6 IGD
p,q (Y) can be both true (left side) and false

(right side). Furthermore, it is possible to show that X and Y comply (left side) and do not comply (right side)
with condition 1 of Theorem 8, respectively.
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F(Y)
F(X)
F(P)

F(Y)
F(X)
F(P)

Figure 6. (Left) A situation where the Pareto front F(P) and the images F(X) and F(Y) of continuous
archives satisfy IGD

p,q (X) 6 IGD
p,q (Y) and condition 1(a) of Theorem 8 holds true. (Right) A modification

of the previous situation where conditions (a′) and (b′) of Remark 6 are satisfied but IGD
p,q (X) 
 IGD

p,q (Y).
Here, there are no possible partitions of the archives satisfying part 1(a) of Theorem 8.

Remark 7. An important advantage of using GDp,q over GDp is that condition 2 of Theorem 8 provides the
possibility of choosing an appropriate q ∈ R for which the condition δq(F(x), F(P)) 6 δq(F(y), F(P)) holds
when x � y, ensuring in this way the compliance to Pareto optimality for GDp,q. This freedom is lacking for
GDp because, in the limit q→ −∞, the distance δq(F(x), F(P)) becomes the standard distance d(F(x), F(P)),
which does not allow for any choice.

7. Examples and Numerical Experiments

In this section, we present some numerical experiments involving finite sets first, and afterwards,
we study the case of continuous sets.

7.1. Working with ∆p,q over Finite Sets

Let us take a hypothetical Pareto front P given by the line segment from (0, 1) to (1, 0) in R2, i.e.,
the set of all points

(t, 1− t) ∈ R2, for 0 6 t 6 1.

This is the same example considered in Reference [16] p. 506 and enables us to make a comparison
with values of ∆p. In order to use the finite version of ∆p,q, we discretize P by taking 11 uniformly
distributed points; we call this set P′. We assume two archives: X1 is obtained from P′ by changing
(0, 1) for (0, 10), including an outlier, and by adding 1/10 to the remaining ordinates. X2 is obtained
from P′ by adding 5 to each ordinate. See Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Figure 7. A hypothetical Pareto front discretization P′ (black circles) and two different archives:
X1 (blue dots) and X2 (orange squares).
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As explained in Section 3, we know that

∆∞(A, B) := lim
p→∞

∆p(A, B)

coincides with the standard Hausdorff distance dH . In this case, we obtained

∆1(P′, X1) = 0.9091, ∆1(P′, X2) = 4.5412,

dH(P′, X1) = 9, dH(P′, X2) = 5;

and according to Theorem 4 and Reference [16] p. 512, these values must increase as p increases.
Tables 1 and 2 show that we can find values of p and q such that the (p, q)-averaged distance

does not punish heavily the outliers, for example, p = q = 1 or p = 1 and q = −1. We remark that
the values of ∆p,q(P′, X1) do not present a significative change under variations of q 6 1 for a fixed p.
Thus, it is possible to work with q = 1, in which case ∆p,q is a metric according to Corollary 1, and to
still obtain values close to the ones given by the inframetric ∆p, with the same p > 1.

Table 1. ∆p,q(P′, X1) for several values of p and q.

HH
HHHq

p 1 2 5 10 20

−∞ 0.9091 2.7153 5.5714 7.0811 7.9831
−100 0.9272 2.7701 5.6839 7.2241 8.1443
−20 0.9537 2.8367 5.8202 7.3974 8.3396
−5 0.9895 2.8624 5.8705 7.4613 8.4117
−1 1.1131 2.8782 5.8848 7.4795 8.4322
1 1.3243 2.9112 5.8920 7.4886 8.4425
2 2.9277 2.9295 5.8956 7.4932 8.4476
5 5.8920 5.8956 5.9063 7.5068 8.4630
10 7.4886 7.4932 7.5068 7.5292 8.4882

Table 2. ∆p,q(P′, X2) for several values of p and q.

