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Abstract: Let G0 be a connected graph on n vertices and m edges. The R-graph R(G0) of G0 is a graph
obtained from G0 by adding a new vertex corresponding to each edge of G0 and by joining each
new vertex to the end points of the edge corresponding to it. Let G1 and G2 be graphs on n1 and
n2 vertices, respectively. The R-graph double corona G(R)

0 ◦ {G1, G2} of G0, G1 and G2, is the graph
obtained by taking one copy of R(G0), n copies of G1 and m copies of G2 and then by joining the
i-th old-vertex of R(G0) to every vertex of the i-th copy of G1 and the j-th new vertex of R(G0) to
every vertex of the j-th copy of G2. In this paper, we consider resistance distance in G(R)

0 ◦ {G1, G2}.
Moreover, we give an example to illustrate the correction and efficiency of the proposed method.

Keywords: graph; double corona; resistance distance; inverse

1. Introduction

All graphs considered in this paper are simple and undirected. A graph G whose vertex set
is V(G) = {v1, v2, . . . , vn} and edge set is E(G) = {e1, e2, . . . , em}, is denoted by (V(G), E(G)).
As we know, the conventional distance dij is the length of a shortest path between vertices vi and
vj. Connected with practical applications, such as electrical network, Klein and Randić introduced
resistance distance [1], which is the effective electrical resistance between two vertices if every edge is
replaced by a unit resistor, and is denoted by rij for resistance distance between vi and vj. Some results
on resistance distance can be found in [2–4].

One of the main topics about resistance distance is to determine it in various graphs. Now one can
easily obtain resistance distance in wheels and fans [5], in subdivision-vertex join and subdivision-edge
join of graphs [6], in corona and the neighborhood corona graphs of two disjoint graphs [7], in H-Join
of Graphs G1, G2, . . . , Gk [8]. Please turn to [9–15] for more detail.

Motivated by the above works, we consider resistance distance in double corona based on R-graph.
The R-graph of G, which is denoted by R(G), appeared in [16]. Moreover, R(G) is defined as the graph
obtained from G by adding a new vertex corresponding to each edge of G and by joining each new
vertex to the end points of the edge corresponding to it. Recently, in 2017, Barik and Sahoo introduced
the R-graph double corona of G0, G1 and G2 [17].

Definition 1 ([17]). Let G0 be a connected graph on n vertices and m edges. Let G1 and G2 be graphs on n1

and n2 vertices, respectively. The R-graph double corona of G0, G1 and G2, denoted by G(R)
0 ◦ {G1, G2}, is the

graph obtained by taking one copy of R(G0), n copies of G1 and m copies of G2 and then by joining the i-th
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old-vertex of R(G0) to every vertex of the i-th copy of G1 and the j-th new vertex of R(G0) to every vertex of the
j-th copy of G2.

Example 1. Please refer to Example 3 of [17] for C(R)
4 ◦ {P3, P2}, where Pn and Cn are a path and a cycle with

n vertices. Moreover, one can refer to Example 2 for P(R)
2 ◦ {P2, P2}.

This paper will compute resistance distance in G(R)
0 ◦ {G1, G2}. However, first of all, we turn the

readers’ attention to some matrices associated with a graph G. The adjacency matrix AG, which is
a n× n-matrix with entry aij = 1 if vi and vj are adjacent in G and aij = 0 otherwise, the diagonal
matrix DG with diagonal entries dG(v1), dG(v2), . . . , dG(vn) and the incidence matrix MG which is
a n×m-matrix with mij = 1 (or 0) if vertex vi is (not) incident with ej. Moreover, the Laplacian matrix
LG of G is DG − AG. For more detail, please refer to [18,19].

Here we list some symbols. Let In denote the unit matrix of order n, 1n be the all-one column
vector of dimension n and Jn×m be the all-one n × m-matrix. Recall that the Kronecker product
A⊗ B [20] of two matrices A = (aij)m×n and B = (bij)p×q is an mp× nq-matrix obtained from A by
replacing every element aij by aijB. Moreover, (A⊗ B)(C⊗ D) = AC⊗ BD, whenever the products
AC and BD exist, which implies that (A⊗ B)−1 = A−1 ⊗ B−1.

