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Abstract: In this paper, we study periodic tridiagonal Toeplitz matrices with perturbed corners.
By using some matrix transformations, the Schur complement and matrix decompositions techniques,
as well as the Sherman-Morrison-Woodbury formula, we derive explicit determinants and inverses of
these matrices. One feature of these formulas is the connection with the famous Mersenne numbers.
We also propose two algorithms to illustrate our formulas.

Keywords: determinant; inverse; Mersenne number; periodic tridiagonal Toeplitz matrix;
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1. Introduction

Mersenne numbers are ubiquitous in combinatorics, group theory, chaos, geometry, physics,
etc. [1]. They are generated by the following recurrence [2]:

Mn+1 = 3Mn − 2Mn−1 where M0 = 0, M1 = 1, n ≥ 1; (1)

M−(n+1) =
3
2

M−n −
1
2

M−(n−1) where M0 = 0, M−1 = −1
2

, n ≥ 1. (2)

The Binet formula says that the nth Mersenne number Mn = 2n − 1 [3]. One application we
would like to mention is that Nussbaumer [4] applied number theoretical transform closely related to
Mersenne number to deal with problems of digital filtering and convolution of discrete signals.

In this paper, we study some basic quantities (determinants and inverses) associated with the
periodic tridiagonal Toeplitz matrix with perturbed corners of type 1, which is defined as follows

A =



α1 2h̄ 0 · · · 0 γ1

0 −3h̄
. . . . . . 0

0 h̄
. . . . . . . . .

...
...

. . . . . . . . . 2h̄ 0

0
. . . . . . − 3h̄ 2h̄

αn 0 · · · 0 h̄ γn


n×n

, (3)

where α1, αn, γ1, γn, h̄ are complex numbers with h̄ 6= 0. Let În be the n× n “reverse unit matrix”,
which has ones along the secondary diagonal and zeros elsewhere. A matrix of the form B := ÎnA În is
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called a periodic tridiagonal Toeplitz matrix with perturbed corners of type 2, we say that B is induced
by A. It is readily seen that A is a periodic tridiagonal Toeplitz matrix with perturbed corners of type
1 if and only if its transpose AT is a periodic tridiagonal Toeplitz matrix with perturbed corners of
type 2.

Tridiagonal matrices appear not only in pure linear algebra, but also in many practical applications,
such as, parallel computing [5], computer graphics [6], fluid mechanics [7,8], chemistry [9], and partial
differential equations [10–15]. Taking linear hyperbolic equation as an example, some scholars have
studied some matrices in discretized partial differential equations. Chan and Jin [16] discussed a linear
hyperbolic equation considered by Holmgren and Otto [17] in one-dimensional and two-dimensional
cases. Here we restate the linear hyperbolic equation in the two-dimensional case,

∂u(x1, x2, t)
∂t

+ v1
∂u(x1, x2, t)

∂x1
+ v2

∂u(x1, x2, t)
∂x2

= g,

where 0 < x1, x2 ≤ 1, t > 0, u(x1, 0, t) = f (x1 − at), , u(0, x1, t) = f (x2 − at), u(x1, x2, t) =

f (x1 + x2), g = (v1 + v2 − a) f ′. Here v1, v2, and a are positive constants and f is a scalar function with
derivative f ′. Denote s1, s2, k as the two spatial steps and time step respectively. For simplicity, assume
that v1 = v2 = v and s1 = s2 = s. The linear hyperbolic equation discretized based on trapezoidal rule
in time and center difference in two spaces, respectively. It’s coefficient matrix is a tridiagonal matrix
with perturbed last row:

℘ =



2 � 0 · · · · · · · · · 0

−� . . . . . . . . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . −� 2 �

0 · · · · · · · · · 0 −2� 2 + 2�


n×n

,

where � = vk/s. On the other hand, some parallel computing algorithms are also designed for solving
tridiagonal systems on graphics processing unit (GPU), which are parallel cyclic reduction [18] and
partition methods [19]. Recently, Yang et al. [20] presented a parallel solving method which mixes
direct and iterative methods for block-tridiagonal equations on CPU-GPU heterogeneous computing
systems, while Myllykoski et al. [21] proposed a generalized graphics processing unit implementation
of partial solution variant of the cyclic reduction (PSCR) method to solve certain types of separable
block tridiagonal linear systems. Compared to an equivalent CPU implementation that utilizes a single
CPU core, PSCR method indicated up to 24-fold speedups.