HH
HHHq

p 1 2 5 10 20

−∞ 4.5412 4.5497 4.5751 4.6160 4.6867
−100 4.6442 4.6529 4.6790 4.7209 4.7933
−20 4.8425 4.8518 4.8795 4.9239 5.0003
−5 4.9624 4.9720 5.0007 5.0465 5.1250
−1 5.0008 5.0105 5.0394 5.0856 5.1646
1 5.0203 5.0301 5.0591 5.1055 5.1848
2 5.0301 5.0398 5.0690 5.1154 5.1949
5 5.0591 5.0690 5.0983 5.1450 5.2248
10 5.1055 5.1154 5.1450 5.1921 5.2725

For large values of p, the behavior of ∆p,q presents the same disadvantages of ∆p or of the standard
Hausdorff distance. For example, in Tables 1 and 2, it can be observed that all distances for p > 5 are
useless because they imply that the distance from the discrete Pareto front P′ to the archive X1 is larger
than its distance to the archive X2. Figure 7 suggests that this is an undesirable outcome.

Table 3 shows that ∆p,q is close to a metric when q 6 −1 and p > 1. The percentage of triangle
inequality violations decreases as p increases or q decreases.
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Table 3. Triangle inequality violations, in percentage, for several values of p and q: Here, we randomly
chose 80 sets, each one containing 2 points in [0, 10]2, and verified the triangle inequality for all possible
set permutations (that is, 492,960).

HHH
HHq
p 1 2 5 10

−1 0.05396 0 0 0
−2 0.10265 0.00041 0 0
−5 0.28815 0.01217 0 0
−10 0.35622 0.05031 0.00041 0
−20 0.43046 0.08439 0.00446 0.00041

7.2. Optimal Archives for Discretized Spherical Pareto Fronts

We now consider two standard Pareto fronts: The spheric convex and spheric concave
quarter-circles, see Figures 8 and 9.

P1 =
{
(cos(θ) + 1, sin(θ) + 1) : − π 6 θ 6 −π

2

}
,

P2 =
{
(cos(θ), sin(θ)) : 0 6 θ 6

π

2

}
. (12)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.003083 0.921541
0.027631 0.766555
0.076121 0.617317
0.147360 0.477502
0.239594 0.350552
0.350552 0.239595
0.477502 0.147360
0.617317 0.076121
0.766555 0.027631
0.921541 0.003083

∆1,−1(A, P1) = 0.179112

Figure 8. Optimal ∆1,−1 archive A for the connected Pareto front P1 given by Equation (12) with 10
elements (blue circles) and at the right is the respective archive coordinates and the ∆1,−1 distance.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.996918 0.078459
0.972370 0.233445
0.923880 0.382684
0.852639 0.522498
0.760405 0.649448
0.649448 0.760405
0.522498 0.852639
0.382683 0.923879
0.233445 0.972370
0.078459 0.996917

∆1,−1(A, P1) = 0.174482

Figure 9. Optimal ∆1,−1 archive A for the connected Pareto front P2 given by Equation (12) with 10
elements (blue circles) and at the right is the respective archive coordinates and the ∆1,−1 distance.
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To numerically find the optimal ∆p,q archive of size M, we discretized the Pareto front with
1000 equidistant points (which is an acceptable discretization according to Reference [63] p. 603)
and randomly chose an initial M sized archive. Then, we used a random-walk (or step climber)
evolutionary algorithm, moving one point at a time. Finally, we refined the optimal archive with the
“evenly spaced” construction suggested by Reference [63] p. 607.

When finding optimal ∆p,q archives, our numerical experiments suggest a clear geometrical
influence of the parameters p and q. For values of p in (−∞,−1), the optimal archive sets are basically
the same. When q ∈ [−1, 1] increases, the optimal archive tends to lose dispersion, converging to
one point. When q > 1, the optimal archive collapses to one point, and when q ∈ (−∞,−1], the
corresponding optimal archives are basically the same (see Figure 10). When p > −1 increases, the
optimal archive moves away from the Pareto set (see Figure 11).