2. Preliminaries

Let M be a matrix. If X is a matrix such that MXM = M, then X is a {1}-inverse of M, and X
is always denoted by M{1}. Further assume that M is a square matrix. If X is the matrix satisfying
(1)MXM = M; (2)XMX = X; (3)MX = XM, then X = M# is the group inverse of M. It is well-known
that M# exists if and only if rank(M)=rank(M2), and M# is unique.

Let A be a real symmetric matrix. Obviously, A# exists and it is a {1}-inverse of A. In fact, assume
that U is an orthogonal matrix (i.e., UUT = UTU = I) such that A = Udiag{λ1, λ2, · · · , λn}UT ,
where λ1, λ2, · · · , λn are eigenvalues of A. Then A# = Udiag{ f (λ1), f (λ2), · · · , f (λn)}UT , where

f (λi) =

{
1/λi, if λi 6= 0,

0, if λi = 0.
Moreover, in [21], the existence and the representation of the group

inverse for the block matrices with an invertible subblock were given.

Lemma 1 ([21]). Let M =

(
A B
C D

)
be a m × m matrix, where A is an invertible n × n matrix,

S = D− CA−1B. If S# exists, then
(1) M# exists if and only if R is invertible, where R = A2 + BSπC and Sπ = Im−n − SS#;

(2) if M# exists, then M# =

(
X Y
Z W

)
, where

X =AR−1(A + BS#C)R−1 A,

Y =AR−1(A + BS#C)R−1BSπ − AR−1BS#,

Z =SπCR−1(A + BS#C)R−1 A− S#CR−1 A,

W =SπCR−1(A + BS#C)R−1BSπ − S#CR−1BSπ − SπCR−1BS# + S#.

Please note that, the Laplacian matrix L(G) of a graph G is real symmetric. So L(G)# exists and
consequently, L(G){1} exists. The representations of L(G){1} were investigated in [6,11,22] under
different conditions. We list two in the next lemma.

Lemma 2 ([6,11,22]). Let L =

(
L1 L2

LT
2 L3

)
be the Laplacian matrix of a connected graph. Assume that L1

is nonsingular. Denote S = L3 − LT
2 L−1

1 L2. Then
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(1)

(
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)
is a symmetric {1}-inverse of L;

(2) If each column vector of L2 is 1 or a zero vector, then

(
L−1

1 0
0 S#

)
is a symmetric {1}-inverse of L.

To compute the inverse of a matrix, the next lemma is useful.

Lemma 3 ([6]). Let M =

(
A B
C D

)
be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
,

where S = D− CA−1B is the Schur complement of A in M.

This paper is devoted to the compute of resistance distance in G(R)
0 ◦ {G1, G2}. In [6], authors

obtained the formulae for resistance distance by elements of group inverse L(G)# or {1}-inverse
L(G){1} of L(G), where G = G(R)

0 ◦ {G1, G2}.

Lemma 4 ([6]). Let G be a connected graph and (A)ij be the (i, j)-entry of a matrix A. Then

rij(G) = (L(G){1})ii + (L(G){1})jj − (L(G){1})ij − (L(G){1})ji

= (L(G)#)ii + (L(G)#)jj − 2(L(G)#)ij.

Keep Lemma 4 in mind, we only need to compute L(G)# or L(G){1}. Before calculating, we list
more preliminaries below.

Lemma 5 ([11]). For any graph G, L(G)#1 = 0.

Lemma 6 ([23]). Let G be a simple connected graph. Then its adjacency matrix A(G), diagonal matrix D(G)

and incidence matrix M(G) satisfy M(G)M(G)T = A(G) + D(G).

Lemma 7. Assume that A is symmetric and 0 is a simple eigenvalue. Let u be the unitary 0-eigenvector of A.
Then the group inverse A# is characterized as the unique singular matrix satisfying

AA# = A# A = I − uuT .

Proof. Assume that λi is a non-zero eigenvalue of A and ui is the unitary λi-eigenvector of A, for
i = 1, 2, · · · , n− 1. Let U = (u1 u2 · · · un−1 u). Then

A = Udiag{λ1, λ2, · · · , λn−1, 0}UT , A# = Udiag{ 1
λ1

,
1

λ2
, · · · ,

1
λn−1

, 0}UT .

Clearly, I − AA# = I − A# A and

I − A# A = U


0

. . .
0

1

UT = U


0
...
0
1


(

0 · · · 0 1
)

UT = uuT .
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Lemma 8. Let M be a matrix and X be a {1}-inverse of M. If X0 is a matrix satisfying MX0M = 0, then
X− X0 is also a {1}-inverse of M.

