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Abstract: In this paper, we introduce the Ćirić type generalized F-contraction and establish certain
common fixed point results for such F-contraction in metric spaces with the w-distances. In addition,
we give some examples to support our results. Finally, we apply our results to show the existence of
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1. Introduction

In 1996, Kada, Suzuki and Takahashi [1] introduced the generalized metric, which is known
as the w-distance and improved Caristi’s fixed point theorem, Ekeland’s variational principle and
nonconvex minimization theorem using the results of Takahashi [2] (for more results on the w-distance,
see [3–7]). Later, Shioji et al. [8] studied the relationship between weak contractions and weak
Kannan’s contraction in metric spaces with the w-distance and the symmetric w-distance. In 2008,
Ilić and Vladimir Rakočević [9] presented the unified approach to study common fixed point theorems
in metric spaces with the w-distance.

On the other hand, in 2012, Wardoski [10] introduced a new contraction called F-contraction and
proved a fixed point point result, which generalizes Banach’s contraction principal in many ways.
Recently, Secelean [11], Piri and Kumam [12] and Singk et al. [13] purified the result of Wardoski [10]
by launching some weaker conditions on the mapping F (for more results on the F-contraction,
see [14–19]).

Motivated and inspired by the research mentioned above, in this paper, we prove some new
common fixed point theorems for the Ćirić type generalized F-contraction in metric spaces with the
w-distance, which enable us to show the existence of solutions of the second order differential equation
arising in the oscillation of a spring.

2. Preliminaries

Now, we state some allied definitions and results which are needed for the main results of the
present topic.

Definition 1. Let X be an nonempty set and f , g : X → X be two mappings. A point x ∈ X is called a fixed
point of f if f x = x and a point x ∈ X is called a common fixed point of f and g if f x = gx = x.
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Definition 2. Let X be a nonempty set and f , g : X → X be two mappings. The pair ( f , g) is said to be
commuting if f gx = g f x for all x ∈ X [20].

2.1. History of F-Contraction Mapping

In 2012, Wardowski [10] introduced the following concepts:

Definition 3. We denote by F the family of all functions F : R+ → R with the following properties:

(F1) F is strictly increasing, which is that s < t implies F(s) < F(t) for all s, t ∈ R+;
(F2) for every sequence {sn} in R+, we have lim

n→∞
sn = 0 if only if lim

n→∞
F(sn) = −∞;

(F3) there exists a number k ∈ (0, 1) such that lim
s→0+

skF(s) = 0.

Example 1. The following functions Fi : R+ → R for each i = 1, 2, 3, 4 belong to F [10] :

(i) F1(t) = ln t for all t > 0;
(ii) F2(t) = ln t + t for all t > 0;

(iii) F3(t) = ln(t2 + t) for all t > 0;
(iv) F4(t) = − 1√

t
for all t > 0.

Definition 4. Let (X, d) be a metric space [10]. A mapping f : X → X is called an F-contraction on X if there
exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d( f x, f y) > 0,

τ + F(d( f x, f y)) ≤ F(d(x, y)). (1)

Remark 1. Let F : R+ → R be given by the formula F(α) = ln α. It is clear that F satisfies (F1)–(F3) for any
k ∈ (0, 1). Each mapping f : X → X satisfying (1) is an F-contraction such that

d( f x, f y) ≤ e−τd(x, y)

for all x, y ∈ X with f x 6= f y. It is clear that, for x, y ∈ X such that f x = f y, the inequality d( f x, f y) ≤
e−τd(x, y) also holds, i.e., f is Banach’s contraction.

Remark 2. Let F : R+ → R be given by the formula F(α) = ln(α2 + α). It is clear that F satisfies (F1)–(F3)
for any k ∈ (0, 1). Each mapping f : X → X satisfying (2.1) is an F-contraction such that

d( f x, f y)(d( f x, f y) + 1)
d(x, y)(d(x, y) + 1)

≤ e−τ , f or all x, y ∈ X, f x 6= f y. (2)

Remark 3. From (F1) and Label (1), it is easy to conclude that every F-contraction f is a contractive
mapping, i.e.,

d( f x, f y) < d(x, y)

for all x, y ∈ X with f x 6= f y. Thus, every F-contraction is a continuous mapping.

