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Abstract: We establish one-sided weighted endpoint estimates for the $-variation ($ > 2)
operators of one-sided singular integrals under certain priori assumption by applying one-sided
Calderón–Zygmund argument. Using one-sided sharp maximal estimates, we further prove that
the $-variation operators of related commutators are bounded on one-sided weighted Lebesgue and
Morrey spaces. In addition, we also show that these operators are bounded from one-sided weighted
Morrey spaces to one-sided weighted Campanato spaces. As applications, we obtain some results
for the λ-jump operators and the numbers of up-crossings. Our main results represent one-sided
extensions of many previously known ones.

Keywords: $-variation; one-sided singular integral; commutator; one-sided weighted Morrey space;
one-sided weighted Campanato space
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1. Introduction

Given a family of bounded operators T = {Tε}ε>0 acting between spaces of functions, one of the
most significative problems in harmonic analysis is the existence of limits limε→0+Tε f and limε→∞Tε f ,
when f belongs to a certain space of functions. The question that arises naturally is how to measure
the speed of convergence of the above limits. A classic method is to investigate square functions of
the type (∑∞

i=1 |Tεi f − Tεi+1 f |2)1/2. Along this line, there is a more general way to study the following
oscillation operator

O(T ) f (x) =
( ∞

∑
i=1

sup
ti+1≤εi+1<εi≤ti

|Tεi+1 f (x)− Tεi f (x)|2
)1/2

,

with {ti} being a fixed sequence decreasing to zero. However, beyond that, another typical method is
to consider the $-variation operator defined by

V$(T ) f (x) = sup
{εi}↘0

( ∞

∑
i=1
|Tεi f (x)− Tεi+1 f (x)|$

)1/$
,

where $ > 2 and the supremum runs over all sequences {εi} of positive numbers decreasing to zero.
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The investigation on variation inequalities is an active research topic in probability, ergodic theory
and harmonic analysis. The first variation inequality was proved by Lépingle [15] for martingales
(also see [25] for a simple proof). Bourgain [2] proved the similar variation estimates for the ergodic
averages of a dynamic system later. Bourgain’s work has inspired a number of authors to investigate
oscillation and variation inequalities for several families of operators from ergodic theory (see [12,13,24]
for examples) and harmonic analysis (cf. [3,4,6,11,14]). Recently, the variation inequalities and their
weighed case for singular integrals and related operators have also been studied by many authors.
The first work in this direction is due to Campbell et al. [3] who proved that O(H) and V$(H) with
$ > 2 are of type (p, p) for 1 < p < ∞ and of weak type (1, 1), where H = {Hε}ε>0 is the family of
the truncated Hilbert transforms, i.e., Hε f (x) =

´
|x−y|>ε

f (y)
x−y dy. Subsequently, the aforementioned

authors [4] also studied the variation operators related to the classical Riesz transform in Rd for d ≥ 2.
In 2004, Gillespie and Torrea [9] established the Lp(R, w(x)dx) bounds forO(H) and V$(H) with $ > 2,
1 < p < ∞ and w ∈ Ap (the Muckenhoupt weights class) (also see [10,14] for the related investigations).
Later on, Crescimbeni et al. [5] proved that O(H) and V$(H) with ρ > 2 map L1(R, w(x)dx) into
L1,∞(R, w(x)dx) for w ∈ A1. In particular, Ma et al. [21,22] presented the weighted oscillation and
variation inequalities for differential operators and Calderón–Zygmund singular integrals. Recently,
Liu and Wu [19] established the weighted oscillation and variational inequalities for the commutator
of one-dimensional Calderón–Zygmund singular integrals.

The primary purpose of this paper is to study weighted boundedness of oscillation and variational
operators for one-sided singular integrals and their commutators. We say a function K belongs to
one-sided Calderón–Zygmund kernel OCZK(B1, B2, B3) if K ∈ L1

loc(R\{0}) satisfies the following
conditions: there exist constants B1, B2, B3 > 0 such that∣∣∣ ˆ

{ε<|x|<N}
K(x)dx

∣∣∣ ≤ B1 for all ε and all N with 0 < ε < N,

and furthermore limε→0+
´

ε<|x|<N K(x)dx exists,

|K(x)| ≤ B2|x|−1 for all x 6= 0,

|K(x− y)− K(x)| ≤ B3|y||x|−2 for all x and y with |x| > 2|y|.

An example of a one-sided Calderón–Zygmund kernel is K(x) =
sin(log x)

x log x χ(0,∞); see [1].

We mention here that the kernel of one-sided truncated Hilbert Transform, K0(x) = 1
x χ(0,∞), is not

a OCZK for there does not exist a B1 > 0 such that the first condition above holds.
Let K ∈ OCZK(B1, B2, B3) with support in (−∞, 0) and b ∈ BMO(R). For m ∈ N, we consider

the one-sided operator

T+,m
b f (x) = lim

ε→0+
T+,b,m

ε f (x) = p.v.
ˆ ∞

x
(b(x)− b(y))mK(x− y) f (y)dy,

where

T+,b,m
ε f (x) :=

ˆ ∞

x+ε
(b(x)− b(y))mK(x− y) f (y)dy. (1)

For m ≥ 1, the operator T+,m
b is the m-th order commutator of one-sided singular integral.

When m = 0, we denote by T+,b,0
ε = T+

ε , and then the operator T+,m
b reduces to the one-sided

Calderón–Zygmund singular integral operator T+, which is defined by

T+ f (x) = lim
ε→0+

T+
ε f (x) = p.v.

ˆ ∞

x
K(x− y) f (y)dy. (2)
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In 1997, Aimar et al. [1] observed that the operator T+ maps Lp(R, w(x)dx) into Lp(R, w(x)dx)
for 1 < p < ∞ and w ∈ A+

p , and maps L1(R, w(x)dx) into L1,∞(R, w(x)dx) for w ∈ A+
1 . Subsequently,

Lorente and Riveros [20] proved that there exist constants C > 0 such that

‖T+,m
b f ‖Lp(R,w(x)dx) ≤ C‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx)

for w ∈ A+
p and 1 < p < ∞, and

w({x : |T+,m
b f (x)| > λ}) ≤ Cφm(‖b‖m

BMO(R))

ˆ
R

| f (x)|
λ

(
1 + log+

( | f (x)|
λ

))m
w(x)dx

for w ∈ A+
1 and λ > 0, where φm(t) = t(1 + log+ t)m and z+ = max{z, 0}. Other interesting related

results for the one-sided operators we may refer to [7,8,16–18], among others.
At first, we shall establish the one-sided weighted endpoint and strong estimates for the

$-variation ($ > 2) operators of one-sided singular integral and its commutator. Let us recall the
one-sided weighted BMO spaces.