Proof. Please note that M(X−X0)M = MXM−MX0M = M− 0 = M. Thus, X−X0 is a {1}-inverse
of M.

3. Main Results

In this section, G = G(R)
0 ◦ {G1, G2}, where G0 is a connected r-regular graph on n vertices

V(G0) = {v1, v2, . . . , vn} and m edges E(G0) = {e1, e2, . . . , em}, and G1, G2 are graphs on n1 vertices
V(G1) = {u1, u2, . . . , un1} and n2 vertices V(G2) = {w1, w2, . . . , wn2}. We give a {1}-inverse of L(G)

in Theorem 1. However, before Theorem 1, we show the labeling rule of vertices of G.
(1) For i = 1, 2, . . . , m, label the n2 vertices of the i-th copy of G2 with

V(G2)i = {w
(i−1)n2+1
1 , w(i−1)n2+2

2 , . . . , win2
n2 }.

(2) For j = 1, 2, . . . , n, label the n1 vertices of the j-th copy of G1 with

V(G1)j = {u
mn2+(j−1)n1+1
1 , umn2+(j−1)n1+2

2 , . . . , umn2+jn1
n1 }.

(3) Label the m new-vertices of R(G0) corresponding to edges of E(G0) with

{emn2+nn1+1
1 , emn2+nn1+2

2 , . . . , em(n2+1)+nn1
m }.

(4) Label the n old-vertices V(G0) = {v1, v2, . . . , vn} of R(G0) with

{vm(n2+1)+nn1+1
1 , vm(n2+1)+nn1+2

2 , . . . , vm(n2+1)+n(n1+1)
n }.

Thus,

V(G) =V(G2)1 ∪ · · · ∪V(G2)m ∪V(G1)1 ∪ · · · ∪V(G1)n

∪ {emn2+nn1+1
1 , . . . , em(n2+1)+nn1

m } ∪ {vm(n2+1)+nn1+1
1 , . . . , vm(n2+1)+n(n1+1)

n }.

Theorem 1. The following matrix is a {1}-inverse of L(G),
Im ⊗

(
(LG2 + In2)

−1 + 1
2 Jn2×n2

)
0 1

2 Im ⊗ 1n2 0

0 In ⊗ (LG1 + In1)
−1 0 0

1
2 Im ⊗ 1T

n2
0 1

2 Im 0
0 0 0 0



+


1
2 MT

G0
⊗ 1n2

In ⊗ 1n1
1
2 MT

G0

In

 2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

1
2

MG0 In

)
.
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Moreover, denote

(
1
2 MT

G0

In

)
2
3 L#

G0

(
1
2 MG0 In

)
=

(
1
6 MT

G0
L#

G0
MG0

1
3 MT

G0
L#

G0
1
3 L#

G0
MG0

2
3 L#

G0

)
by(

X11 X12

XT
12 X22

)
. Then the second term in the above matrix is


X11 ⊗ Jn2×n2 X12 ⊗ Jn2×n1 X11 ⊗ 1n2 X12 ⊗ 1n2

XT
12 ⊗ Jn1×n2 X22 ⊗ Jn1×n1 XT

12 ⊗ 1n1 X22 ⊗ 1n1

X11 ⊗ 1T
n2

X12 ⊗ 1T
n1

X11 X12

XT
12 ⊗ 1T

n2
X22 ⊗ 1T

n1
XT

12 X22

 .

Proof. By the definition, it is easy to show that G = G(R)
0 ◦ {G1, G2} is connected. Furthermore, from

the vertex-labeling rule of G, we know that all the diagonal matrix DG, the adjacency matrix AG and
the Laplacian matrix LG are partitioned (m + n + 2)× (m + n + 2)-matrices. Particularly, the Laplacian
matrix of G is

LG =


Im ⊗ (LG2 + In2) 0 −Im ⊗ 1n2 0

0 In ⊗ (LG1 + In1) 0 −In ⊗ 1n1

−Im ⊗ 1T
n2

0 (2 + n2)Im −MT
G0

0 −In ⊗ 1T
n1

−MG0 2DG0 − AG0 + n1 In1

 .

We proceed via the following steps.