On the other hand, many studies have been conducted for tridiagonal matrices or periodic
tridiagonal matrices, especially for their determinants and inverses [22–30]. Two decades ago,
Wittenburg [31] studied the inverse of tridiagonal toeplitz and periodic matrices and applied them to
elastostatics and vibration theory. Recently, El-Mikkawy and Atlan [32] proposed a symbolic algorithm
based on the Doolittle LU factorization and Jia et al. put forward some algorithms [33–35] based on
block diagonalization technique for k-tridiagonal matrix. In 2018, Tim and Emrah [36] used backward
continued fractions to derive the LU factorization of periodic tridiagonal matrix and then derived
an explicit formula for its inverse. Furthermore, some scholars were attracted by the fact that one
could view periodic tridiagonal Toeplitz matrices as a special case of periodic tridiagonal matrices.
Shehawey [37] generalized Huang and McColl’s [38] work and put forward the inverse formula for
periodic tridiagonal Toeplitz matrices.
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The rest of the paper is organized as follows: Section 2 describes the detailed derivations
of the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners through matrix transformations, Schur complement and matrix decomposition with the
Sherman-Morrison-Woodbury formula [39]. Specifically, the formulas on representation of the
determinants and inverses of these typies matrices in the form of products of Mersenne numbers and
some initial values. Furthermore, the properties of the periodic tridiagonal Toeplitz matrices with
perturbed corners of type 2 can also be obtained. Section 3 presents the numerical results to test the
effectiveness of our theoretical results. The final conclusions are given in Section 4.

2. Determinants and Inverses

In this section, we derive explicit formulas for the determinants and inverses of a periodic
tridiagonal Toeplitz matrix with perturbed corners. Main effort is made to work out those for periodic
tridiagonal Toeplitz matrix with perturbed corners of type 1, since the results for type 2 matrices would
follow immediately.

Theorem 1. Let A = (ai,j)
n
i,j=1 (n ≥ 3) be an n × n periodic tridiagonal Toeplitz matrix with perturbed

corners of type 1. Then

detA = (−h̄)n−2{[2Mn−2α1 − 4(Mn−3 + 1)αn
]
h̄ + Mn−1(α1γn − αnγ1)

}
, (4)

where Mi (i = n− 3, n− 2, n− 1) is the ith Mersenne number.

Proof. Define the circulant matrix

ε = (εi,j)
n
i,j=1, (5)

where

εi,j =


1, i = n, j = 1,

1, j = i + 1,

0, otherwise.

Clearly, ε is invertible, and

det ε = (−1)n−3. (6)

Multiply A by ε from right and then partition Aε into four blocks:

Aε =



γ1 α1 2h̄ 0 · · · · · · · · · 0

0 0 −3h̄ 2h̄ 0
...

0 0 h̄ −3h̄ 2h̄ 0
...

...
... 0 h̄ −3h̄ 2h̄

. . .
...

...
...

... 0
. . . . . . . . . 0

0
...

...
...

. . . . . . 2h̄

2h̄ 0
...

...
. . . . . . . . . −3h̄

γn αn 0 0 · · · · · · 0 h̄


=

(
A11 A12

A21 A22

)
. (7)
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Since A22 is upper triangular, its determinant is clear which is

detA22 = h̄n−2. (8)

As we assume h̄ 6= 0, so A22 is invertible. It is known (see, e.g., ([29], Lemma 2.5)) that A−1
22 =

(äi,j)
n
i,j=1 where

äi,j =

{Mj−i+1
h̄ , i ≤ j,

0, i > j,

and Mi is the ith Mersenne number.
Next, taking the determinants for both sides of (7) and by (see, e.g., ([40], p. 10)), we get

det(Aε) = detA22 det(A11 −A12A−1
22 A21). (9)

Therefore

detA =
detA22 det(A11 −A12A−1

22 A21)

det ε
. (10)

To find detA, we need to evaluate the determinant of (A11 −A12A−1
22 A21). From (7) we have

A11 −A12A−1
22 A21 =

(
γ1 − 2Mn−2γn − 4Mn−3h̄ α1 − 2Mn−2αn

Mn−1γn + 2Mn−2h̄ Mn−1αn

)
,

and so

det
(
A11 −A12A−1

22 A21
)
=[4(Mn−3 + 1)αn − 2Mn−2α1

]
h̄−Mn−1(α1γn − αnγ1). (11)

Finally, applying (6), (8), and (11) to (10), we get the determinant of A, which completes
the proof.