Definition 1. (One-sided weighted BMO spaces.) For a weight w, the one-sided weighted BMO spaces
BMO+(R, w(x)dx) is defined by

BMO+(R, w(x)dx) := { f ∈ L1
loc(R, dx) : ‖ f ‖BMO+(R,w(x)dx) := ‖M+,] f ‖L∞(R,w(x)dx) < ∞}.

Here, M+,] is one-sided sharp maximal operator defined by

M+,] f (x) = sup
h>0

1
h

ˆ x+h

x

(
f (y)− 1

h

ˆ x+2h

x+h
f (z)dz

)+
dy.

Remark 1. When w(x) ≡ 1, the space BMO+(R, w(x)dx) reduces to the one-sided BMO space BMO+(R),
which was introduced by Martín-Reyes and de la Torre [23]. It was proved in [23] that

M+,] f (x) ≤ sup
h>0

inf
a∈R

(1
h

ˆ x+h

x
( f (y)− a)+dy +

1
h

ˆ x+2h

x+h
(a− f (y))+dy

)
≤ ‖ f ‖BMO(R) (3)

for any x ∈ R. This yields that BMO(R) ⊂ BMO+(R).

We now list our first main result as follows:

Theorem 1. Let m ∈ N, $ > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with supported in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equation (1) and (2), respectively. Assume that
‖V$(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any w ∈ A+
1 and f ∈ L1(R, w(x)dx), it holds that

‖V$(T ) f ‖L1,∞(R,w(x)dx) ≤ C‖ f ‖L1(R,w(x)dx);

(ii) for any 1 < p < ∞, w ∈ A+
p and f ∈ Lp(R, w(x)dx), it holds that

‖V$(T m
b ) f ‖Lp(R,w(x)dx) ≤ C‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

(iii) for a weight w satisfying w−1 ∈ A−1 and f ∈ L∞(R, w(x)dx), it holds that

‖V$(T ) f ‖BMO+(R,w(x)dx) ≤ C‖ f ‖L∞(R,w(x)dx).
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In addition, we also investigate the boundedness behavior of the ρ-variation operators of
one-sided singular integral and its commutator on one-sided weighted Morrey spaces and Companato
spaces. In order to study the boundedness of one-sided singular integral operator on weighted Morrey
spaces and Campanato spaces, Shi and Fu [27] introduced the one-sided weighted Morrey spaces and
one-sided weighted Campanato spaces, which are defined as follows:

Definition 2. (One-sided weighted Morrey spaces and Campanato spaces.) Let 1 ≤ p < ∞, −1/p ≤
β < 0 and w be a weight on R.

(i) One-sided weighted Morrey spaces Lp,β,+(w) are defined by

Lp,β,+(w) := { f ∈ Lp
loc(R, dx) : ‖ f ‖Lp,β,+(w) < +∞},

where

‖ f ‖Lp,β,+(w) := sup
x0∈R

sup
h>0

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)|pdx
)1/p

.

(ii) One-sided weighted Campanato spaces Lp,β,+(w) are given by

Lp,β,+(w) := { f ∈ Lp
loc(R, dx) : ‖ f ‖Lp,β,+(w) < +∞},

where

‖ f ‖Lp,β,+(w) := sup
x0∈R

sup
h>0

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)− f(x0,x0+h)|pdx
)1/p

.

Remark 2. It is well known that the following are valid:

‖ f ‖Lp,β,+(w) ∼ sup
x0∈R

sup
h>0

inf
a∈R

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)− a|pdx
)1/p

; (4)

Lp,β,+(w) ( Lp,β,+(w).

The rest of the main results can be listed as follows.

Theorem 2. Let m ∈ N, $ > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equation (1) and (2), respectively. Assume that
‖V$(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any 1 < p < 1/(β + 1), −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖V$(T m
b ) f ‖Lp,β,+(w) . ‖b‖

m
BMO(R)‖ f ‖Lp,β,+(w);

(ii) for any 1 < p < ∞, −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖V$(T ) f ‖Lp,β,+(w) . ‖ f ‖Lp,β,+(w).

Remark 3. We remark that we deal only with $ > 2 for the variation operators in our main theorems, since
it was pointed out in [2] that the variation is often not bounded in the case $ ≤ 2. In addition, it is unknown
what are the endpoint estimates of the variation operators for the commutators of one-sided singular integrals
and whether the above operators are bounded from one-sided weighted Morrey spaces to one-sided weighted
Campanato spaces, which are interesting.
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This paper is organized as follows. In Section 2, we shall present some basic definitions and
necessary lemmas. In Section 3, we give the proofs of Theorems 1 and 2. As applications, we present
the corresponding estimates for the λ-jump operators and the number of up-crossing for these operators
in Section 4. Finally, some further comments will be given in Section 5. We would like to remark that
our works and ideas are taken from [9,19]. It should also be pointed out that all results in this paper
are valid for oscillation operator with similar arguments.

Throughout this paper, for any p ∈ (1, ∞), we denote by p′ the dual exponent to p, i.e., 1/p +

1/p′ = 1. The letter C will represent a positive constant that may vary at each occurrence but is
independent of the essential variables. For a weight w, an interval I and a function f : R → R,
we denote by w(I) =

´
I w(x)dx and f I =

1
|I|
´

I f (x)dx. We also use the convention ∑i∈∅ ai = 0.

2. Preliminaries

We start with the definitions of one-sided Hardy–Littlewood maximal functions

M+ f (x) = sup
h>0

1
h

ˆ x+h

x
| f (y)|dy and M− f (x) = sup

h>0

1
h

ˆ x

x−h
| f (y)|dy.

For r > 0, we set M+
r f (x) := (M+| f |r(x))1/r.

By a weight, we mean a nonnegative measurable function.

Definition 3. [26] Let 1 < p < ∞. A weight w belongs
to the class A+

p (resp., A−p ), if [w]A+
p
< ∞ (resp., [w]A−p < ∞), where

[w]A+
p

:= sup
a<b<c

1
(c− a)p

( ˆ b

a
w(x)dx

)( ˆ c

b
w(x)1−p′dx

)p−1
,

[w]A−p := sup
a<b<c

1
(c− a)p

( ˆ c

b
w(x)dx

)( ˆ b

a
w(x)1−p′dx

)p−1
.