Step 1. To use Lemma 2, we further divide LG into blocks LG =

(
L1 L2

LT
2 L3

)
, where

L1 =

(
Im ⊗ (LG2 + In2) 0

0 In ⊗ (LG1 + In1)

)
;

L2 =

(
−Im ⊗ 1n2 0

0 −In ⊗ 1n1

)
; LT

2 =

(
−Im ⊗ 1T

n2
0

0 −In ⊗ 1T
n1

)
;

L3 =

(
(2 + n2)Im −MT

G0

−MG0 2DG0 − AG0 + n1 In1

)
.

Clearly, L−1
1 =

(
Im ⊗ (LG2 + In2)

−1 0
0 In ⊗ (LG1 + In1)

−1

)
.

Step 2. Please note that LG11n1 = 0. So (LG1 + In1)1n1 = 1n1 , which shows that

(LG1 + In1)
−11n1 = 1n1 .

Furthermore,
1T

n1
(LG1 + In1)

−11n1 = n1.

Similarly, we have 1T
n2
(LG2 + In2)

−11n2 = n2. Keep these in mind and recall the Kronecker
product. Then

LT
2 L−1

1 L2 =

(
Im ⊗ 1T

n2
(LG2 + In2)

−11n2 0
0 In ⊗ 1T

n1
(LG1 + In1)

−11n1

)

=

(
n2 Im 0

0 n1 In

)
.
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From this result, it follows that

S = L3 − LT
2 L−1

1 L2 =

(
(2 + n2)Im −MT

G0

−MG0 2DG0 − AG0 + n1 In1

)
−
(

n2 Im 0
0 n1 In

)

=

(
2Im −MT

G0

−MG0 2DG0 − AG0

)
.

Since S is real symmetric, S# exists.
Step 3. Here we computer S# by Lemma 1. Please note that MG0 MT

G0
= DG0 + AG0 . We denote

S0 = 2DG0 − AG0 −MG0

(
1
2

Im

)
MT

G0
.

Then S0 = 3
2 LG0 . Consequently, S#

0 exists and in fact, S#
0 = 2

3 L#
G0

. Denote In − S0S#
0 by Sπ

0 .
Combing with Lemma 7, we have

Sπ
0 = In − LG0 L#

G0
=

1
n

Jn×n.

Please note that
(

1 · · · 1
)

MG0 = 2
(

1 · · · 1
)

and MT
G0

1n = 21n. So, we further have

R = 4Im + MT
G0

(
1
n

Jn×n

)
MG0 = 4

(
Im +

1
n

Jm×m

)
.

Therefore, it is easy to obtain that

R−1 =
1
4

(
Im −

1
n + m

Jm×m

)
.

Please note that G is r-regular. So MG01m = r1m. Moreover, L#
G0

1n = 0 according to Lemma 5.

In general, by Lemma 1, we finally have S# =

(
X Y
Z W

)
, where

X = 2Im
1
4

(
Im −

1
n + m

Jm×m

)
2
(

Im +
1
3

MT
G0

L#
G0

MG0

)
1
4

(
Im −

1
n + m

Jm×m

)
2Im

=
1
2

(
Im −

1
n + m

Jm×m

)(
Im +

1
3

MT
G0

L#
G0

MG0

)(
Im −

1
n + m

Jm×m

)
=

1
2

(
Im +

1
3

MT
G0

L#
G0

MG0 −
2n + m
(n + m)2 Jm×m

)
,
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Y =2Im
1
4

(
Im −

1
n + m

Jm×m

)
2
(

Im +
1
3

MT
G0

L#
G0

MG0

)
1
4

(
Im −

1
n + m

Jm×m

)
(−MT

G0
)

1
n

Jn×n

− 2Im
1
4

(
Im −

1
n + m

Jm×m

)
(−MT

G0
)

2
3

L#
G0

=
−1
4n

(
Im −

1
n + m

Jm×m

)(
Im +

1
3

MT
G0

L#
G0

MG0

)(
Im −

1
n + m

Jm×m

)
MT

G0
Jn×n

+
1
3

(
Im −

1
n + m

Jm×m

)
MT

G0
L#

G0

=
1
3

MT
G0

L#
G0
− 1

4n

(
Im +

1
3

MT
G0

L#
G0

MG0 −
2n + m
(n + m)2 Jm×m

)
MT

G0
Jn×n

=
1
3

MT
G0

L#
G0
− n

2(n + m)2 Jm×n,

Z =
1
n

Jn×n(−MG0)
1
4

(
Im −

1
n + m

Jm×m

)
2
(

Im +
1
3

MT
G0

L#
G0

MG0

)
1
4

(
Im −

1
n + m

Jm×m

)
2Im

− 2
3

L#
G0
(−MG0)

