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Abstract: In this paper, we consider nonlinear variational inequality problems with fuzzy variables.
The fuzzy variables were introduced to deal with the variational inequality containing noise for which
historical data is not available. The fuzzy expected residual minimization (FERM) problems were
established. We discussed the SC1 property of the FERM model. Furthermore, results of convergence
analysis were obtained based on an approximation model of the FERM model. The convergence of
global optimal solutions and the convergence of stationary points were analysed.
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1. Introduction

In many real-world problems, examples contain some uncertain information, with examples
including new stock, emergencies, military experiments, etc. For this uncertain information, often
no historical data are available. In scientific fields, we also encountered similar uncertain situations,
in which uncertainty contains noise that make measurements deviate from the correct, intended, or
original values. Also, in these cases, experts cannot collect enough historical data to measure the
noise. Zadeh [1] introduced fuzzy set theory, which provided efficacious ways to handle uncertain
information. The uncertain information contained a belief degree, representing the strength with which
we believe the event will happen. A fuzzy number is a kind of special fuzzy set and its operation was a
key factor in processing fuzzy information. An interval-valued expectation of fuzzy numbers was given
by Dubois and Prade [2,3] in 1987. The additive of the expectation was proved. They [4] also introduced
possibility theory, about the introduction of qualitative and quantitative aspects, in 1998. In this paper,
we define the possibility expectation values, possibility distribution function, and establish equivalence
of fuzzy membership functions, which are consistent with the extension principle, and with the
well-known definitions of expectation and variance in probability theory. The theory discussed in this
paper was motivated by the principles in [2–13]. The concept of variational inequalities was introduced
by Chang and Zhu [14] for fuzzy mappings in 1989. Soon afterwards, a new method was proposed
by Huang [15] on a class of variational inequalities with fuzzy mappings. Huang [16] surveyed
random generalized variational inclusions for random fuzzy mappings. In [17], the authors considered
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variational inequalities for fuzzy mappings. Moreover, an algorithm for fuzzy linear programming
with piecewise linear membership functions was presented by Inuiguchi et al. [18]. A group of
inequalities with fuzzy numbers, their membership functions are linear, were investigated by Hu and
Fang [19]. They turned fuzzy inequalities into convex programming problems. Fang and Hu [20],
and Hu [21] introduced and studied some fuzzy variational inequalities in a fuzzy environment, and
proved the existence of the optimal solution for fuzzy variational inequalities by using the tolerance
approach and the entropic regularization technique. In particular, in [22], Hu showed that solving the
fuzzy variational inequalities are equivalent to solving a fuzzy generalized complementarity problem.
Wang and Liao [23,24] established fuzzy variational inequalities based on fuzzy convex cone and
fuzzy resolution. For some related works associated with variational inequalities, discontinuous
implicit quasi-variational inequalities with applications to fuzzy mappings, linear programming with
fuzzy coefficients in constraints, maximum feasibility problems for continuous linear inequalities
with applications to fuzzy linear programming, and bilevel decision with generalized semi-infinite
optimization for fuzzy mappings as lower level problems, we refer the reader to [15,16,19–34]. In [35],
the authors discussed the existence of a solution to the fuzzy variational-like inequality and some
extended properties of the fuzzy variational-like inequality were found. Recently, Tang, Zhao, Wan and
He [36] introduced two perturbation methods for a fuzzy mapping: in one method it is perturbed by a
nonlinear mapping, and in the other it is perturbed by a vector. Under suitable coercivity conditions,
they proved that the perturbed variational inequality with a fuzzy mapping has a solution. In this
paper, we consider the variational inequality problem by using the expected value to solve fuzzy
variables under possibility spaces. To begin with, let us recall that the fuzzy variational inequality
problem is to find x̄ ∈ S ⊂ Rn satisfying

(x− x̄)T F(x̄, ξ) ≥ 0 ∀x ∈ S, a.s. (1)

Here, F : R → Rn is a mapping, ξ is fuzzy variable defined on possibility space, and a.s. is
“almost surely” in possibility measure.