Theorem 2. Let A = (ai,j)
n
i,j=1(n ≥ 3) be a nonsingular periodic tridiagonal Toeplitz matrix with perturbed

corners of type 1. Then A−1 = (ăi,j)
n
i,j=1, where

ăi,j =



2Mn−2 h̄+Mn−1γn
ψ , i = 1, j = 1,

4Mn−3 h̄−γ1+2Mn−2γn
ψ , i = 1, j = 2,

(Mn−2+1)αn
−ψ , i = 2, j = 1,

2Mn−3α1 h̄+Mn−2(α1γn−αnγ1)
−ψh̄ , i = 2, j = 2,

3(Mn−3+1)αn
−ψ , i = 3, j = 1,

(Mn−3−1)α1 h̄+(Mn−2+1)αn h̄+Mn−3(α1γn−αnγ1)
−ψh̄ , i = 3, j = 2,

3ăi,j−1 − 2ăi,j−2 +
1
h̄ , i ∈ {2, 3}, j = i + 1,

3ăi,j−1 − 2ăi,j−2,

{
i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n;

3 ≤ j ≤ i ≤ n,

3
2 ăi−1,j − 1

2 ăi−2,j,

{
j ∈ {1, 2}, 4 ≤ i ≤ n;

4 ≤ i < j ≤ n,

(12)

ψ = 2Mn−2α1h̄− (Mn−1 + 1)αn h̄ + Mn−1(α1γn − αnγ1), (13)

and Mi (i = n− 3, n− 2, n− 1) is the ith Mersenne number.
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Proof. Let A−1 = (ăi,j)
n
i,j=1 and the identity matrix In = (ei,j)

n
i,j=1, where

ei,j =

{
1, i = j,

0, otherwise.
(14)

For a nonsingular A,
A−1A = AA−1 = In. (15)

According to (15), we get

ei,j = 2ăi,j−1h̄− 3ăi,j h̄ + ăi,j+1h̄, 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1, (16)

ei,j = ăi−1,j h̄− 3ăi,j h̄ + 2ăi+1,j h̄, 3 ≤ i ≤ n− 1, 1 ≤ j ≤ n. (17)

Based on (14),we get from (16) that

ăi,j = 3ăi,j−1 − 2ăi,j−2,

{
i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n;

3 ≤ j ≤ i ≤ n,
(18)

and ăi,i+1 = 3ăi,i − 2ăi,i−1 +
1
h̄ for i = 2, 3.

Similarly, from (17), we get that

ăi,j =
3ăi−1,j

2
−

ăi−2,j

2
,

{
j ∈ {1, 2}, 4 ≤ i ≤ n;

4 ≤ i < j ≤ n.
(19)

Therefore, based on the above analysis, we need to determine six initial values, that is, ăi,j (i ∈
{1, 2, 3}, j ∈ {1, 2}), for the recurrence relations (18) and (19) in order to compute the inverse of A.
The rest of the proof is devoted to evaluating these particular entries of A−1.

We decompose A as follows:

A = h̄∆ + FG, (20)

where ∆ = 3T−1
M,n, F =

(
f T
1 , f T

2
)

, G =

(
g1

g2

)
with

f1 =
(
α1 +

2Mn h̄
Mn+1

,−h̄, 0, · · · , 0, αn −
2h̄

Mn+1

)
1×n,

f2 =
(
γ1 −

(Mn + 1)h̄
Mn+1

, 0, · · · , 0, γn +
2Mn h̄
Mn+1

)
1×n,

g1 =
(
1, 0, · · · , 0

)
1×n,

g2 =
(
0, · · · , 0, 1

)
1×n,

and Mi the ith Mersenne number as before.
It could be verified that ∆−1 = 1

3 (tij)
n
i,j=1, where

tij =

{
Mj−i+1, 1 ≤ i ≤ j ≤ n,

−2Mj−i−1, 1 ≤ j < i ≤ n,

and M−m is given in (2) for m = 1, 2, . . ..
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Applying the Sherman-Morrison-Woodbury formula (see, e.g., ([39] p. 50)) to (20) gives

A−1 = (h̄∆ + FG)−1 =
1
h̄

∆−1 − 1
h̄2 ∆−1F(In +

1
h̄

G∆−1F)−1G∆−1. (21)

Now we compute each component on the right side of (21).
Multiplying respectively ∆−1 by G and F from left and right,

G∆−1 =
1
3

(
η1

η2

)
, (22)

∆−1F =
1
3

(
ξ1 ξ2

)
, (23)

where η1 and η2 are row vectors, ξ1 and ξ2 are column vectors,

η1 = (Mj)
n
j=1,

η2 = (−2Mj−n−1)
n
j=1,

ξT
1 =

(
ξ1,1 − 3h̄, ξ2,1, ξ3,1, · · · , ξn,1

)
,

ξi,1 = Mn−i+1αn − 2M−iα1, i = 1, 2, · · · , n,

ξ2 =
(

Mn−i+1γn − 2M−iγ1 + 2Mn−i h̄
)n

i=1.