1
4

(
Im −

1
n + m

Jm×m

)
2Im

=
1
3

L(G)#MG0 −
1

4n
Jn×n MG0

(
Im +

1
3

MT
G0

L#
G0

MG0 −
2n + m
(n + m)2 Jm×m

)
=

1
3

L#
G0

MG0 −
n

2(n + m)2 Jn×m,

and

W =
1
n

Jn×n(−MG0 )
1
4

(
Im −

1
n + m

Jm×m

)
2
(

Im +
1
3

MT
G0

L#
G0

MG0

)
1
4

(
Im −

1
n + m

Jm×m

)
(−MT

G0
)

1
n

Jn×n

− 2
3

L#
G0
(−MG0 )

1
4

(
Im −

1
n + m

Jm×m

)
(−MT

G0
)

1
n

Jn×n

− 1
n

Jn×n(−MG0 )
1
4

(
Im −

1
n + m

Jm×m

)
(−MT

G0
)

2
3

L#
G0

+
2
3

L#
G0

=
1

2n2 Jn×m

(
Im −

1
n + m

Jm×m

)(
Im +

1
3

MT
G0

L#
G0

MG0

)(
Im −

1
n + m

Jm×m

)
Jm×n +

2
3

L#
G0

=
2
3

L#
G0

+
m

2(n + m)2 Jn×n.

Therefore, we have

S# =
1
2

(
Im 0
0 0

)
+

(
1
2 MT

G0

In

)
2
3

L#
G0

(
1
2

MG0 In

)

+
1

2(n + m)

(
−Jm×m 0

0 Jn×n

)
− n

2(n + m)2 J(m+n)×(m+n).
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Step 4. In this step, we compute −L−1
1 L2S#, −S#LT

2 L−1
1 and L−1

1 L2S#LT
2 L−1

1 .

−L−1
1 L2S# =

(
Im ⊗ (LG2 + In2)

−11n2 0
0 In ⊗ (LG1 + In1)

−11n1

)
S#

=

(
Im ⊗ 1n2 0

0 In ⊗ 1n1

)
S#

=
1
2

(
Im ⊗ 1n2 0

0 0

)
+

(
1
2 MT

G0
⊗ 1n2

In ⊗ 1n1

)
2
3

L#
G0

(
1
2

MG0 In

)

+
1

2(n + m)

(
−Jmn2×m 0

0 Jnn1×n

)
− n

2(n + m)2 J(mn2+nn1)×(m+n),

and similarly, we would have that

−S#LT
2 L−1

1 =S#

(
Im ⊗ 1T

n2
(LG2 + In2)

−1 0
0 In ⊗ 1T

n1
(LG1 + In1)

−1

)

=S#

(
Im ⊗ 1T

n2
0

0 In ⊗ 1T
n1

)

=
1
2

(
Im ⊗ 1T

n2
0

0 0

)
+

(
1
2 MT

G0

In

)
2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

)

+
1

2(n + m)

(
−Jm×mn2 0

0 Jn×nn1

)
− n

2(n + m)2 J(m+n)×(mn2+nn1)
.

Furthermore,

L−1
1 L2S#LT

2 L−1
1 =

1
2

(
Im ⊗ Jn2×n2 0

0 0

)
+

(
1
2 MT

G0
⊗ 1n2

In ⊗ 1n1

)
2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

)

+
1

2(n + m)

(
−Jmn2×mn2 0

0 Jnn1×nn1

)
− n

2(n + m)2 J(mn2+nn1)×(mn2+nn1)
.