In 2013, Secelean [11] showed that the condition (F2) in Definition 3 can be replaced by an
equivalent, but a more simple condition:

(F2′) inf F = −∞

or, also, by the following condition:

(F2′′) there exists a sequence {sn} in R+ such that lim
n→∞

F(sn) = −∞,

In 2014, Piri and Kumam [12] replaced the condition (F3) by (F3′) due to Wardowski [10]
as follows:
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(F3′) F is continuous on (0, ∞)

Thus, Piri and Kumam [12] re-established the result of Wordowski using the conditions (F1),
(F2′) and (F3′). Recently, Singk et al. [13] drop-out the condition (F2′) and named the contraction as
the relaxed F-contraction as follows:

Definition 5. 4F denotes the set of all functions F : R+ → R satisfying the following conditions:

(F1) F is strictly increasing;
(F3′) F is continuous on (0, ∞).

2.2. w-Distance and Useful Lemmas

Definition 6. Let (X, d) be a metric space. A function p : X× X → [0, ∞) is said to be the w-distance on X if
the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(b) for any x ∈ X, p(x, ·) : X → [0, ∞) is lower semi-continuous (i.e., if x ∈ X and yn → y ∈ X, then

p(x, y) ≤ lim infn→∞ p(x, yn);
(c) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Let (X, d) be a metric space. The w-distance p on X is called symmetric if p(x, y) = p(y, x) for
all x, y ∈ X. Obviously, every metric d is a w-distance, but not conversely (for some more results,
see [3,5,7]).

Next, we recall some examples in [21] to show that the w-distance is generalization of the metric d.

Example 2. Let (X, d) be a metric space. A function p : X × X → [0, ∞) defined by p(x, y) = c for every
x, y ∈ X is a w-distance on X, where c is a positive real number, but p is not a metric since p(x, x) = c 6= 0 for
any x ∈ X.

Example 3. Let (X, ‖ · ‖) be a normed linear space. A function p : X × X → [0, ∞) defined by p(x, y) =
‖x‖+ ‖y‖ for all x, y ∈ X is a w-distance on X.

Example 4. Let D be a bounded and closed subset of a metric spaces X. Assume that D contain at least two
points and c is a constant with c ≥ δ(D), where δ(D) is the diameter of D. Then, a function p : X×X → [0, ∞)

defined by

p(x, y) =

{
d(x, y), if x, y ∈ D,
c, if x /∈ D or y /∈ D,

is the w-distance on X.

The following two lemmas are crucial for our results.

Lemma 1. Let (X, d) be a metric space with the w-distance p. Let {xn} and {yn} be sequences in X, where {αn}
and {βn} are the sequences in [0, ∞) converging to zero [1,21]. Then, the following conditions hold: for all
x, y, z ∈ X,

(1) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if p(x, y) = 0 and
p(x, z) = 0, then y = z;

(2) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then {yn} converges to z;
(3) If p(xn, ym) ≤ αn for any n, m ∈ N with m > n, then {xn} is Cauchy sequence;
(4) If p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.
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Lemma 2. Let (X, d) be a metric space with the w-distance p. Let {xn} be a sequence in X such that,
for each ε > 0, there exists Nε ∈ N such that m > n > Nε implies p(xn, xm) < ε or (limm,n→∞ p(xn, xm) = 0) [1].
Then, {xn} is a Cauchy sequence.

3. The Main Results

In this section, we establish some new existence theorems of common fixed points for the Ćirić
type generalized F-contraction mapping in metric spaces with the w-distance. In addition, we give
some examples to illustrate the obtained results.

First, we recall that a self mapping f defined on a metric space (X, d) is called a
quasi-contraction ([22]) if

d( f x, f y) ≤ λ max{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)}

for all x, y ∈ X, where 0 ≤ λ < 1.
Notice that the notion of quasi-contraction introduced by Ćirić [22] is known as one of the most

general contractive type mappings—for more details, see, e.g., [4,23–26]).