A weight w belongs to the class A+
1 (resp., A−1 ), if [w]A+

1
< ∞ (resp., [w]A−1

< ∞), where

[w]A+
1

:= sup
x∈R

w(x)−1M−w(x) and [w]A−1
:= sup

x∈R
w(x)−1M+w(x).

Since the A+
p and A−p classes are increasing with respect to p, the A+

∞ (resp., A−∞) class of weights is
defined in a natural way by A+

∞ =
⋃

1<p<∞ A+
p (resp., A−∞ =

⋃
1<p<∞ A−p ) with

[w]A+
∞

:= inf
1<p<∞

inf
w∈A+

p

[w]A+
p

, [w]A−∞ := inf
1<p<∞

inf
w∈A−p

[w]A−p .

It is easy to see that Ap ( A+
p , Ap ( A−p and Ap = A+

p
⋂

A−p . Take ex for example, ex /∈ A1,
but ex ∈ A+

1 . Here, Ap denotes the usual Muckenhoupt weight.
It was shown in [26] that, for any 1 < p < ∞, M+ : Lp(R, w(x)dx)→ Lp(R, w(x)dx) is bounded

if and only if w ∈ A+
p ; moreover, M+ : L1(R, w(x)dx) → L1,∞(R, w(x)dx) is bounded if and only if

w ∈ A+
1 . The same results hold for M− if w ∈ A+

p replaced by w ∈ A−p for 1 ≤ p < ∞.
The following lemma will play key roles in our main proofs.

Lemma 1.

(i) Let 1 ≤ p ≤ ∞ and w ∈ A+
p . Then, for all x0 ∈ R and h > 0,

w(x0 − h, x0 + h) ≤ (1 + 2p[w]A+
p
)w(x0, x0 + h). (5)
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(ii) Let 1 ≤ p ≤ ∞ and w ∈ A+
p . Then, for all x0 ∈ R, h > 0 and λ ≥ 1,

w(x0 − λh, x0) ≤ λp(2p[w]A+
p
+ (2p[w]A+

p
)2)w(x0, x0 + h). (6)

Proof. Fix h > 0 and x0 ∈ R and we set I = (x0 − h, x0 + h). Given two functions f , g defined on R,
by Hölder’s inequality, we get( 1

|I|

ˆ
I
| f (x)g(x)|dx

)p

≤ 1
|I|p

( ˆ
I
| f (x)|pw(x)dx

)( ˆ
I
|g(x)|p′w(x)1−p′dx

)p/p′

≤
( 1
|I|

ˆ
I−

w(x)dx
)( 1
|I|

ˆ
I
|g(x)|p′w(x)1−p′dx

)p−1( 1
w(I−)

ˆ
I
| f (x)|pw(x)dx

)
.

(7)

Applying Equation (7) to the functions f = χI+ and g = χI+ , we get

w(I−) ≤ 2p[w]A+
p

w(I+). (8)

Then, (5) follows easily from (8).
On the other hand, we get from (7) that( 1

|λI|

ˆ
λI
| f (x)g(x)|dx

)p

≤
( 1
|λI|

ˆ
(λI)−

w(x)dx
)( 1
|λI|

ˆ
λI
|g(x)|p′w(x)1−p′dx

)p−1

×
( 1

w((λI)−)

ˆ
λI
| f (x)|pw(x)dx

)
.

(9)

Applying (9) to the functions f = χI and g = χ(λI)+ , we have

w((λI)−) ≤ (2λ)p[w]A+
p

w(I), (10)

which together with (5) yields (6).

By Lemma 2.1 in [26] and the similar argument as in classical Calderón–Zygmund decomposition
for the usual Hardy–Littlewood maximal function, one can get the following Calderón–Zygmund
decomposition for M+, which will be crucial for the proof of Lemma 3.

Lemma 2. Let f ∈ L1(R, dx) and α > 0. Let Ω = {x : M+ f (x) > α}. Then, Ω can be decomposed into
finitely many disjoint intervals of integers: Ω =

⋃
i Ii with the following properties:

(i) f = g + ϕ, where g = f χR\Ω and g = f Ii on Ii for each i;
(ii) ϕ = ∑i ϕi, where ϕi = ( f − f Ii )χIi ;
(iii) ‖g‖L∞(R,dx) ≤ 2α and ‖g‖L1(R,dx) ≤ ‖ f ‖L1(R,dx);
(iv) for each i,

´
Ii

ϕi(y)dy = 0 and 1
|Ii |
´

Ii
|ϕi(y)|dy ≤ 4α;

(v) ∑i |Ii| ≤ α−1‖ f ‖L1(R,dx).

3. Proofs of Main Results

Following [9], let Θ = {β : β = {εi}, εi ∈ R, εi ↘ 0} and F$ be the mixed norm Banach space of
two variables function h defined on N×Θ such that

‖h‖F$ ≡ sup
β

(
∑

i
|h(i, β)|$

)1/$
< ∞.
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Given a family of operators T = {Tt}t>0 defined on Lp(R, dx), we consider the F$-valued operator
V(T ) : f −→ V(T ) f on Lp(R, dx) given by

V(T ) f (x) :=
{

T[εi+1,εi ]
f (x)

}
β={εi}∈Θ

,

where the expression {T[εi+1,εi ]
f (x)}β={εi}∈Θ is an abbreviation for the element of F$ given by

(i, β) = (i, {εi}) −→ T[εi+1,εi ]
f (x) := Tεi+1 f (x)− Tεi f (x).

Observe that
V$(T ) f (x) = ‖V(T ) f (x)‖F$ , ∀x ∈ R. (11)

In order to prove Theorem 1, we shall establish the following key result.

Lemma 3. Let $ > 2 and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let T = {T+
ε }ε>0 be given as in

Equation (2). Assume that ‖V$(T )‖Lq(R,w(x)dx)→Lq(R,w(x)dx) < ∞ for some q ∈ (1, ∞) and w ∈ A+
q . Then,

‖V$(T ) f ‖L1,∞(R,w(x)dx) ≤ C‖ f ‖L1(R,w(x)dx), ∀ f ∈ L1(R, w(x)dx) and w ∈ A+
1 .