The following Figures 10 and 11 show certain “optimal” archives A for the Pareto front P1 in
Equation (12), where the optimality means that the distance ∆p,q(X, P1) is minimum when X = A.
Because of the choice of the parameters p and q, this solution is clearly different from the one shown in
the Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q = 1
2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q = − 1
2

Figure 10. Optimal ∆1,q five-point set archives A for the connected Pareto front P1 given by
Equation (12) with p = 1 and q = ±1/2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

−→ p = 10
−→ p = 5

−→ p = 1
−→ p = −1

Figure 11. Optimal ∆p,−1 one-point archives A for the connected Pareto front P1 given by Equation (12)
with q = −1 and different values of p: In all cases, the archives are located in the line x = y.
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7.3. Optimal Archives for Disconnected and Discretized Pareto Sets

In this section, we present the optimal ∆p,q archives for a disconnected step Pareto front:

P(s,γ)
3 =

{(
t, 1− γt + (γ− 1) bstc

s

)
: 0 6 t 6 1

}
, (13)

where s is the number of steps, γ > 0 is a small constant responsible for the step’s twist, and b·c stands
for the integer part function.

Figure 12 shows numerical optimal ∆1,−1 archives of sizes 20. The archive coordinates reveal that

A ∩ P(
5, 1

10 )
3 = ∅,

i.e., the optimal archive points do not lie over the Pareto front but they are so close to it that this is
hardly noticeable. It is also evident that the archives are evenly distributed along the Pareto front.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 12. Numerical optimal ∆1,−1 archive A for the disconnect step Pareto front P(5)
3 given by

Equation (13) with 20 elements: here, we obtain ∆1,−1

(
A, P(5, 1

10 )
3

)
= 0.111132.

7.4. General Example for Continuous Sets

In this first example, we are going to construct simple and illustrative continuous sets A and B.
Let A be the straight segment in R2 from a = (−1, 0) to b = (1, 0), that is

A = ab. (14)

For a small positive ε > 0 and a variable δ > 0, let Bδ ⊂ R2 be the set given by the following union of
straight segments

Bδ = cdδ ∪ eδ fδ ∪ gδh, (15)

where c = (−1, ε), dδ = (−δ, ε), eδ = (−δ, 1), fδ = (δ, 1), gδ = (δ, ε), and h = (1, ε). We can regard the
set Bδ as a continuous approximation of A, where the central segment eδ fδ can be seen as the outlier.

In the following Figure 13, we can see the sets A and Bδ for ε = 0.10 and δ = 0.10, 0.20. According
to Table 4, as δ decreases, the ∆p,q distance between the approximation Bδ and the set A also decreases.

We remark that the classical Hausdorff distance between A and Bδ produces the value 1 for any
δ > 0. Thus, by working with the (p, q)-distance instead of dH , we can detect “better” approximations.
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Figure 13. The black horizontal segment is the set A from Equation (14), and the blue piecewise map is
the respective approximation given by the set Bδ from Equation (15) for two values of δ and ε = 0.10.

Table 4. ∆p,q results between the sets A and Bδ in Equations (14) and (15) for ε = 0.10 and some
parameter values of p, q, and δ.

p q ∆pq(A, B0.05) ∆pq(A, B0.10) ∆pq(A, B0.20) ∆pq(A, B0.40)

1 1 0.7149 0.7464 0.8091 0.9324
1 1 0.4105 0.4506 0.5311 0.6945
1 100 0.1503 0.1961 0.2878 0.4711
1 200 0.1479 0.1934 0.2844 0.4663
1 10, 000 0.1451 0.1901 0.2802 0.4602

7.5. Approximating Pareto Set and Front of a MOP

Finally, we address the problem to approximate the Pareto sets and fronts of given MOPs. As
an example, we will consider the bi-objective Lamé super-sphere problem [32] which is defined as follows:

min
x

F : Rn −→ R2, (16)

where F(x) = ( f1(x), f2(x)) is defined as

f1(x) =
(

1
n

n

∑
i=1

x2
i

)γ
2

and f2(x) =
(

1
n

n

∑
i=1

(xi − 1)2
)γ

2

where x ∈ Rn and γ ∈ R. For n = 2, the Pareto sets and fronts of this problem are shown in
Figures 14 and 15 for γ = 2 and γ = 1/2, respectively.
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Figure 14. (Left) Pareto set. (Right) Pareto front of MOP (Equation (16)) for n = 2 and γ = 2.
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Figure 15. The same as in Figure 14 but for γ = 1/2.