Definition 7. Let (X, d) be a metric space equipped with a w-distance p. A mapping f : X → X is called the
Ćirić type generalized F-contraction (for short, the CF-contraction) if, for all x, y ∈ X, there exist F ∈ 4F
or F ∈ F and τ > 0 such that

p( f x, f y) > 0 implies τ + F(p( f x, f y)) ≤ F(λMp(x, y)) (3)

for all x, y ∈ X, where 0 ≤ λ < 1 and

Mp(x, y) = max{p(x, y), p(x, f x), p(y, f y), p(x, f y), p(y, f x)}.

Definition 8. Let (X, d) be a metric space equipped with a w-distance p. A mapping f : X → X is called the
Ćirić-type generalized F-contraction with respect to g (for short, CFg-contraction), where g : X → X is a
mapping, if there exist F ∈ 4F or F ∈ F and τ > 0 such that

p( f x, f y) > 0 implies τ + F(p( f x, f y)) ≤ F(λMg
p(x, y)) (4)

for all x, y ∈ X, where 0 ≤ λ < 1

Mg
p(x, y) = max{p(gx, gy), p(gx, f x), p(gy, f y), p(gx, f y), p(gy, f x)}.

Remark 4. Obviously, if g is the identity mapping, then Definition 8 reduces to Definition 7. Furthermore, in
the case p = d with F(α) = ln(α), Definition 7 becomes the Ćirić contraction [22].

Now, we recall the notion of δp andOg
p. Let (X, d) be a metric space equipped with the w-distance

p. For a subset E ⊆ X, we define

δp(E) = sup{p(x, y) : x, y ∈ E}.

If f and g satisfy (4), for any x0 ∈ X, we define a sequence {xn} in X by f (xn) = g(xn+1) for each
n ≥ 0. Set yn = g(xn), then we define the orbit

Og(x0, n) = {y1, y2, y3, · · · , yn}, Og(x0, ∞) = {y1, y2, y3, · · · , yn, . . .}

and Og
p(x0, n) is the orbit respected to the w-distance p.
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Lemma 3. Let (X, d) be a metric space equipped with the w-distance p. Let F ∈ 4F or F ∈ F and
f , g : X → X be two mappings such that f (X) ⊆ g(X) and g commutes with f . Assume that f and g
satisfy (4). For any x0 ∈ X, define a sequence {xn} in X by f (xn) = g(xn+1) for each n ≥ 0. Then, we have
the following:

(i) for each x0 ∈ X, n ∈ N and i, j ∈ N∪ {0} with i, j ≤ n,

τ + F(p( f xi, f xj)) ≤ F(λδp(Og
p(x0, n))).

(ii) for each x0 ∈ X and n ∈ N, there exist i, j ∈ N with i, j ≤ n such that

δp(Og
p(x0, n)) = max{p(gx1, gx1), p(gx1, gxi), p(gxj, gx1)}.

(iii) for each x0 ∈ X,

δp(Og
p(x0, n)) ≤

1
1− λ

· α(x0),

where α(x0) := p(gx1, gx1).
(iv) For each n ∈ N,

τ + F(p( f xn−1, f xn)) ≤ F
( λn−1

1− λ
· α(x0)

)
.

Furthermore,
lim

n→∞
p( f xn, f xn+1) = 0.

Proof. (i) Let x0 ∈ X, n ∈ N and i, j ∈ N∪ {0} with i, j ≤ n, then by (4), we have

τ + F(p( f xi, f xj)) ≤ F(λMg
p(xi, xj)). (5)

Since

Mg
p(xi, xj) = max{p(gxi, gxj), p(gxi, f xi), p(gxj, f xj), p(gxi, f xj), p(gxj, f xi)}

≤ δp(Og
p(x0, n)),

(6)

then, by (5), (6) and (F1), we get

τ + F(p( f xi, f xj)) ≤ F(λδp(Og
p(x0, n))).