Proof. We shall adopt the classical Calderón–Zygmund argument to prove Lemma 3.
Let Ω = {x : M+ f (x) > 1}. Invoking Lemma 2, we can decompose Ω as Ω =

⋃
j Ij and decompose

f as f = g + ϕ, where all Ij are disjoint intervals, g = f χR\Ω + ∑j f Ij χIj , ϕ = ∑j ϕj, ϕj = ( f − f Ij)χIj ,

‖g‖L∞(R,dx) ≤ 2, ‖g‖L1(R,dx) ≤ ‖ f ‖L1(R,dx), and for each j,
´

Ij
ϕj(y)dy = 0 and 1

|Ij |
´

Ij
|ϕj(y)|dy ≤ 4.

It suffices to show that
w({x : V$(T ) f (x) > 1}) ≤ C‖ f ‖L1(R,w(x)dx). (12)

It is clear that

w({x : V$(T ) f (x) > 1}) ≤ w({x : V$(T )g(x) > 1/2}) + w({x : V$(T )ϕ(x) > 1/2}). (13)

By our assumption,

w({x : V$(T )g(x) > 1/2}) ≤ 2q
ˆ
R
|V$(T )g(x)|qw(x)dx

≤ C
ˆ
R
|g(x)|qw(x)dx ≤ C‖ f ‖L1(R,w(x)dx).

(14)

We set Ij = (cj, cj + |Ij|) and Ω∗ =
⋃

j(cj − 2|Ij|, cj + 2|Ij|), then

w({x : V$(T )ϕ(x) > 1/2}) ≤ w(Ω∗) + w({x ∈ R \Ω∗ : V$(T )ϕ(x) > 1/2}). (15)

Using Lemma 1 (i) and the L1(R, w(x)dx)→ L1,∞(R, w(x)dx) bounds for M+, one has

w(Ω∗) ≤ C ∑
j

w(Ij) = Cw(Ω) ≤ C‖ f ‖L1(R,w(x)dx). (16)

We now turn to prove

w({x ∈ R \Ω∗ : V$(T )ϕ(x) > 1/2}) ≤ C‖ f ‖L1(R,w(x)dx). (17)

For every x ∈ R \Ω∗, we can choose a decreasing sequence {εi} (that depends on x) such that

V$(T )ϕ(x) ≤ 2
(

∑
i
|T+

[εi+1,εi ]
ϕ(x)|$

)1/$
.



Mathematics 2019, 7, 876 8 of 19

For each i and x ∈ R \Ω∗, we set Bi(x) = (x + εi+1, x + εi] and

Ni,1 = {j : Ij ⊂ Bi(x)} and Ni,2 = {j : Ij ∩ Bi(x) 6= ∅, Ij * Bi(x)}.

We notice that the cardinal of the Ni,2 is at most two. Thus, it holds that

V$(T )ϕ(x) ≤ 2
(

∑
i

∣∣∣ ∑
j∈Ni,1

T+
[εi+1,εi ]

ϕj(x)
∣∣∣$)1/$

+ 2
(

∑
i

∣∣∣ ∑
j∈Ni,2

T+
[εi+1,εi ]

ϕj(x)
∣∣∣$)1/$

≤ 2 ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)|+ 4
(

∑
i

∑
j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|$
)1/$

.

It follows that

w({x ∈ R \Ω∗ : V$(T )ϕ(x) > 1/2})

≤ w
({

x ∈ R \Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
+ w

({
x ∈ R \Ω∗ :

(
∑

i
∑

j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|$
)1/$

>
1

16

})
.

(18)

Fix x ∈ R \Ω∗. Note that |x− cj| ≥ 2|Ij| > 2|y− cj| for any y ∈ Ij. Then, |K(x− y)−K(x− cj)| ≤
B3|x− cj|−2|y− cj|. This together with the properties of ϕj yield that

|T+
[εi+1,εi ]

ϕj(x)| =
∣∣∣ ˆ

R
(K(x− y)− K(x− cj))ϕj(y)dy

∣∣∣ ≤ 2B3|Ij||x− cj|−2
ˆ

Ij

| f (y)|dy.

Observing that T+
[εi+1,εi ]

ϕj(x) = 0 if x > cj + |Ij|, we thus have

w
({

x ∈ R \Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
≤ 8
ˆ
R\Ω∗

∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)|w(x)dx

≤ 16B3 ∑
j
|Ij|
ˆ
(−∞,cj−2|Ij |]

w(x)
|x− cj|2

dx
ˆ

Ij

| f (y)|dy.

(19)

Fix y ∈ Ij. One can easily check that cj − x ≥ 2(y− x)/3 for any x ≤ cj − 2|Ij|. Then,

ˆ
(−∞,cj−2|Ij |]

w(x)
|x− cj|δ

dx ≤
∞

∑
k=1

ˆ
[cj−2k+1|Ij |,cj−2k |Ij |]

w(x)
|x− cj|δ

dx

≤
∞

∑
k=1

(2k|Ij|)−δ2k+3|Ij|
1

2k+3|Ij|

ˆ y

y−2k+3|Ij |
w(x)dx

≤ C(δ)|Ij|1−δ M−w(y)

(20)

for any δ > 1. By (19) and (20) (with δ = 2) and w ∈ A+
1 , we have

w
({

x ∈ R \Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
≤ C ∑

j

ˆ
Ij

| f (y)|M−w(y)dy ≤ C([w]A+
1
)‖ f ‖L1(R,w(x)dx).

(21)
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Fix x ∈ R \Ω∗. Note that T+
[εi+1,εi ]

ϕj(x) = 0 when x > cj + |Ij|. Moreover, y− x ≥ cj − x ≥ 0 for
any y ∈ Ij. Then,

|T+
[εi+1,εi ]

ϕj(x)| ≤ B2

ˆ
Bi(x)

|ϕj(y)|
|x− y| dy ≤ B2|x− cj|−1χ(−∞,cj−2|Ij |](x)

ˆ
Bi(x)
|ϕj(y)|dy.