Step 5. Since LG is the Laplacian matrix of G = G(R)
0 ◦ {G1, G2}, we have

LG1m(n2+1)+n(n1+1) = 0, 1T
m(n2+1)+n(n1+1)LG = 0,

which shows that LG Jm(n2+1)+n(n1+1)LG = 0. Moreover,

LG


−Jmn2×mn2 0 −Jmn2×m 0

0 Jnn1×nn1 0 Jnn1×n

−Jm×mn2 0 −Jm×m 0
0 Jn×nn1 0 Jn×n

 LG

=


0 0 0 0
0 0 0 0

−2Jm×mn2 −2Jm×nn1 −2Jm×m −2Jm×n

rJn×mn2 rJn×nn1 rJn×m rJn×n

 LG

= 0.
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So from Lemmas 2 and 8, we know that the following matrix is also a symmetric {1}-inverse
of LG,

Im ⊗ (LG2 + In2)
−1 0 0 0

0 In ⊗ (LG1 + In1)
−1 0 0

0 0 0 0
0 0 0 0

+
1
2


Im ⊗ Jn2×n2 0 Im ⊗ 1n2 0

0 0 0 0
Im ⊗ 1T

n2
0 Im 0

0 0 0 0



+


1
2 MT

G0
⊗ 1n2

In ⊗ 1n1
1
2 MT

G0

In

 2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

1
2

MG0 In

)
.

Denote

(
1
2 MT

G0

In

)
2
3 L#

G0

(
1
2 MG0 In

)
=

(
1
6 MT

G0
L#

G0
MG0

1
3 MT

G0
L#

G0
1
3 L#

G0
MG0

2
3 L#

G0

)
by

(
X11 X12

XT
12 X22

)
.

Then 
1
2 MT

G0
⊗ 1n2

In ⊗ 1n1
1
2 MT

G0

In

 2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

1
2

MG0 In

)

=


X11 ⊗ Jn2×n2 X12 ⊗ Jn2×n1 X11 ⊗ 1n2 X12 ⊗ 1n2

XT
12 ⊗ Jn1×n2 X22 ⊗ Jn1×n1 XT

12 ⊗ 1n1 X22 ⊗ 1n1

X11 ⊗ 1T
n2

X12 ⊗ 1T
n1

X11 X12

XT
12 ⊗ 1T

n2
X22 ⊗ 1T

n1
XT

12 X22

 .

Therefore, we complete the proof of Theorem 1.

Please note that

(
2Im −MT

G0

−MG0 2DG0 − AG0

)
is just the Laplacian matrix of G(R)

0 . So, from Step 3,

we obtain the group inverse of L(G(R)
0 ).

Corollary 1. Let G0 be a connected r-regular graph on n vertices and m edges, whose incidence matrix is
MG0 . Then

L(G(R)
0 )# =

1
2

(
Im 0
0 0

)
+

(
1
2 MT

G0

In

)
2
3

L#
G0

(
1
2

MG0 In

)

+
1

2(n + m)

(
−Jm×m 0

0 Jn×n

)
− n

2(n + m)2 J(m+n)×(m+n).

Next we consider two special situations of G(R)
0 ◦ {G1, G2}. By choosing G2 as a null-graph,

we would reduce G = G(R)
0 ◦ {G1, G2} to R-vertex corona G0 � G1 [24]. If G1 is a null-graph, then

G = G(R)
0 ◦ {G1, G2} reduces to R-edge corona G0 	 G2 [24]. Thus, from Theorem 1, we obtain

a {1}-inverse of L(G0 � G1) and L(G0 	 G2).

Corollary 2. Denote

(
1
6 MT

G0
L#

G0
MG0

1
3 MT

G0
L#

G0
1
3 L#

G0
MG0

2
3 L#

G0

)
by

(
X11 X12

XT
12 X22

)
.
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(1) The following matrix is a {1}-inverse of L(G0 � G1), In ⊗ (LG1 + In1)
−1 0 0

0 1
2 Im 0

0 0 0

+

 X22 ⊗ Jn1×n1 XT
12 ⊗ 1n1 X22 ⊗ 1n1

X12 ⊗ 1T
n1

X11 X12

X22 ⊗ 1T
n1

XT
12 X22

 .

(2) The following matrix is a {1}-inverse of L(G(R)
0 	 G2), Im ⊗

(
(LG2 + In2)

−1 + 1
2 Jn2×n2

)
1
2 Im ⊗ 1n2 0

1
2 Im ⊗ 1T

n2
1
2 Im 0

0 0 0

+

 X11 ⊗ Jn2×n2 X11 ⊗ 1n2 X12 ⊗ 1n2

X11 ⊗ 1T
n2

X11 X12

XT
12 ⊗ 1T

n2
XT

12 X22

 .

Example 2. Compute resistance distance in G = P(R)
2 ◦ {P2, P2}, see the following Figure 1.