(ii) Clearly, from the definition of δp, we get (ii).
(iii) Since

δp(Og
p(x0, n)) = max{p(gx1, gx1), p(gx1, gxi), p(gxj, gx1)},

for some 1 ≤ i, j ≤ n. If δp(Og
p(x0, n)) = p(gx1, gx1),

δp(Og
p(x0, n))− λδp(Og

p(x0, n)) ≤ δp(Og
p(x0, n)) = p(gx1, gx1).

Then, we get

δp(Og
p(x0, n)) ≤

1
1− λ

p(gx1, gx1).

If δp(Og
p(x0, n)) = p(gx1, gxi), then

δp(Og
p(x0, n)) = p(gx1, gxi) ≤ p(gx1, gx1) + p(gx1, gxi) ≤ p(gx1, gx1) + λδp(Og

p(x0, n)).

It follows that

δp(Og
p(x0, n)) ≤

1
1− λ

p(gx1, gx1).
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If δp(Og
p(x0, n)) = p(gxj, gx1), then

δp(Og
p(x0, n)) = p(gxj, gx1) ≤ p(gxj, gx1) + p(gx1, gx1) ≤ p(gx1, gx1) + λδp(Og

p(x0, n))

and hence

δp(Og
p(x0, n)) ≤

1
1− λ

p(gx1, gx1).

Therefore, for all the cases, we get

δp(Og
p(x0, n)) ≤

1
1− λ

p(gx1, gx1) =
1

1− λ
· α(x0).

(iv) For each n ∈ N, by (4), we have

τ + F(p(gxn, gxn+1)) = τ + F(p( f xn−1, f xn))

≤ F(λMg
p(xn−1, xn)).

(7)

Note that

Mg
p(xn−1, xn) = max{p(gxn−1, gxn), p(gxn−1, f xn−1), p(gxn, f xn), p(gxn−1, f xn), p(gxn, f xn−1)}

= max{p(gxn−1, gxn), p(gxn, gxn+1), p(gxn−1, gxn+1), p(gxn, gxn)}.
(8)

By (F1), (7) and (8), we have

p(gxn, gxn+1) ≤ λ max{p(gxn−1, gxn), p(gxn, gxn+1), p(gxn−1, gxn+1), p(gxn, gxn)}. (9)

Furthermore, for any n ∈ N, we have

τ + F(p(gxn−1, gxn+1)) = τ + F(p( f xn−2, f xn))

≤ F(λMg
p(xn−2, xn)),

(10)

and
τ + F(p(gxn, gxn)) = τ + F(p( f xn−1, f xn−1))

≤ F(λMg
p(xn−1, xn−1)),

(11)

with

Mg
p(xn−2, xn) = max{p(gxn−2, gxn), p(gxn−2, f xn−2), p(gxn, f xn), p(gxn−2, f xn), p(gxn, f xn−2)}

= max{p(gxn−2, gxn), p(gxn−2, gxn−1), p(gxn, gxn+1), p(gxn−2, gxn+1), p(gxn, gxn−1)}
(12)

and
Mg

p(xn−1, xn−1) = max{p(gxn−1, gxn−1), p(gxn−1, f xn−1)}
= max{p(gxn−1, gxn−1), p(gxn−1, gxn)}.

(13)

By (F1), (10) and (12), we have

p(gxn−1, gxn+1) ≤ λ max{p(gxn−2, gxn), p(gxn−2, gxn−1), p(gxn, gxn+1), p(gxn−2, gxn+1), p(gxn, gxn−1)}. (14)

Similarly, by (F1), (11) and (13),

p(gxn, gxn) ≤ λ max{p(gxn−1, gxn), p(gxn−1, gxn)}. (15)

Therefore, by (7), (9), (14) and (15), we get

τ + F(p( f xn−1, f xn)) ≤ F(λMg
p(xn−1, xn))

≤ F(λ2 max{Mg
p(xi, xj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n})

= F(λ2 max{p(gxi, gxj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n + 1}).
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By (F1), we get

p( f xn−1, f xn) ≤ λ2 max{p(gxi, gxj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n + 1}.