Combining this with (20) (with δ = $) implies that

w
({

x ∈ R \Ω∗ :
(

∑
i

∑
j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|$
)1/$

>
1
16

})
≤ 16$

ˆ
R\Ω∗

∑
i

∑
j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|$w(x)dx

≤ C($)
ˆ
R\Ω∗

∑
j

(
∑

i
|T+

[εi+1,εi ]
ϕj(x)|

)$
w(x)dx

≤ C($)∑
j

ˆ
(−∞,cj−2|Ij |]

|x− cj|−$
(

∑
i

ˆ
Bi(x)
|ϕj(y)|dy

)$
w(x)dx

≤ C($)∑
j

ˆ
(−∞,cj−2|Ij |]

w(x)
|x− cj|$

( ˆ
R
|ϕj(y)|dy

)$
dx

≤ C($)∑
j
|Ij|$−1

ˆ
Ij

ˆ
(−∞,cj−2|Ij |]

w(x)
|x− cj|$

dx| f (y)|dy

≤ C($)∑
j

ˆ
Ij

| f (y)|M−(w)(y)dy

≤ C($, [w]A+
1
)‖ f ‖L1(R,w(x)dx),

which together with (21) and (18) yields (17). Then, (12) follows from (13)–(17). This proves
Lemma 3.

Applying similar arguments used in deriving Lemma 3, we can get the following:

Corollary 1. Let K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let $ > 2 and T = {T+
ε }ε>0 be given as

in Equation (2). Assume that ‖V$(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

‖V$(T ) f ‖L1,∞(R,dx) ≤ C‖ f ‖L1(R,dx), ∀ f ∈ L1(R, dx).

The following lemma will play a pivotal role in the proof of Theorem 1.

Lemma 4. Let m ∈ N, $ > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let
T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equations (1) and (2), respectively. Assume that
‖V$(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then, for any r > 1 and x ∈ R, it holds that

M+,](V$

(
T m

b ) f )(x) ≤ C
( m−1

∑
i=0
‖b‖m−i

BMO(R)M+
r (V$

(
T i

b
)

f )(x) + ‖b‖m
BMO(R)M+

r f (x)
)

. (22)

Proof. We only prove (22) for the case 1 < r < min{q, 2}, since M+
r1

f ≤ M+
r2

f for any r2 ≥ r1. Invoking
Corollary 1, we see that V$(T ) is of weak type (1, 1). By the Marcinkiewicz interpolation theorem
and our assumption, we have that V$(T ) is bounded on Lp(R, dx) for any 1 < p < q. Fix x0 ∈ R
and h > 0. We decompose f as f = f1 + f2 + f3, where f1 = f χ[x0,x0+2h] and f2 = f χ(x0+2h,∞).
Let I = [x0 − 2h, x0 + 2h]. In view of (3), to prove (22), we only prove
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1
h

ˆ x0+h

x0

|V$(T m
b ) f (y)− V$(T m

b )((b− bI)
m f2)(x0)|dy

≤ C
( m−1

∑
i=0
‖b‖m−i

BMO(R)M+
r (V$

(
T i

b
)

f )(x) + ‖b‖m
BMO(R)M+

r f (x)
)

,

(23)

where C > 0 is independent of x0, h. Using the arguments similar to those used in deriving the
inequality (11) in [20], we get

T+,b,m
ε f (y) = T+

ε ((b− bI)
m f )(y) +

m−1

∑
k=0

Ck,m(b(y)− bI)
m−kT+,b,k

ε f (y), ∀y ∈ R. (24)

Note that T+,b,k
ε f3(y) = 0 for any ε > 0, 0 ≤ k ≤ m− 1 and y ≥ x0. (24) leads to

V(T m
b ) f (y) = V(T )((b− bI)

m f1)(y) + V(T )((b− bI)
m f2)(y)

+
m−1

∑
k=0

Ck,m(b(y)− bI)
m−kV(T k

b ) f (y), ∀y ≥ x0.
(25)

We notice from (11) that

1
h

ˆ x0+h

x0

|V$(T m
b ) f (y)− V$(T m

b )((b− bI)
m f2)(x0)|dy

=
1
h

ˆ x0+h

x0

|‖V(T m
b ) f (y)‖F$ − ‖V(T m

b )((b− bI)
m f2)(x0)‖F$ |dy

≤ 1
h

ˆ x0+h

x0

‖V(T m
b ) f (y)−V(T m

b )((b− bI)
m f2)(x0)‖F$ dy.

This together with (25) and (11) yield that

1
h

ˆ x0+h

x0

|V$(T m
b ) f (y)− V$(T m

b )((b− bI)
m f2)(x0)|dy

≤ 1
h

ˆ x0+h

x0

V$(T )((b− bI)
m f1)(y)dy

+
m−1

∑
k=0

Ck,m
1
h

ˆ x0+h

x0

|b(y)− bI |m−kV$(T k
b ) f (y)dy

+
1
h

ˆ x0+h

x0

‖V(T )((b− bI)
m f2)(y)−V(T )((b− bI)

m f2)(x0)‖F$ dy

=: I1 + I2 + I3.

(26)

Observe that, for any δ > 1 and k ∈ N,

1
|2k I|

ˆ
2k I
|b(z)− bI |δdz ≤ 2δ−1

( 1
|2k I|

ˆ
2k I
|b(z)− b2k I |

δdz + |bI − b2k I |
δ
)

≤ C(δ)(k + 1)δ‖b‖δ
BMO(R).

(27)
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We set ρ =
√

r. By Hölder’s inequality, the Lρ boundedness for V$(T ) and (27), we have

I1 ≤
(1

h

ˆ x0+h

x0

|V$(T )((b− bI)
m f1)(y)|ρdy

)1/ρ

≤ C(ρ)
(1

h

ˆ x0+2h

x0

|(b(y)− bI)
m f (y)|ρdy

)1/ρ

≤ C(ρ)
(1

h

ˆ x0+2h

x0

| f (y)|rdy
)1/r( 1

|I|

ˆ
I
|b(y)− bI |mρρ′dy

)1/ρρ′

≤ C(m, r)‖b‖m
BMO(R)M+

r f (x0)

(28)

and

I2 ≤
m−1

∑
k=0

Ck,m

(1
h

ˆ x0+h

x0

|V$(T k
b ) f (y)|rdy

)1/r( 1
|I|

ˆ
|I|
|(b(y)− bI)

(m−k)r′dy
)1/r′

≤ C(m, r)
m−1

∑
k=0

Ck,m‖b‖m−k
BMO(R)M+

r (V$(T k
b ) f )(x0).