The fuzzy variational inequality problem is as follows:

P{γ ∈ Γ|(x− x̄)T F(x̄, ξ(γ)) ≥ 0, ∀x ∈ S} = 1, x̄ ∈ S, (2)

where ξ(γ) is the fuzzy variable, Γ is a nonempty set and F : Rn × Γ→ Rn is a mapping. The FERM
method of the fuzzy variational inequality problem is to minimize an expected residual given by the
regularized gap function

g(x, ξ) := max
y∈S
{(x− y)T F(x, ξ)− α

2
‖x− y‖2

G},

where Gn×n is symmetric and positive-definite, α is a positive, and ‖.‖G is ‖x‖G =
√

xTGx for x ∈ Rn.
So the FERM model is

min θ(x),

θ(x) := E[g(x, ξ)] =
∫

T
g(x, t)dP(t),

s.t. x ∈ S.

(3)

Here, E is the expectation of the fuzzy variable ξ and P(t) stands for the fuzzy distribution
function with respect to the fuzzy variable ξ.

The remainder of this article is arranged as follows. Basic information about fuzzy set theory will
be reviewed in Section 2. In Section 3, we introduce the SC1 property of function θ(x). In Section 4, we
discuss the FERM model based on uncertainty theory in the case that the fuzzy event space is compact.
Finally, we give conclusions in Section 5.



Mathematics 2019, 7, 54 3 of 13

2. Preliminaries

2.1. Fuzzy Set Theory

In this section, several basic results about fuzzy set theory are presented.

Definition 1. let Θ be a nonempty set and F the power set of Θ. If the set function Pos :F → [0, 1] satisfies

(1) normality, Pos(Θ) = 1,
(2) monotonicity, Pos(A) ≤Pos(B), A ⊂ B, a, b ∈ F ,
(3) for i = 1, 2..., Ai ∈ F , we have Pos(∪i Ai) = supiPos(Ai).

The element in F is called an event; the mapping is called a possibility measure; and (Θ, F (Θ), Pos) is
called a possibility measure space.

Theorem 1. The possibility measure is sub-additive. We have Pos(A ∪ B) ≤Pos(A) +Pos(B).

Proof. By Definition 1, we get Pos(A ∪ B) = Pos(A) ∨Pos(B) ≤Pos(A) +Pos(B).

Definition 2. Suppose ξ is a fuzzy variable defined in the possibility space. ξ is said to have a membership
function µξ(t), which is defined as follows:

uξ(t) = Pos{θ ∈ Θ|ξ(θ) = t}, t ∈ R,

(denoted as µ(t) for convenience) with the premise that ambiguity does not occur.

Definition 3. ξ is a fuzzy variable, its fuzzy distribution P(t) is defined by

P(t) = Pos{ξ ≤ t},

where t is any real number.

Theorem 2. Suppose ξ is a fuzzy variable defined in the possibility space. µ(t) is a membership function of ξ.
For a real set B, we have

Pos(ξ ∈ B) = sup µξ(t).

Proof. From the definition of the axioms of the possibility measure, we have Pos(ξ ∈ B) =

sup
ξ∈B

Pos(ξ) = sup
ξ∈B

Pos(ξ = t) = sup µξ(t).

Remark 1. The fuzzy axiom system that we give and the fuzzy sets theory that Zadeh has put forward are
consistent. In order to deal with fuzzy variables reasonably, we propose a fuzzy distribution function, which is
consistent with membership function that Zadeh has given.

Let ξ be a fuzzy variable defined in the possibility space and µ(t) be a membership function of ξ.
The following equations are established

(1) Pos{ξ ≤ t} = sup
y≤t

µ(y), t ∈ R,

(2) Pos{ξ ≥ t} = sup
y≥t

µ(y), t ∈ R.

Next, we propose the concept of expected value.
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Definition 4. ξ is a fuzzy variable defined in possibility space. If one of the following two integrals is finite, the
expectation of ξ is given by

E[ξ] =
∫ +∞

0
{1−Pos{ξ ≤ t}}dt−

∫ 0

−∞
Pos{ξ ≤ t}dt.

Theorem 3. Let ξ be a fuzzy variable with possibility distribution in P . If its expectation exists, then

E[ξ] =
∫ +∞

−∞
tdP(t),

where P(t) means Pos{ξ ≤ t}.

Proof. In fact, we can obtain

E[ξ] =
∫ +∞

0
{1−Pos{ξ ≤ t}}dt−

∫ 0

−∞
Pos{ξ ≤ t}dt

=
∫ +∞

0
{1−P(t)}dt−

∫ 0

−∞
P(t)dt

= t(1−P(t))|+∞
0 −

∫ +∞

0
td(1−P(t))− tP(t)|0−∞ +

∫ 0

−∞
tdP(t)

=
∫ +∞

0
tdP(t) +

∫ 0

−∞
tdP(t)

=
∫ +∞

−∞
tdP(t).