In a first step, we discuss the principle difference of discrete and continuous archives when
approximating the Pareto set/front on a hypothetical example. For this, we assume that we are given
the 5-element archive A = {x1, . . . , x5} ⊂ R2; those elements are given by

x1 = (−0.02, 0.03), x2 = (0.29, 0.20), x3 = (0.41, 0.49), x4 = (0.70, 0.62), x5 = (1.02, 0.98).

Hence, we can see A as a 5-element approximation of the Pareto set and its image F(A) as a 5-element
approximation of the Pareto front. Now, instead of A, we may use a polygonal curve that is defined by
A:

B := x1x2 ∪ · · · ∪ x4x5.

In the following, we will call A a discrete archive while we call the polygon approximation B
the continuous archive. Figures 16 and 17 show the approximations A and B as well as their images
F(A) and F(B). Apparently, the approximation qualities are much better for the linear interpolates.
This impression gets confirmed by the values of ∆p,q for this problem that are shown in Table 5. We can
observe the following two behaviors: (i) the distances are much better for the continuous archives
and the differences are even larger in objective space, and (ii) the distances decrease with decreasing q
(which is in accordance to the result of Theorem 4).
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Figure 16. (Left) The blue dots A and the blue polygonal line B are the discrete and continuous
approximations, respectively, for the Pareto set which corresponds to the orange thick segment, of
MOP (Equation (16)) for n = 2. (Right) respective sets F(A) and F(B) of the Pareto front for γ = 2.
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Figure 17. The same as in Figure 16 but for γ = 1/2.

Table 5. ∆p,q results for the approximations of the Pareto set and front for MOP (Equation (16)).

p q Decision Space Objective Space

Finite Arch. Cont. Arch. Finite Arch. Cont. Arch.

γ = 2

1 1 0.5262 0.4775 0.4377 0.3851
1 1 0.2710 0.2017 0.2051 0.1070
1 100 0.1121 0.0341 0.0862 0.0040
1 200 0.1112 0.0333 0.0855 0.0039
1 10,000 0.1103 0.0324 0.0848 0.0038

γ =
1
2

1 1 0.5262 0.4775 0.5520 0.4965
1 1 0.2710 0.2017 0.2587 0.1120
1 100 0.1121 0.0341 0.1079 0.0012
1 200 0.1112 0.0333 0.1071 0.0012
1 10,000 0.1103 0.0324 0.1062 0.0011

In a next step, we consider discrete archives that have been generated from multi-objective
evolutionary algorithms together with their resulting continuous archives. For multi-objective
evolutionary algorithms, we have chosen the widely used methods NSGA-II [65] and MOEA/D [66].
We stress, however, that any other MOEA could be chosen and that the conclusions we draw out by
our results apply in principle to any other such algorithm. Table 6 shows the parameter setting we
have used for our studies.

Table 6. Parameter setting for NSGA-II and MOEA/D: Here, n denotes the dimension of the decision
variable space.

Algorithm Parameter Value

NSGA-II

Population size 12
Number of generations 500
Crossover probability 0.8
Mutation probability 1/n
Distribution index for crossover 20
Distribution index for mutation 20