Continuing this prosses and using (F1), we have

τ + F(p( f xn−1, f xn) ≤ F(λ2 max{p(gxi, gxj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n + 1})
≤ F(λ3 max{Mg

p(xi, xj) : n− 3 ≤ i ≤ n, n− 2 ≤ j ≤ n})
≤ F(λ3 max{p(gxi, gxj) : n− 3 ≤ i ≤ n, n− 2 ≤ j ≤ n + 1})
≤ · · ·
≤ F

(
λn−1 max{p(gxi, gxj) : 1 ≤ i ≤ n, 2 ≤ j ≤ n + 1}

)
≤ F

(
λn−1δp(Og

p(x0, n + 1))
)

≤ F
( λn−1

1− λ
· α(x0)

)
(16)

and hence

p( f xn−1, f xn) ≤
λn−1

1− λ
· α(x0).

Therefore, by 0 ≤ λ < 1, we obtain that

lim
n→∞

p( f xn, f xn+1) = 0.

This completes the proof.

Theorem 1. Let (X, d) be a complete metric space equipped with the w-distance p. Let F ∈ 4F and f , g :
X → X be two mappings such that f (X) ⊆ g(X) and g is commuted with f . Assume that the following hold:

(i) f and g satisfy (4);
(ii) for all y ∈ X with gy 6= f y,

inf{p(gx, y) + p(gx, f x)} > 0. (17)

Then, f and g have a unique common fixed point u? in X and p(u?, u?) = 0. Furthermore, if {gxn}
converges to u? ∈ X, then

lim
n→∞

p(g f xn, f u?) = 0 = lim
n→∞

p( f gxn, gu?).

Proof. If we have g(x0) = f (x0) = x0 for some x0 ∈ X, then there is nothing to prove. Suppose that
x0 ∈ X such that g(x0) 6= f (x0). Since f (X) ⊆ g(X), then there exists x1 ∈ X such that f (x0) = g(x1).
Again, since f (X) ⊆ g(X), then there exists x2 ∈ X such that f (x1) = g(x2). Continuing this way,
we have a sequence {gxn} such that f (xn) = g(xn+1) with xn+1 ∈ X. Now, we will show that

lim
m,n→∞

p( f xn, f xm) = 0. (18)

Let m > n and from Lemma 3(iv), we have

p( f xn, f xn+1) ≤
λn

1− λ
· α(x0).
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Hence,

p( f xn, f xm) ≤ p( f xn, f xn+1) + p( f xn+1, f xn+2) + · · ·+ p( f xm−1, f xm)

≤
(

λn

1− λ
+

λn+1

1− λ
+ · · ·+

λm−1

1− λ

)
· α(x0)

≤
λn

(1− λ)2 · α(x0).

which, on taking m, n→ ∞, we obtain (18). By Lemma 2, the sequence { f xn} is a Cauchy sequence.
Consequently, the sequence {gxn} is also a Cauchy sequence. Since X is complete metric space,
the sequence {gxn} converges to some element x? ∈ X, and p(x, ·) is lower semi-continuous, we have

p(gxn, x?) ≤ lim inf
m→∞

p(gxn, gxm)

≤
λn

(1− λ)2 · α(x0).
(19)

Now, we will prove that f x? = gx?. Suppose f x? 6= gx?; then, by (19) and Lemma 3(iv) with (F1),
we imply

0 < inf{p(gxn, x?) + p(gxn, f xn) : n ∈ N}

≤ inf
{ λn

(1− λ)2 · α(x0) + p( f xn−1, f xn) : n ∈ N
}

≤ inf
{ λn−1

(1− λ)2 · α(x0) +
λn−1

(1− λ)
· α(x0) : n ∈ N

}
= inf

{ (2− λ)λn−1

(1− λ)2 · α(x0) : n ∈ N
}

=
(2− λ)

(1− λ)2 · α(x0) · inf
{

λn−1 : n ∈ N
}

= 0,

which is a contradiction and hence f x? = gx?. If p(gx?, gx?) 6= 0, then we can write

τ + F(p(gx?, gx?)) = τ + F(p( f x?, f x?))

≤ F(λMg
p(x?, x?))

= F(λ max{p(gx?, gx?), p(gx?, f x?), p(gx?, f x?), p(gx?, f x?), p(gx?, f x?)})
= F(λp(gx?, gx?)).