Therefore the conclusion is reached.

Corollary 1. Let ξ be an fuzzy variable and P(t) is its possibility distribution. If f (t) is strictly monotone,
then we have

E[ f (ξ)] =
∫ +∞

−∞
f (t)dP(t).

Proof. Substituting P(t) with α, by Theorem 3 we have

E[ξ] =
∫ +∞

−∞
tdP(t) =

∫ 1

0
P−1(α)dα.

Let ω = f (ξ) with possibility distribution P(t). Then we have

E[ω] =
∫ +∞

−∞
tdP(t) =

∫ 1

0
P−1(α)dα.

Thus,

E[ f (ξ)] =
∫ 1

0
P−1(α)dα =

∫ 1

0
f (P−1(α))dα =

∫ +∞

−∞
f (t)dP(t).

The corollary is proved.

2.2. Approximation Method

Let a fuzzy event space T be a nonempty compact set. From the continuity of (F,∇xF) and
Theorem 4 of [13], we easily see that the function θ is continuously differentiable in S, and its derivative
is as follows:

∇θ(x) = E[∇xg(x, ξ)], ∀x ∈ S. (4)
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Since a fuzzy variable usually has no density function, P(x) is not usually differentiable in fuzzy
theory. However, we can use the differentiable properties of g(x, t). From [37], g(·, t) is continuously
differentiable over S, satisfying

∇xg(x, t) = F(x, t)− (∇xF(x, t)− αG)(H(x, t)− x), ∀t ∈ T (5)

Definition 5 ([38]). Let g(t) and P be real-valued bounded functions on a closed interval [a, b]. Taking
a partition of the interval a = x0 < x1 < x2, ... < xn−1 < xn = b, and setting δ = max

1≤i≤n
(ti − ti−1),

we consider the Riemann sum lim
δ→0
n→∞

n
∑

i=1
g(zi)[P(ti) −P(ti−1)], denoted by lim

δ→0
n→∞

n
∑

i=1
g(zi)∆P(ti) (where

ti−1 ≤ zi ≤ ti, i = 1, 2, · · · , n). If the sum tends to a fixed number I as δ → 0, then I is called the Stieltjes
integral, or sometimes the Riemann–Stieltjes integral. The Stieltjes integral of g with respect to t is denoted∫ b

a g(t)dP(t) or sometimes simply by
∫

gdP .

Lemma 1 ([38]). If the function g(t) is continuous on [a, b] and P(t) is monotonic nonincreasing or
nondecreasing function, then

∫ 1
0 g(t)dP(t) exists.

Let λmax and λmin represent the largest and smallest eigenvalues of the positive definite matrix G,
respectively. For any x ∈ Rn, we have√

λmin‖x‖ ≤ ‖x‖G ≤
√

λmax‖x‖, (6)

Let ‖A‖ denote the spectral norm and ‖A‖F denote the Frobenius matrix norm of matrix A. We
know that

‖A‖ ≤ ‖A‖F , (7)

and

‖A‖F ≤
n

∑
j=1
‖Aj‖, (8)

where Aj is the jth column vector of A.
For convenience, we give the relationship between ‖A‖ and ‖A‖F and the relationship between

‖x‖ and ‖x‖G in advance. These definitions and properties will be used in the later theorems.

3. The SC1 Property of θ(x)

Definition 6 ([39]). A function g : Rn → R is called an SC1 function if its gradient is semi-smooth and g is
continuously differentiable.

Lemma 2 ([39]). Let x0 ∈ S. Suppose that

(1) there exists an integrable function κ : R→ R+ and a neighborhood N(x0) of x0 satisfying

|g(x0, t)− g(x, t)| ≤ k(t)‖x0 − x‖, ∀x ∈ N(x0), a.e. t ∈ T;

(2) g(x, t) is semi-smooth at x0 for a.e. t ∈ T;

(3) there exist an integrable function ζ : R→ R+ and a neighborhood N(0) of 0 ∈ Rn satisfying

‖g′(x0 + h, t)− g′(x0, t)‖
‖h‖ ≤ ζ(t), ∀h ∈ N(0), a.e. t ∈ T.