1 2

3

45

6
7

89

Figure 1. P(R)
2 ◦ {P2, P2}.

Step 1. LG2 + In2 = LG1 + In1 =

(
2 −1
−1 2

)
. So

(LG2 + In2)
−1 = (LG1 + In1)

−1 =
1
3

(
2 1
1 2

)
,

and


Im ⊗ (LG2 + In2)

−1 0 0 0
0 In ⊗ (LG1 + In1)

−1 0 0
0 0 0 0
0 0 0 0

 =


I3 ⊗ 1

3

(
2 1
1 2

)
0 0

0 0 0
0 0 0

.

Step 2. 1
2


Im ⊗ Jn2×n2 0 Im ⊗ 1n2 0

0 0 0 0
Im ⊗ 1T

n2
0 Im 0

0 0 0 0

 = 1
2


J2×2 0 12 0

0 0 0 0
1T

2 0 1 0
0 0 0 0

.

Step 3. MG0 =

(
1
1

)
and LG0 =

(
1 −1
−1 1

)
. Hence

L#
G0

=
1
4

LG0 =
1
4

(
1 −1
−1 1

)
, L#

G0
MG0 =

1
4

(
1 −1
−1 1

)(
1
1

)
=

(
0
0

)
.

Moreover,
MT

G0
L#

G0
= (0 0), MT

G0
L#

G0
MG0 = 0.
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Therefore, (
1
6 MT

G0
L#

G0
MG0

1
3 MT

G0
L#

G0
1
3 L#

G0
MG0

2
3 L#

G0

)
=

 0 0

0 1
6

(
1 −1
−1 1

)  ,

and 
1
2 MT

G0
⊗ 1n2

In ⊗ 1n1
1
2 MT

G0

In

 2
3

L#
G0

(
1
2

MG0 ⊗ 1T
n2

In ⊗ 1T
n1

1
2

MG0 In

)

=



02×2 02×4 02×1 02×2

04×2
1
6


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 04×1
1
6


1 −1
1 −1
−1 1
−1 1


01×2 01×4 0 01×2

02×2
1
6

(
1 1 −1 −1
−1 −1 1 1

)
02×1

1
6

(
1 −1
−1 1

)


.

Step 4. From the above and Theorem 1, we know that

1
3

(
2 1
1 2

)
+ 1

2 J2×2 02×2 02×2
1
2 12×1 02×2

02×2
1
3

(
2 1
1 2

)
+ 1

6 J2×2
−1
6 J2×2 02×1

1
6

(
1 −1
1 −1

)

02×2
−1
6 J2×2

1
3

(
2 1
1 2

)
+ 1

6 J2×2 02×1
1
6

(
−1 1
−1 1

)
1
2 1T

2×1 01×2 01×2
1
2 01×2

02×2
1
6

(
1 1
−1 −1

)
1
6

(
−1 −1
1 1

)
02×1

1
6

(
1 −1
−1 1

)


,

is a {1}-inverse of LG. From it, we have the matrix whose ij-entry is resistance distance between
vertices vi and vj, for detail,
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0
2
3

2 2 2 2
2
3

4
3

4
3

2
3

0 2 2 2 2
2
3

4
3

4
3

2 2 0
2
3

2 2
4
3

2
3

4
3

2 2
2
3

0 2 2
4
3

2
3

4
3

2 2 2 2 0
2
3

4
3

4
3

2
3

2 2 2 2
2
3

0
4
3

4
3

2
3

2
3

2
3

4
3

4
3

4
3

4
3

0
2
3

2
3

4
3

4
3

2
3

2
3

4
3

4
3

2
3

0
2
3

4
3

4
3

4
3

4
3

2
3

2
3

2
3

2
3

0



.

4. Conclusions

The resistance distance which is the effective electrical resistance, has wide application. For this
reason, it was widely explored by so many authors. Among topics on resistance distance, its calculation
plays an important role. As a continuation of this topic, in this paper, we compute resistance distance
in G = G(R)

0 ◦ {G1, G2}. As we known, there exists relationship between resistance distance and group
inverse L(G)# or {1}-inverse L(G){1} of L(G). Therefore, we aim to find a {1}-inverse L(G){1} of
L(G), and finally give one in Theorem 1. At the end of this paper, we give an example to illustrate the
correction and efficiency of the proposed method.
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