Then multiplying (23) by G
h̄ from the left, further adding In and computing the inverse of

the matrix

(
In +

G
h̄

∆−1F
)−1

=
3h̄
h

(
−2M−nγ1 + γn + 3h̄ −(γ1 + Mnγn + 2Mn−1h̄)

2M−nα1 − αn α1 + Mnαn

)
,

where h = Mn+1
[
M1−n(α1γn − αnγ1) + M2−nα1h̄ − αn h̄

]
. Multiplying the pervious formula(

In +
G
h̄ ∆−1F

)−1 by ∆−1F from the left and by G∆−1 from the right, respectively, yields

∆−1F
(

In +
1
h̄

G∆−1F
)−1G∆−1 = (kij)

n
i,j=1, (24)

where

k1j =
θ′j h̄

3 + (θ′′j γ1 + θ′′′j γn)h̄2

Mn+1ψ
+

Mj h̄
3

, 1 ≤ j ≤ n,

kij =
(α1η′ij + αnη′′ij)h̄

2 + (α1γn − αnγ1)η
′′′
ij h̄

3Mn+1ψ
, 2 ≤ i ≤ n, 1 ≤ j ≤ n,

ψ = 2Mn−2α1h̄− (Mn−1 + 1)αn h̄ + Mn−1(α1γn − αnγ1),

θ′j = 3Mj(Mn−1 + 1)−Mn−1Mn−j+1(Mj + 1), 1 ≤ j ≤ n,

θ′′j = Mn Mj −Mn−j+1(Mj−1 + 1), 1 ≤ j ≤ n,

θ′′′j = Mj(Mn−1 + 1)−Mn Mn−j+1(Mj−1 + 1), 1 ≤ j ≤ n,

η′ij = 2Mn Mn−i Mj − 3Mi Mj(Mn−i + 1) + Mn Mi−1Mn−j+1(Mj−i+1 + 1), 2 ≤ i ≤ n, 1 ≤ j ≤ n,

η′′ij = Mi−1Mn+j−1(Mn+j−1 + 1)−Mn−i+2Mj(Mn−1 + 1), 2 ≤ i ≤ n, 1 ≤ j ≤ n,

η′′′ij = Mn+1[Mn−i Mj + Mi−1Mn−j+1(Mj−i + 1)], 2 ≤ i ≤ n, 1 ≤ j ≤ n.
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From (21) and (24), we have

(ăi,j)
n
i,j=1 =

1
h̄

∆−1 − 1
h̄2 (kij)

n
i,j=1, (25)

where

ăi,j =
Mj−i+1

3h̄
−

ki,j

h̄2 , 1 ≤ i ≤ j ≤ n, (26)

ăi,j =−
2Mj−i−1

3h̄
−

ki,j

h̄2 , 1 ≤ j < i ≤ n. (27)

By (26) we compute,

ă1,1 =
2Mn−2h̄ + Mn−1γn

ψ
,

ă1,2 =
4Mn−3h̄− γ1 + 2Mn−2γn

ψ
,

ă2,2 =
2Mn−3α1h̄ + Mn−2(α1γn − αnγ1)

−ψh̄
.

By (27) we compute,

ă2,1 =
(Mn−2 + 1)αn

−ψ
,

ă3,1 =
3(Mn−3 + 1)αn

−ψ
,

ă3,2 =
(Mn−3 − 1)α1h̄ + (Mn−2 + 1)αn h̄ + Mn−3(α1γn − αnγ1)

−ψh̄
.

This completes the proof.

Remark 1. Formulas (26) and (27) would give an analytic formula for A−1. However, there is a big advantage
of (12) from computational consideration as we shall see from Section 3.

The next two theorems are parallel results for type 1 matrices.

Theorem 3. Let A be a periodic tridiagonal Toeplitz matrix with perturbed corners of type 1 and B be a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 2, which is induced by A. Then

detB = (−h̄)n−2{[2Mn−2α1 − 4(Mn−3 + 1)αn
]
h̄ + Mn−1(α1γn − αnγ1)

}
.

Proof. Since detB = det În detAdet În, we obtain this conclusion by using Theorem 1 and det În =

(−1)
n(n−1)

2 .