Then θ(x) is semi-smooth at x0.
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Theorem 4. Let x0 ∈ S, N(x0) be a neighborhood of x0. Suppose that

(1) there exist an integrable function κ : R→ R+, such that
∫

T κ(t)dP(t) < +∞, satisfying

|g(x1, t)− g(x2, t)| ≤ κ(t)‖x1 − x2‖, ∀x1, x2 ∈ N(x0), a.e. t ∈ T.

(2) For a.e. t ∈ T, g(x, t) is SC1 function on N(x0). There is nonnegative function such that
∫

T L(t)dP(t) <
+∞, satisfying ∇g(x, t) is Lipschitz continuous,

|∇g(x1, t)−∇g(x2, t)| ≤ L(t)‖x1 − x2‖.

(3) There exists an integrable function ζ : R→ R+ and N(0) of 0 ∈ Rn satisfying

‖s′(x0 + h, t)− s′(x0, t)‖
‖h‖ ≤ ζ(t), ∀ h ∈ N(0), a.e. t ∈ T,

where s(x, t) = ∇g(x, t), and ∇ represents gradient.

Then θ(x) is SC1 function on N(x0).

Proof. By condition (2), the gradient of g(·, t) is semi-smooth, and g(·, t) is continuous and
differentiable. It is easy to see that s(x, t) is directional differentiable, Lipschitz continuous, and

s′(x0 + h, t)− s′(x0, t) = o(‖h‖)′.

Next, we show θ(x) is SC1 function. First, we show θ(x) is differentiable at x0. By definition of
θ(x) and condition (1), we obtain

|θ(x1)− θ(x2)| = |
∫

T
g(x1, t)dP(t)−

∫
T

g(x2, t)dP(t)|

≤
∫

T
|g(x1, t)− g(x2, t)|dP(t)

≤ ‖x1 − x2‖
∫

T
κ(t)dP(t),

for ∀x1, x2 ∈ N(x0) and t ∈ T. So θ(x) is differentiable at x0. By condition (1), for h ∈ Rn

l−1|g(x0 + lh, t)− g(x0, t)| ≤ κ(t)‖h‖.

Note that

lim
l→0

θ(x0 + lh, t)− θ(x0, t)
l

= lim
l→0

∫
T g(x0 + lh, t)dP(t)−

∫
T g(x0, t)dP(t)

l

=
∫

T
lim
l→0

g(x0 + lh, t)− g(x0, t)
l

dP(t),

so ∇θ(x) is directional differentiable, denoted

θ′(x0; h) =
∫

T
g′(x0; h, t)dP(t).

Since g′(x0; h, t) = ∇g′(x0, t)Hh, θ′(x0; h) is linear with respect to h, from Lipschitz continuity and
Gateaux differentiablity of θ(x), θ(x) is Frechet differentiable.

Note that θ(x) is differentiable at x0, ∇θ(x0) =
∫

T∇g(x0, t)dP(t), and ∇g(x, t) is semi-smooth
at x0 and is Lipschitz continuous. We get
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|∇θ(x1)−∇θ(x2)| = |
∫

T
∇g(x1, t)dP(t)−

∫
T
∇g(x2, t)dP(t)|

≤
∫

T
|∇g(x1, t)−∇g(x2, t)|dP(t)

≤ ‖x1 − x2‖
∫

T
L(t)dP(t),

where
∫

T L(t)dP(t) < +∞, so ∀x1, x2 ∈ N(x0), a.e. t ∈ T, ∇θ(x) is Lipschitz continuous.
Finally, we will show ∇θ(x) is semi-smooth. Let ν(x) := ∇θ(x) =

∫
T∇g(t)dP(t), we need to

show ∇θ(x) is directional differentiable and ν′(x + h)− ν′(x) = o(‖h‖).
By condition (3), we have

‖ν′(x + h)− ν′(x)‖
‖h‖ =

∫
T

‖∇g′(x + h, t)−∇g′(x, t)‖
‖h‖ dP(t)

=
∫

T

‖s′(x + h, t)− s′(x, t)‖
‖h‖ dP(t)

≤
∫

T
ζ(t)dP(t)

< +∞.

Since s′(x, t) is semi-smooth, lim
h→0

‖ν′(x+h)−ν′(x)‖
‖h‖ =

∫
T lim

h→0

‖ν′(x+h)−ν′(x)‖
‖h‖ dP(t) = 0. By Lemma 2,

∇θ(x) is semi-smooth. So θ(x) is SC1 on N(x0).