Using (F1), we get p(gx?, gx?) < λp(gx?, gx?) which is a contradiction, and thus p(gx?, gx?) = 0.
Furthermore, if p(g2x?, g2x?) 6= 0 and since g commutes with f ,

τ + F(p(g2x?, g2x?)) = τ + F(p( f (gx?), f (g(x?)))

≤ F(λMg
p(gx?, gx?))

= F(λ max{p(g2x?, g2x?), p(g2x?, f gx?)})
= F(λ max{p(g2x?, g2x?)})
= F(λp(g2x?, g2x?)).
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By a similar argument as above, p(g2x?, g2x?) < λp(g2x?, g2x?), which is a contradiction, then
we must have p(g2x?, g2x?) = 0. Now, we will show that p(g2x?, gx?) = p(gx?, g2x?) = 0. Suppose
that p(g2x?, gx?) 6= 0 and p(gx?, g2x?) 6= 0, then

τ + F(p(g2x?, gx?)) = τ + F(p( f gx?, f x?))

≤ F(λMg
p(gx?, x?))

= F(λ max{p(g2x?, gx?), p(g2x?, f gx?), p(gx?, f x?), p(g2x?, f x?), p(gx?, f gx?)})
= F(λ max{p(g2x?, gx?), p(g2x?, g2x?), p(gx?, gx?), p(g2x?, gx?), p(gx?, g2x?)})
= F(λ max{p(g2x?, gx?), p(gx?, g2x?)})

and

τ + F(p(gx?, g2x?)) = τ + F(p( f x?, g f x?))

≤ F(λMg
p(x?, gx?))

= F(λ max{p(gx?, g2x?), p(gx?, f x?), p(g2x?, f gx?), p(gx?, f gx?), p(g2x?, f x?)})
= F(λ max{p(gx?, g2x?), p(gx?, gx?), p(g2x?, g2x?), p(gx?, g2x?), p(g2x?, gx?)})
= F(λ max{p(g2x?, gx?), p(gx?, g2x?)}).

On utilizing (F1), we get

p(g2x?, gx?) < λ max{p(g2x?, gx?), p(gx?, g2x?)} (20)

and
p(gx?, g2x?) < λ max{p(g2x?, gx?), p(gx?, g2x?)}. (21)

Therefore, by (20) and (21), we have

max{p(g2x?, gx?), p(gx?, g2x?)} < λ max{p(g2x?, gx?), p(gx?, g2x?)},

which implies that max{p(g2x?, gx?), p(gx?, g2x?)} = 0. Thus, p(g2x?, gx?) = p(gx?, g2x?) = 0,
by applying Lemma 1(i), we get g2x? = gx?. Furthermore,

f gx? = g f x? = g2x? = gx?.

Putting u? = gx?, then we have f u? = gu? = u?. That is, u? is a common fixed point of f and
g. To prove the uniqueness part, suppose that there exists v? ∈ X such that f v? = gv? = v? with
p( f u?, f v?) > 0. By a similar argument as above, we can see that p(v?, v?) = 0 since

τ + F(p(u?, v?)) = τ + F(p( f u?, f v?))
≤ F(λMg

p(u?, v?))
= F(λ max{p(gu?, gv?), p(gu?, f u?), p(gv?, f v?), p(gu?, f v?), p(gv?, f u?)})
= F(λ max{p(u?, v?), p(v?, u?)})

(22)

and
τ + F(p(v?, u?)) = τ + F(p( f v?, f u?))

≤ F(λMg
p(v?, u?))

= F(λ max{p(gv?, gu?), p(gv?, f v?), p(gu?, f u?), p(gv?, f u?), p(gu?, f v?)})
= F(λ max{p(v?, u?), p(u?, v?)}).

(23)

By (22), (23) and (F1), we have

p(u?, v?) < λ max{p(u?, v?), p(v?, u?)}
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and
p(v?, u?) < λ max{p(u?, v?), p(v?, u?)}.

Hence, we have

max{p(u?, v?), p(v?, u?)} < λ max{p(u?, v?), p(v?, u?)}.