MOEA/D

Population size 12
# weight vectors 12
Number of generations 500
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 30
Distribution index for mutation 20
Aggregation function Tchebycheff
Neighborhood size 3
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Figures 18 and 19 and Table 7 show the results of NSGA-II where we have used 500 generations
and a population size of 12. Figures 20 and 21 and Table 8 show the respective results for MOEA/D
where we have also used 500 generations and population size 12. We can see that, for both algorithms,
the ∆p,q values are significantly better for the continuous archives. We can also make another
observation: the ∆p,q values oscillate for the results of the dominance-based algorithm NSGA-II which
is indeed typical. For the continuous archives, these oscillations are less notorious, which indicates
that the use of continuous archives may have a smoothing effect on the approximations, which is
highly desired.
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Figure 18. (Left) the blue dots A and the blue polygonal line are the discrete and continuous
approximations, respectively, for the Pareto set and the orange thick segment is for the 410th generation
of the NSGA-II algorithm of MOP (Equation (16)) for n = 2. (Right) corresponding sets F(A) and F(B)
of the Pareto front for γ = 2.
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Figure 19. The same as in Figure 18 but for γ = 1/2.
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Table 7. For MOP (Equation (16)), the Table shows the ∆p,q results for the finite and continuous Pareto
front approximations. We used the NSGA-II generated archives for p = 1 and q = −10.

Generation
γ = 1/2 γ = 2

Finite Arch. Cont. Arch. Finite Arch. Cont. Arch.

50 0.0439 0.0147 0.0696 0.0160
100 0.0498 0.0109 0.0540 0.0102
200 0.0613 0.0118 0.0716 0.0207
250 0.0651 0.0265 0.0572 0.0061
400 0.0602 0.0102 0.0723 0.0276
450 0.0630 0.0154 0.0584 0.0088
460 0.0612 0.0154 0.0658 0.0098
470 0.0523 0.0102 0.0566 0.0083
480 0.0754 0.0269 0.0684 0.0241
490 0.0510 0.0091 0.0584 0.0118
500 0.0722 0.0097 0.0560 0.0103
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Figure 20. (Left) the blue dots A and the blue polygonal line are the discrete and continuous
approximations, respectively, for the Pareto set and the orange thick segment is for the 410th generation
of the MOEA/D algorithm of MOP (Equation (16)) for n = 2. (Right) corresponding sets F(A) and
F(B) of the Pareto front for γ = 2.
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Figure 21. The same as in Figure 20 but for γ = 1/2.
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Table 8. For MOP (Equation (16)), the Table shows the ∆p,q results for the finite and continuous Pareto
front approximations. We used the MOEA/D generated archives for p = 1 and q = −10.

Generation
γ = 1/2 γ = 2

Finite Arch. Cont. Arch. Finite Arch. Cont. Arch.

50 0.0610 0.0171 0.0648 0.0119
100 0.0519 0.0051 0.1093 0.0016
200 0.0536 0.0037 0.0781 0.0009
250 0.0522 0.0037 0.0790 0.0008
400 0.0511 0.0017 0.0784 0.0009
450 0.0511 0.0017 0.0784 0.0009
460 0.0509 0.0012 0.0784 0.0009
470 0.0509 0.0012 0.0784 0.0009
480 0.0509 0.0010 0.0783 0.0009
490 0.0509 0.0010 0.0783 0.0009
500 0.0509 0.0010 0.0783 0.0009

We want to investigate the last statement further on. To this end, we consider the following
convex bi-objective problem: the objectives are given by f1, f2 : R3 → R, where

f1(x) = (x1 + 1)2 + x2
2 + x2

3

f2(x) = (x1 − 1)2 + x2
2 + x2

3. (17)

Figure 22 shows the Pareto set and front of MOP (Equation (17)). The Pareto set is given by the straight
segment joining (0, 0, 0) and (1, 0, 0).
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Figure 22. (Left) Pareto set. (Right) Pareto front of MOP (Equation (17)).

The values of ∆p,q obtained by NSGA-II for the discrete archives (using population size 20) as well
as for the respective continuous archives can be seen in Figure 23 and Table 9. Also for this example,
the values for the continuous archives are much better and the oscillations are significantly reduced
compared to the discrete archives.
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Figure 23. The black curve is the ∆p,q value for the discrete approximation, and the blue one is the
respective curve for the continuous approximation of NSGA-II for MOP (Equation (17)).