4. Convergence of the FERM Model

Definition 7. Define the minimum of θn(x) as follows:

min θn(x) = ∑
ti∈Tδ

g(x, zi)∆P(ti) (9)

where Tδ = {ti|i = 1, 2, · · · , nδ} is a set satisfying nδ → ∞ as δ→ 0.

We study the behavior of the approximations to the FERM problem (3) as follow

min θn(x) = ∑
ti∈Tδ

g(x, zi)∆P(ti),

s.t. x ∈ S.
(10)

We consider the limiting behavior of problems (10) below.

4.1. Convergence of Global Optimal Solutions

Let S∗ and S∗n be the sets of optimal solutions of problems (3) and (10).

Lemma 3. θ(x) = lim
δ→0
n→∞

θn(x) holds for any given x ∈ S.

Proof. Since

θ(x) = E[g(x, ξ)] =
∫

T
(x, t)dP(t),

while

θn(x) = ∑
ti∈Tδ

g(x, zi)∆P(ti).
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therefore lim
δ→0
n→∞

∑
ti∈Tδ

g(x, zi)∆P(ti) =
∫

T g(x, t)dP(t), so θ(x) = lim
δ→0
n→∞

θn(x).

Theorem 5. Let x̄ be an accumulation point of {xn}, xn ∈ S∗n, then x̄ ∈ S∗.

Proof. Let lim
n→∞

xn = x̄. It holds that x̄ ∈ S. Let B ⊆ S be a compact convex set, and xn ∈ B. By the

continuity of ∇xg on the compact set B× T, ∃ C ∈ R+ and we have

‖∇xg(x, z)‖ ≤ C, ∀(x, z) ∈ B× T. (11)

For each xn and each zi, the next equation holds from the mean-value theorem:

g(xn, zi)− g(x̄, zi) = g′x(y
ni, zi)

T(xn − x̄),

where yni = αnixn + (1− αni)x̄ ∈ B with αni ∈ [0, 1]. It then follows from Lemma 3 that

|θn(xn)− θn(x̄)| = | ∑
ti∈Tδ

(g(xn, zi)− g(x̄, zi))∆P(ti)|

≤ ∑
ti∈Tδ

|(g(xn, zi)− g(x̄, zi))|∆P(ti)

= ∑
ti∈Tδ

|∇xg(yni, zi)
T(xn − x̄)|∆P(ti)

≤ ∑
ti∈Tδ

‖∇xg(yni, zi)‖ · ‖(xn − x̄)‖∆P(ti)

≤ C‖xn − x̄‖ ∑
ti∈Tδ

∆P(ti)

n→∞−−−→ 0,

noting that
|θn(xn)− θ(x̄)| ≤ |θn(xn)− θn(x̄)|+ |θn(x̄)− θ(x̄)|. (12)

From Lemma 3 and (12), it holds that

lim
δ→0
n→∞

θn(xn) = θ(x̄). (13)

Since, for each sufficiently large n, xn ∈ S∗n, which means that there exists ε > 0 such that

θn(xn) ≤ θn(x) + ε. (14)

This holds for any x ∈ S. Letting n → ∞ in (14) and taking into account (13) and Lemma 2,
θ(x̄) ≤ θ(x) + ε holds implies x̄ ∈ S∗.

4.2. Convergence of Stationary Points

Theorem 6. Let lim
n→∞

xn = x̄. Then,

lim
δ→0
n→∞

∇θn(xn) = ∇θ(x̄).

Proof. Let B ⊆ S be a compact convex set and xn ∈ B. Because F′x, g′x, H, and (Fj)
′′
x are continuous on

the compact set B× T, for any (x, z) ∈ B× T, ∃ C ≥ sup{‖xn‖, n = 1, 2, . . .} satisfying

‖F′x(x, z)‖ ≤ C, (15)



Mathematics 2019, 7, 54 9 of 13

‖H(x, z)‖ ≤ C, (16)

‖(Fj)
′′
x (x, z)‖ ≤ C, j = 1, · · · , n, (17)

where (Fj)
′′
x (x, z) denotes the Hessian matrix of Fj(x, z) with respect to x.