Theorem 4. Let A be a periodic tridiagonal Toeplitz matrix with perturbed corners of type 1 and B be a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 2, which is induced by A. Then

B−1 = (ăn+1−i,n+1−j)
n
i,j=1,

where ăi,j is the same as (12).

Proof. It follows immediately from B−1 = Î−1
n A−1 Î−1

n = ÎnA−1 În and Theorem 2.
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3. Algorithms

In this section, we give two algorithms for finding the determinant and inverse of a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 1, which is called A. Besides, we analyze
these algorithms to illustrate our theoretical results.

Firstly, based on Theorem 1, we give an algorithm for computing determinant of A as following:
Based on Algorithm 1, we make a comparison of the total number operations for determinant of

A between LU decomposition and Algorithm 1 in Table 1. Specifically, we get that the total number
operation for the determinant of A is 2n + 11, which can be reduced to O(logn) (see, [41] pp. 226–227).

Table 1. Comparison of the total number operations for determinant of A.

Algorithms Number Operations

LU decomposition algorithm 13n− 15
Algorithm 1 2n + 11

Algorithm 1: The determinant of a periodic tridiagonal Toeplitz matrix with perturbed corners
of type 1

Step 1: Input α1, αn, γ1, γn, h̄, order n and generate Mersenne numbers
Mi (i = n− 3, n− 2, n− 1) by (1).
Step 2: Calculate and output the determinant of A by (4).

Next, based on Theorem 2, we give an algorithm for computing inverse of A as following:

Algorithm 2: The inverse of a periodic tridiagonal Toeplitz matrix with perturbed corners of
type 1

Step 1: Input α1, αn, γ1, γn, h̄, order n and generate Mersenne numbers
Mi (i = n− 3, n− 2, n− 1) by (1).
Step 2: Calculate ψ by (13) and six initial values ă1,1, ă1,2, ă2,1, ă2,2, ă3,1, ă3,2 by (12).
Step 3: Calculate the remaining elements of the inverse:

ă2,3 = 3ă2,2 − 2ă2,1 +
1
h̄

,

ă3,4 = 3ă3,2 − 2ă3,1 +
1
h̄

,

ăi,j = 3ăi,j−1 − 2ăi,j−2, i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n,

ăi,j = 3ăi,j−1 − 2ăi,j−2, i ∈ {1, 2, 3}, 3 ≤ j ≤ i ≤ n,

ăi,j =
3
2

ăi−1,j −
1
2

ăi−2,j, j ∈ {1, 2}, 4 ≤ i ≤ n,

ăi,j =
3
2

ăi−1,j −
1
2

ăi−2,j, 4 ≤ i < j ≤ n.

Step 4: Output the inverse A−1 = (ăi,j)
n
i,j=1.

To test the effectiveness of Algorithm 2, we compare the total number of operations for the inverse
of A between LU decomposition and Algorithm 2 in Table 2. The total number operation of LU
decomposition is 5n3

6 + 3n2 + 91n
6 − 21, whereas that of Algorithm 2 is 7n2

2 −
3n
2 + 30.
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Table 2. Comparison of the total number operations for inverse of A.

Algorithms Number Operations

LU decomposition algorithm 5n3

6 + 3n2 + 91n
6 − 21

Algorithm 2 7n2

2 −
3n
2 + 30

4. Discussion

In this paper, explicit determinants and inverses of periodic tridiagonal Toeplitz matrices with
perturbed corners are represented by the famous Mersenne numbers. This helps to reduce the total
number of operations during the calculation process. Some recent research related to our present
work can be found in [42–48]. Among them, Qi et al. presented some closed formulas for the
Horadam polynomials in terms of a tridiagonal determinant and derived closed formulas for the
generalized Fibonacci polynomials, the Lucas polynomials, the Pell-Lucas polynomials, and the
Chebyshev polynomials of the first kind in terms of tridiagonal determinants.

5. Conclusions

Mersenne numbers are remarkably wide-spread in many diverse areas of the mathematical,
biological, physical, chemical, engineering, and statistical sciences. In this paper, we present explicit
formulas for the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners. The representation of the determinant in the form of products of the Mersenne numbers and
some initial values from matrix transformations and Schur complement. For the inverse, our main
approaches include the use of matrix decomposition with the Sherman-Morrison-Woodbury formula.
Especially, the inverse is just determined by six initial values. To test our method’s effectiveness,
we propose two algorithms for finding the determinant and inverse of periodic tridiagonal Toeplitz
matrices with perturbed corners and compare the total number of operations for the two basic
quantities between different algorithms. After comparison, we draw a conclusion that our algorithms
are superior to LU decomposition to some extent.
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