Figures 24–26 show the results of both kinds of archives after 300, 400, and 500 generations which
confirm this observation. The results show that NSGA-II is indeed capable of computing points near
the Pareto front while the distribution of the points vary. This is a known fact since there exists no
“limit archive” for this algorithm (as it is, e.g., not based on the averaged Hausdorff distance or any
other performance indicator). When considering the respective results of the continuous archives,
however, NSGA-II computes (at least visually) nearly perfect approximations of the Pareto front.
The ∆p,q values reflect this.

Table 9. ∆p,q results between the Pareto Front and its respective discrete and continuous approximations
of NSGA-II for MOP (Equation (17)): The data shown is the averaged over the 20 independent
runs above.

Generation Continuous Archive Finite Archive

20 0.1333 0.2401
40 0.0176 0.1451
60 0.0090 0.1561
80 0.0088 0.1355
100 0.0065 0.1472
120 0.0074 0.1412
140 0.0081 0.1395
160 0.0075 0.1549
180 0.0092 0.1468
200 0.0074 0.1429
220 0.0066 0.1408
240 0.0075 0.1397
260 0.0066 0.1460
280 0.0074 0.1439
300 0.0084 0.1421
320 0.0070 0.1352
340 0.0070 0.1373
360 0.0081 0.1454
380 0.0079 0.1413
400 0.0066 0.1388
420 0.0063 0.1400
440 0.0097 0.1384
460 0.0067 0.1418
480 0.0067 0.1421
500 0.0076 0.1426
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Figure 24. (Left) The blue dots and the blue polygon line are the discrete and continuous approximation,
respectively, for the Pareto set of MOP (Equation (17)) in the 300th generation. (Right) respective sets
F(A) and F(B) of the Pareto front.
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Figure 25. The same as in Figure 24 but for the 400th generation.
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Figure 26. The same as in Figure 24 but for the 500th generation.



Mathematics 2019, 7, 894 32 of 35

8. Conclusions and Perspectives

In this paper, we have presented a comprehensive overview of the averaged Hausdorff distances
that have recently appeared in connection with the study of MOPs.

Among the averaged Hausdorff distances studied here, the generalized ∆p,q as defined for
arbitrary measurable sets was shown to provide a general and robust definition for applications
that carries good metric properties, is adequate for use with continuous approximations of the Pareto
set of a MOP, and even reduces to the previously introduced definition for discrete approximations.

Concerning the appearance of the additional parameter q in the definition of ∆p,q which could
give the impression of an overly complicated expression, it is important to highlight, as it was observed
in Remark 7, that it can provide the possibility to choose a suitable value of q in order to make GDp,q

as Pareto compliant as possible for the MOP under consideration. This is an argument in favor of
the flexibility provided by the generalized version GDp,q, which is not available for the GDp distance,
and this particular aspect worths further investigation.

Nevertheless, since the freedom provided by the two parameters p and q may appear as excessive
and perhaps undesirable in many applications, there remains to find a practical recipe to determine
and fix these parameters according to the characteristics of the problem under consideration. Certainly,
the desired spreads of the optimal archives, the distance of an approximation to the Pareto front,
and the convexity of these fronts need to be taken into account in order to determine an appropriate
set of preferred values for these parameters depending on the situation.

To achieve these aims, more theoretical as well as numerical studies of optimal solutions associated
with Pareto fronts with different convexities must be carried out and experiments evaluating how the
Pareto compliance can be enhanced in each situation by the choice of parameters need to be performed.

Finally, we stress that the results we have shown in Section 7 show the advantage of a new
performance indicator that is able to compute the performance of a continuous approximation of the
solution set. Continuous approximations, e.g., of the Pareto set/front of multi-objective optimization
problems have not been considered so far, though both Pareto set and front typically form continuous
sets in case the objectives are continuous. The examples have indicated that the consideration of
continuous archives (via use of interpolation on the populations generated by the evolutionary
algorithms) could allow a reduction in population sizes and, hence, a significant reduction of the
computational effort of the evolutionary algorithms. This is because the time complexity for all existing
multi-objective evolutionary algorithms is quadratic in the population size and in each generation of
the algorithm. To verify this statement, more computations are needed, which is left for future work.
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