We first show that

lim
δ→0
n→∞

∑
ti∈Tn

∆P(ti)‖∇xF(xn, zi)−∇xF(x̄, zi)‖ = 0. (18)

In fact, from (7) and (8), we have

∑
ti∈Tδ

∆P(ti)‖F′x(xn, zi)− F′x(x̄, zi)‖ ≤ ∑
ti∈Tδ

∆P(ti)‖F′x(xn, zi)− F′x(x̄, zi)‖F

≤
n

∑
j=1

∑
ti∈Tδ

∆P(ti)‖(Fj)
′
x(xn, zi)− (Fj)

′
x(x̄, zi)‖,

(19)

From the mean-value theorem, for any fixed j and for each xn and zi, there exists ynij = αnijxn +

(1− αnij)x̄ ∈ B with αnij ∈ [0, 1] such that

n

∑
j=1

∑
ti∈Tδ

∆P(ti)‖(Fj)
′
x(xn, zi)− (Fj)

′
x(x̄, zi)‖ ≤

n

∑
j=1

∑
ti∈Tδ

∆P(ti)‖(Fj)
′′
x (y

kij, zi)‖‖xn − x̄‖

≤ C‖xn − x̄‖ ∑
ti∈Tδ

∆P(ti)

n→∞−−−→ 0,

(20)

where the second inequality follows from (1). We have (18) immediately from (19) and (20). In a similar
way, we can show that

lim
δ→0
n→∞

∑
ti∈Tδ

∆P(ti)‖F(xn, zi)− F(x̄, zi)‖ = 0. (21)

From the nonexpansive property of ProjS,G, (6) and (21), it holds that

∑
ti∈Tδ

∆P(ti)‖H(x̄, zi)− H(xn, zi)‖

≤ λ
− 1

2
min ∑

ti∈Tδ

∆P(ti)‖H(x̄, zi)− H(xn, zi)‖G

≤ λ
− 1

2
min ∑

ti∈Tδ

∆P(ti)‖(x̄− α−1G−1F(x̄, zi)− (xn − α−1G−1F(xn, zi)‖G

≤ λ
1
2
maxλ

− 1
2

min ∑
ti∈Tδ

∆P(ti)(‖xk − x̄‖+ α−1‖G−1‖‖F(xn, zi)− F(x̄, zi)‖)

n→∞−−−→ 0.

(22)
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On the other hand, by (15), (16), (18) and (22), we have

∑
ti∈Tδ

∆P(ti)‖F′x(xn, zi)H(xn, zi)− F′x(x̄, zi)H(x̄, zi)‖

= ∑
ti∈Tδ

∆P(ti)‖F′x(xn, zi)(H(xn, zi)− H(x̄, zi))

+ (F′x(xn, zi)− F′x(x̄, zi))‖H(x̄, zi)‖
≤ ∑

ti∈Tδ

∆P(ti)‖F′x(xn, zi)‖H(xn, zi)− H(x̄, zi)‖

+ ‖F′x(xn, zi)− F′x(x̄, zi)‖‖H(x̄, zi)‖
≤ C · ∑

ti∈Tδ

∆P(ti)(‖(H(xn, zi)− H(x̄, zi)‖+ ‖F′x(xn, zi)− F′x(x̄, zi)‖)

n→∞−−−→ 0.

(23)

Noting that C ≥ sup{‖xn‖, k = 1, 2, . . .}, we have from (15) and (18) that

∑
ti∈Tδ

∆P(ti)‖F′x(xn, zi)xn − F′x(x̄, zi)x̄‖

≤ ∑
ti∈Tδ

∆P(ti)(‖F′x(xn, zi)xn − F′x(x̄, zi)x̄‖‖xn‖) + ‖F′x(x̄, zi)‖‖xn − x̄‖

≤ C · ∑
ti∈Tδ

∆P(ti)(‖F′x(xn, zi)− F′x(x̄, zi)‖+ ‖xn − x̄‖)

n→∞−−−→ 0.

(24)

Thus, it follows from (5), (21)–(24) that

‖(θ′x)n(xn)− (θ′x)
n(x̄)‖ ≤ ∑

ti∈Tδ

∆P(ti)(‖F(xn, zi)− F(x̄, zi)‖

+ ‖F′x(xn, zi)H(xn, zi)− F′x(x̄, zi)H(x̄, zi)‖
+ ‖F′x(xn, zi)xn − F′x(x̄, zi)x̄‖
+ α‖G‖‖H(x̄, zi)− H(xn, zi)‖+ α‖G‖‖xn − x̄‖)
n→∞−−−→ 0.