(29)

For I3, let y ∈ [x0, x0 + h] and β = {εi} ∈ Θ, since

T+
[εi+1,εi ]

((b− bI)
m f2)(y)− T+

[εi+1,εi ]
((b− bI)

m f2)(x0)

=

ˆ
R
[K(y− z)χ(y+εi+1,y+εi ]

(z)− K(x0 − z)χ(x0+εi+1,x0+εi ]
(z)](b(z)− bI)

m f2(z)dz

=

ˆ
R
(K(y− z)− K(x0 − z))χ(y+εi+1,y+εi ]

(z)(b(z)− bI)
m f2(z)dz

+

ˆ
R
[K(x0 − z)(χ(y+εi+1,y+εi ]

(z)− χ(x0+εi+1,x0+εi ]
(z))(b(z)− bI)

m f2(z)dz.

It follows that

‖V(T )((b− bI)
m f2)(y)−V(T )((b− bI)

m f2)(x0)‖F$

≤
∥∥∥{ ˆ

R
(K(y− z)− K(x0 − z))χ(y+εi+1,y+εi ]

(z)(b(z)− bI)
m f2(z)dz

}
i∈N,β={εi}∈Θ

∥∥∥
F$

+
∥∥∥{ ˆ

R
K(x0 − z)(χ(y+εi+1,y+εi ]

(z)− χ(x0+εi+1,x0+εi ]
(z))

×(b(z)− bI)
m f2(z)dz

}
i∈N,β={εi}∈Θ

∥∥∥
F$

=: I11 + I12.

(30)

Since |x0 − z| > 2h ≥ 2|x0 − y| for z > x0 + 2h, then |K(y− z)− K(x0 − z)| ≤ B3|x0 − y||x0 −
z|−2 ≤ B3h|x0 − z|−2 for any z > x0 + 2h. Note that

‖{χ(y+εi+1,y+εi ]
(z)}i∈N,β={εi}∈Θ‖F$ ≤ 1, ∀y ∈ R.
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By Minkowski’s inequality, Hölder’s inequality and (27) with δ = mr′, we obtain

I11 ≤
ˆ
R
|K(y− z)− K(x0 − z)|‖{χ(y+εi+1,y+εi ]

(z)}i∈N,β={εi}∈Θ‖F$

×|(b(z)− bI)
m f2(z)|dz

≤ B3h
ˆ ∞

x0+2h

|(b(z)− bI)
m f (z)|

(z− x0)2 dz

≤ B3h
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

|(b(z)− bI)
m f (z)|

(2kh)2 dz

≤ 4B3

∞

∑
k=1

2−k
( 1

2k+1h

ˆ x0+2k+1h

x0

| f (z)|rdz
)1/r( 1

|2k I|

ˆ
2k I
|b(z)− bI |mr′dz

)1/r′

≤ 4B3

∞

∑
k=1

(k + 1)m

2k ‖b‖m
BMO(R)M+

r f (x0) ≤ C(m, r, B3)‖b‖m
BMO(R)M+

r f (x0).

(31)

It remains to estimate I12. Fix {εi} ∈ Θ. Let N1 = {i ∈ Z : εi − εi+1 ≥ y− x0} and N2 = {i ∈ Z :
εi − εi+1 < y− x0}. We can write

∑
i∈Z

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
≤ ∑

i∈N1

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
+ ∑

i∈N2

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
=: J11 + J12.

(32)

By Hölder’s inequality, we obtain

J11 ≤ Bρ
2 ∑

i∈N1

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(x0+εi+1,y+εi+1]
(z) + χ(x0+εi ,y+εi ]

(z))dz
∣∣∣ρ

≤ (4B2)
ρ ∑

i∈N1

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| χ(x0+εi ,y+εi ]
(z)dz

∣∣∣ρ
≤ (4B2)

ρhρ−1 ∑
i∈N1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(y+εi+1,y+εi ]
(z)dz

≤ (4B2)
ρhρ−1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz.

(33)

J12 ≤ Bρ
2 ∑

i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(y+εi+1,y+εi ]
(z) + χ(x0+εi+1,x0+εi ]

(z))dz
∣∣∣ρ

≤ (2B2)
ρ ∑

i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(y+εi+1,y+εi ]
(z)dz

∣∣∣ρ
+(2B2)

ρ ∑
i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| χ(x0+εi+1,x0+εi ]
(z)dz

∣∣∣ρ
≤ hρ−1(2B2)

ρ ∑
i∈N2

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(y+εi+1,y+εi ]
(z)dz

+hρ−1(2B2)
ρ ∑

i∈N2

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(x0+εi+1,x0+εi ]
(z)dz

≤ 2(2B2)
ρhρ−1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz.

(34)

It follows from (32)–(34) that

I12 ≤ C(B2, r)h1−1/ρ
( ˆ

R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz
)1/ρ

. (35)
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By Hölder’s inequality and (27) (with δ = mρρ′), we have

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz

=
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

|(b(z)− bI)
m f (z)|ρ

|x0 − z|ρ dz

≤
∞

∑
k=1

(2kh)−ρ
ˆ x0+2k+1h

x0+2kh
|(b(z)− bI)

m f (z)|ρdz

≤ 4h1−ρ
∞

∑
k=1

2−k(ρ−1)
( 1

2k+1h

ˆ x0+2k+1h

x0

| f (z)|rdz
)1/ρ

×
( 1
|2k I|

ˆ
2k I
|b(z)− bI |mρρ′dz

)1/ρ′

≤ 4h1−ρ‖b‖mρ

BMO(R)

∞

∑
k=1

(k + 1)mρ

2k(ρ−1)
(M+

r f (x0))
ρ.

This yields directly

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz ≤ C(m, r)h1−ρ‖b‖mρ

BMO(R)(M+
r f (x0))

ρ. (36)

Combining (36) with (35) yields (37) together with (30) and (31) implies

I12 ≤ C(m, r, B2)‖b‖m
BMO(R)M+

r f (x0), (37)

I3 ≤ C(m, r, B2, B3)‖b‖m
BMO(R)M+

r f (x0). (38)

Combining (38) with (26), (28) and (29) yields (23). This completes the proof.

We now turn to prove our main results.