(25)

In a similar way with Lemma 3, we have lim
δ→0
n→∞

(θ′x)
n(x̄) = θ′x(x̄), so we get the conclusion of this

lemma immediately from (25).

Now, we consider the limiting behavior of the stationary points of problems (10).

Definition 8. Assume that S = {x ∈ Rn|τi(x) ≤ 0, τi : Rn → R, i = 1, 2, · · · , m}, where, τi(x) are all
continuous and differentiable convex functions. If a Lagrange multiplier vector µn ∈ Rm satisfies

(θ′x)
n(xn) +

m

∑
i=1

µn
i ((τi)

′
x)(xn) = 0, (26)

0 ≤ µn, τ(xn) ≤ 0 and (µn)Tτ(xn) = 0, (27)

then the point xn is a stationary point of (10).
If there is a Lagrange multiplier vector µ̄ ∈ Rm satisfing

θ′x(x̄) +
m

∑
i=1

µ̄i((τi)
′
x)(x̄) = 0, (28)



Mathematics 2019, 7, 54 11 of 13

0 ≤ µ̄, τ(x̄) ≤ 0 and (µ̄)Tτ(x̄) = 0, (29)

then x̄ is a stationary point of problem (3).

Definition 9. If ∃ y ∈ Rn such that τi(y) < 0, i = 1, 2, · · · , m, then the Slater’s constraint qualification holds.

Theorem 7. Let xn be stationary point of (10) and x̄ be an accumulation point of {xn}, then x̄ is stationary
point of (3) under the Slater’s constraint qualification condition.

Proof. Let lim
n→∞

xn = x̄ and µn be corresponding multiplier vectors of (26) and (27).

(i) Firstly, we demonstrate that {µn} is bounded. For convenience, denote

υn :=
m

∑
i=1

µn
i . (30)

If {µn} is unbounded, then lim
k→∞

υn = +∞. Further, taking a subsequence of µn such that

µ̄i := lim
n→∞

µn
i

υn
(i = 1, 2, · · · , m) exist. For every i 6∈ Υ(x̄) := {i|τi(x̄) = 0, 1 ≤ i ≤ m}, we have

τi(x̄) ≤ 0 by (27), while (µ̄i)
Tτi(x̄) = 0, so it is easy to obtain that µ∗i = 0. We then have from (30) that

∑
i∈Υ(x̄)

µ̄i =
m

∑
i=1

µ̄i = 1. (31)

Note that ((τi)
′
x) is continuous for each i and, by Theorem 5, {(θ′x)n(xn)} is convergent. Then,

dividing (26) by υn and taking a limit, because of lim
n→∞

υn = +∞, so lim
n→∞

(θ′x)
n(xn)
υn

→ 0 and we obtain

∑
i∈Υ(x̄)

µ̄i((τi)
′
x)(x̄) =

m

∑
i=1

µ̄i((τi)
′
x)(x̄) = 0. (32)

From the Slater’s constraint qualification, ∃ y ∈ Rn satisfyτi(y) < 0. Moreover, τi, i = 1, 2, · · · , m
is convex, It holds that

(y− x̄)T((τi)
′
x)(x̄) ≤ τi(y)− τi(x̄) = τi(y) < 0, ∀i ∈ Υ(x̄). (33)

Since µ̄i ≥ 0 for each i by (27), following from (32) we get µ̄i((τi)
′
x)(x̄) = 0, from (33) we get

((τi)
′
x)(x̄) 6= 0 , so we naturally get that µ̄i = 0, i ∈ Υ(x̄). This contradicts (31), so {µn} is bounded.
(ii) By (i), in µn exists a subsequence, we still denote it by µn such that µ̄ := lim

n→∞
µn because τi

and ((τi)
′
x) are all continuous for each i. From Theorem 5, we have

lim
n→∞

(θ′x)
n(x̄) = θ′x(x̄).

Then (28) and (29) hold by taking a limit on both sides of (26) and (27). Thus, x̄ is a stationary
point of problem (3).

5. Conclusions

We investigated the nonlinear variational inequality with fuzzy variable. The fuzzy nonlinear
variational inequality model was established. SC1 property of the FERM model The convergence
of the algorithm of the fuzzy model was presented, based on the fuzzy event space being compact.
The convergence of global optimal solutions and the convergence of stationary points were analysed.
In the future, we will study the D gap function and its applications, fuzzy quasi-variational inequalities,
and fuzzy weighted variational inequalities.
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