Proof of Theorem 1. We first prove (i). For any w ∈ A+
p with 1 < p < ∞, there exists r ∈ (1, p) such

that w ∈ A+
p/r. Then, we have

‖M+
r f ‖Lp(R,w(x)dx) ≤ ‖M+| f |r‖1/r

Lp/r(R,w(x)dx)
≤ Cp,r‖ f ‖Lp(R,w(x)dx). (39)

On the other hand, it was proved in [23] that

‖M+ f ‖Lp(R,w(x)dx) ≤ C‖M+,] f ‖Lp(R,w(x)dx) (40)

for 1 < p < ∞ and w ∈ A+
∞. We get from (22), (39) and (40) and that

‖V$(T ) f ‖Lp(R,w(x)dx) ≤ ‖M+(V$(T ) f )‖Lp(R,w(x)dx)
≤ C‖M+,](V$(T ) f ))‖Lp(R,w(x)dx)
≤ C‖M+

r f ‖Lp(R,w(x)dx) ≤ C‖ f ‖Lp(R,w(x)dx).

This together with Lemma 3 yields Theorem 1 (i).
Applying Lemma 4 and the arguments similar to those used in deriving Theorem 1.3 in [19],

we can get Theorem 1 (ii). The details are omitted.
We now prove (iii). For w−1 ∈ A−1 , there exists r > 1 such that w−r ∈ A−1 . Thus, for any x ∈ R,

M+
r f (x)w(x) = w(x)

(
sup
h>0

1
h

ˆ x+h

x
(| f (y)|w(y))rw−r(y)dy

)1/r

≤ ‖ f ‖L∞(R,w(x)dx)w(x)(M+(w−r)(x))1/r ≤ ‖w−r‖A−1
‖ f ‖L∞(R,w(x)dx),
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which together with (23) yield that

‖V$(T ) f ‖BMO+(R,w(x)dx) = ‖M+,](V$(T ) f ))‖L∞(R,w(x)dx)

≤ C‖M+
r f ‖L∞(R,w(x)dx) ≤ C‖ f ‖L∞(R,w(x)dx)

for any 1 < r < ∞. This proves Theorem 1.

Proof of Theorem 2. We first prove (i). Fix x0 ∈ R and h > 0. It suffices to show that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V$(T m
b ) f (x)|pdx

)1/p
≤ C‖b‖m

BMO(R)h
β‖ f ‖Lp,β,+(w), (41)

where C > 0 is independent of x0, h. Let f1 = f χ[x0,x0+2h), f2 = f χ[x0+2h,∞) and f3 = f − f1 − f2.

Let I = [x0 − 2h, x0 + 2h]. Note that T+,b,m
ε f3(x) = 0 for any ε > 0 and x ≥ x0. It follows that

V$(T m
b ) f3(x) = 0 for all x ≥ x0. Thus, we can write

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V$(T m
b ) f (x)|pdx

)1/p

≤
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V$(T m
b ) f1(x)|pdx

)1/p

+
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V$(T m
b ) f2(x)|pdx

)1/p
=: S1 + S2.

(42)

Invoking Lemma 1 (i) and Theorem 1 (ii), there exists C > 0 independent of x0, h, such that

S1 ≤ C‖b‖m
BMO(R)

( 1
w(x0 − h, x0)

ˆ x0+2h

x0

| f (x)|pdx
)1/p

≤ C‖b‖m
BMO(R)

(w(x0 − 2h, x0)

w(x0 − h, x0)

1
w(x0 − 2h, x0)

ˆ x0+2h

x0

| f (x)|pdx
)1/p

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w).

(43)

Applying Lemma 1 (ii), there exists C > 0 independent of x0, h such that

( 1
w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

≤
(w(x0 − h− 2k+2h, x0 − h)

w(x0 − h, x0)

1
w(x0 − h− 2k+2h, x0 − h)

ˆ x0−h+2k+2h

x0−h
| f (z)|pdz

)1/p

≤ C2(k+2)(1+β)hβ‖ f ‖Lp,β,+(w).

(44)

One can easily check that |x− z| > |z− x0|/2 for x ∈ [x0, x0 + h] and z ∈ [x0 + 2h, ∞). Fix x ∈
[x0, x0 + h]. Then, by (11) and Minkowski’s inequality, we have

V$(T m
b ) f2(x) = ‖V(T m

b ) f2(x)‖F$

≤
∥∥∥{ ˆ

εi+1<z−x≤εi

K(x− z)(b(x)− b(z))m f2(z)dz
}

i∈N,β={εi}∈Θ

∥∥∥
F$

≤
ˆ
R
|K(x− z)(b(x)− b(z))m f2(z)|

∥∥∥{χεi+1<z−x≤εi

}
i∈N,β={εi}∈Θ

∥∥∥
F$

dz

≤ C
ˆ
R

| f2(z)(b(x)− b(z))m|
|z− x0|

dz,

(45)
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where C > 0 is independent of x0, h. It is clear that

ˆ
R

| f2(z)(b(x)− b(z))m|
|z− x0|

dz =
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z− x0|

dz.

Fix k ≥ 1. By Hölder’s inequality, we obtain

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z− x0|

dz

≤ 2m(2kh)−1
( ˆ x0+2k+1h

x0+2kh
| f (z)||b(x)− b2k I |

mdz +
ˆ x0+2k+1h

x0+2kh
| f (z)||b(z)− b2k I |

mdz
)

≤ 2m(2kh)−1/p|b(x)− b2k I |
m
( ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

+2m(2kh)−1
( ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p( ˆ x0+2k+1h

x0+2kh
|b(z)− b2k I |

mp′dz
)1/p′

.

This together with (27) and (44) yields that

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z− x0|

dz

≤ C2k(1+β)hβ‖ f ‖Lp,β,+(w)(2
kh)−1/pw((x0 − h, x0))

1/p(|b(x)− b2k I |
m + ‖b‖m

BMO(R)).
(46)

Here, C > 0 is independent of x0, h. By (45) and (46) and Hölder’s inequality, we have

S2 ≤ Chβ‖ f ‖Lp,β,+(w)

∞

∑
k=1

2k(1+β)(2kh)−1/p

×
( ˆ x0+h

x0

|(|b(x)− b2k I |
m + ‖b‖m

BMO(R))|
pdx
)1/p

≤ Chβ‖ f ‖Lp,β,+(w)

∞

∑
k=1

2k(1+β)(2kh)−1/p

×
( ˆ x0+h

x0

(2m|b(x)− bI |m + 2m|bI − b2k I |
m + ‖b‖m

BMO(R))
pdx
)1/p

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w)

∞

∑
k=1

(k + 1)m

2(1/p−1−β)k

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w).

(47)

Here, C > 0 is independent of x0, h. In the last inequality of (47), we have used the condition
1/p > 1 + β. (47) together with (42) and (43) yield (41).

Next, we prove (ii). Let f1 = f χ[x0,x0+2h), f2 = f χ[x0+2h,∞) and f3 = f − f1 − f2. Let I =

[x0 − 2h, x0 + 2h]. By (4), we want to show that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V$(T ) f (x)− V$(T ) f2(x0)|pdx
)1/p

≤ Chβ‖ f ‖Lp,β,+(w), (48)

where C > 0 independent of x0, h. Using (11) and Minkowski’s inequality, one has

|V$(T ) f (x)− V$(T ) f2(x0)|
= |‖V(T ) f (x)‖F$ − ‖V(T ) f2(x0)‖F$ |
≤ ‖V(T ) f (x)−V(T ) f2(x0)‖F$ ≤ |V$(T ) f1(x)|+ ‖V(T ) f2(x)−V(T ) f2(x0)‖F$ .
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This together with Minkowski’s inequality again yield that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V$(T ) f (x)− V$(T ) f2(x0)|pdx
)1/p

≤
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V$(T ) f1(x)|pdx
)1/p

+
( 1

w(x0 − h, x0)

ˆ x0+h

x0

‖V(T ) f2(x)−V(T ) f2(x0)‖
p
F$

dx
)1/p

.

(49)

We get from (43) (with m = 0) that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V$(T ) f1(x)|pdx
)1/p

≤ Chβ‖ f ‖Lp,β,+(w), (50)

where C > 0 is independent of x0, h. Fix x ∈ [x0, x0 + h]. (30), (31) and (35) (with m = 0) imply that

‖V(T ) f2(x)−V(T ) f2(x0)‖F$

≤ B3h
ˆ
R

| f2(z)|
|z− x0|2

dz + C(B2, p)h1−1/p
( ˆ

R

| f2(z)|p
|x0 − z|p dz

)1/p
.

It follows that( 1
w(x0 − h, x0)

ˆ x0+h

x0

‖V(T ) f2(x)−V(T ) f2(x0)‖
p
F$

dx
)1/p

≤ h1+1/p

w(x0 − h, x0)1/p

ˆ ∞

x0+2h

| f (z)|
(z− x0)2 dz + h

( 1
w(x0 − h, x0)

ˆ
R

| f2(z)|p
|x0 − z|p dz

)1/p

=: V1 + V2.

(51)

By (44) and Hölder’s inequality, there exists C > 0 independent of x0, h, such that

V1 ≤ h1+1/p

w(x0 − h, x0)1/p

∞

∑
k=1

(2kh)−2
ˆ x0+2k+1h

x0+2kh
| f (z)|dz

≤
∞

∑
k=1

2k(−2+1/p′)
( 1

w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

≤ C
∞

∑
k=1

2k(−2+1/p′)2k(1+β)hβ‖ f ‖Lp,β,+(w)

≤ C
∞

∑
k=1

2k(β−1/p)hβ‖ f ‖Lp,β,+(w) ≤ Chβ‖ f ‖Lp,β,+(w).

(52)

V2 ≤
( ∞

∑
k=1

2−kp 1
w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh

| f (z)|p
(z− x0)p dz

)1/p

≤ C
( ∞

∑
k=1

2−kp2k(1+β)phβp‖ f ‖p
Lp,β,+(w)

)1/p

≤ C
( ∞

∑
k=1

2kβp
)1/p

hβ‖ f ‖Lp,β,+(w) ≤ Chβ‖ f ‖Lp,β,+(w).

(53)

(53) together with (49)–(52) yields (48). This finishes the proof of Theorem 2.

4. λ-Jump Operators and the Number of Up-Crossing

This section is devoted to study the λ-jump operators and the number of up-crossing associated
with the operators sequence {T+,b,m

ε }ε>0, which give certain quantitative information on the
convergence of the above families of operators.
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Definition 4. Given a family of bounded operators T = {Tε}ε>0 acting between spaces of functions,
the λ-jump operator associated with T applied to a function f at a point x is defined by

Λλ(T ) f (x) := sup{n : there exist s1 < t1 ≤ s2 < t2 < · · · ≤ sn < tn

such that |Tsi f (x)− Tti f (x)| > λ}.

For 0 < α < γ, the number of up-crossing associated with T applied to a function f at a point x is
defined by

Nα,γ(T ) f (x) := sup{n : there exist s1 < t1 < s2 < t2 < ... < sn < tn

such that Tsi f (x) < α, Tti f (x) > γ}.

It was shown in [11] that, if the λ-jump operators is finite a.e. for each choice of λ > 0, then we
must have a.e. convergence of our family of operators. Moreover,

λ(Λλ(T ) f (x))1/$ ≤ V$(T ) f (x) and Nα,λ(T ) f (x) ≤ Λλ−α(T ) f (x), ∀λ > α > 0. (54)

By Theorem 1 (ii) and Theorem 2 and (54), we can get the following result.

Theorem 3. Let m ∈ N, $ > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in (1.1) and (1.2), respectively. Let λ > α > 0.
Assume that ‖V$(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any 1 < p < ∞, w ∈ A+
p and f ∈ Lp(R, w(x)dx),

‖(Λλ(T m
b ) f )1/$‖Lp(R,w(x)dx) ≤

C(p, $)

λ
‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

‖(Nα,λ(T m
b ) f )1/$‖Lp(R,w(x)dx) ≤

C(p, $)

λ− α
‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

(ii) for any 1 < p < 1/(β + 1), −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖(Λλ(T m
b ) f )1/$‖Lp,β,+(w) ≤

C(p, $)

λ
‖b‖m

BMO(R)‖ f ‖Lp,β,+(w);

‖(Nα,λ(T m
b ) f )1/$‖Lp,β,+(w) ≤

C(p, $)

λ− α
‖b‖m

BMO(R)‖ f ‖Lp,β,+(w).

5. Conclusions and Further Comments

It should be pointed out that our main results represent one-sided extensions of the main results
in [19,28]. Combining with the two-sided case, the one-sided case is often more complex. Our main
results not only enrich the variation inequalities for singular integrals and related commutators, but
also explore some one-sided techniques to serve our aim (for example, see Lemma 1). In fact, it is
unknown whether the variation operators for one-sided singular integrals are bounded on Lp(R),
which will be our forthcoming objective of research. On the other hand, some new one-sided methods
and techniques can be explored to apply other one-sided operators.
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