It follows that p(u?, v?) = p(v?, u?) = 0. From p(v?, u?) = p(v?, v?) = 0 and Lemma 1(i), we get
v? = u?. This completes the proof.

If g is the identity mapping in Theorem 1, then the following holds:

Corollary 1. Let (X, d) be a complete metric space equipped with the w-distance p. Let F ∈ 4F and suppose
that the following holds:

(i) f satisfies (3);
(ii) for all y ∈ X with y 6= f y,

inf{p(x, y) + p(x, f x)} > 0. (24)

Then, f has a unique fixed point u? in X and p(u?, u?) = 0. Furthermore, if {xn} converges to u? ∈ X,
then lim

n→∞
p( f xn, u?) = 0.

If we take F(α) = ln α in Theorem 1, then we obtain the following:

Corollary 2. Let (X, d) be a complete metric space equipped with the w-distance p. Let f , g : X → X be two
mappings such that f (X) ⊆ g(X) and g commutes with f . Assume that f and g satisfy

p( f x, f y) ≤ k max{p(gx, gy), p(gx, f x), p(gy, f y), p(gx, f y), p(gy, f x)

for some 0 ≤ k ≤ λe−τ , τ > 0, for all x, y ∈ X, and, for all y ∈ X with gy 6= f y,

inf{p(gx, y) + p(gx, f x)} > 0. (25)

Then, f and g have a unique common fixed point u? in X and p(u?, u?) = 0. Furthermore, if {gxn}
converges to u? ∈ X, then

lim
n→∞

p(g f xn, f u?) = 0 = lim
n→∞

p( f gxn, gu?).

The following example illustrates Theorem 1:

Example 5. Let X = { 1
n ; n ∈ N} ∪ {0} with usual metric d(x, y) = |x − y| and the w-distance p on X

defined by p(x, y) = max{x, y} for all x, y ∈ X. For any n ∈ N, define the mapping f , g : X → X by

f (x) =


1

n4 , if x = 1
n , n ≥ 2;

0, otherwise.

g(x) =


1

n2 , if x = 1
n , n ≥ 2;

0, otherwise.

Then, we have f (X) ⊆ g(X). Furthermore, g commutes with f and inf{p(gx, y) + p(gx, f x)} > 0
when gy 6= f y. Now, we will show that the mapping f and g satisfy (4) with λ = 0.8, τ = 0.75 > 0 and
F(α) = 1

1−eα . Clearly, F ∈ 4F , we distinguish two cases.
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Case I Let x = 0 (or x = 1) and y = 1
n , when n ≥ 2. Then,

p( f x, f y) = max
{

0,
1
n4

}
=

1
n4 > 0

and
Mg

p(x, y) = max{p(gx, gy), p(gx, f x), p(gy, f y), p(gx, f y), p(gy, f x)}

= max{gy, 0, f y}

=
1
n2.

(26)

Hence, the L.H.S. (the left hand side) of (4),

τ + F(p( f x, f y)) = 0.75 +
1

1− e
1

n4

and the R.H.S. (the right hand side) of (4),

F(λMg
p( f x, f y)) =

1

1− e0.8· 1
n2

.

Following figures (Figures 1 and 2), we compare R.H.S. and L.H.S. in 2D, 3D views.
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Figure 1. The value of comparison of L.H.S. and R.H.S. of (4) in 2D view.
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Figure 2. The value of comparison of L.H.S. and R.H.S. of (4) in 3D view.
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Now, we give numerical comparisons of L.H.S. and R.H.S. of (4) as follows (Table 1):

Table 1. The numerical comparison of L.H.S. and R.H.S. of (4).

n τ + F(p( f xn, f xm)) F(λMg
p(xn, xm))

2 −14.755208 −4.5166556
3 −79.751029 −10.7574064
4 −254.750326 −19.5041665
5 −623.750133 −30.7526666
6 −1294.750064 −44.5018518
7 −2399.750035 −60.7513605
8 −4094.750020 −79.5010417
9 −6559.750013 −100.7508230
10 −9998.750008 −124.5006667
20 −159,998.750002 −499.5001667
30 −809,998.750009 −1124.5000741
50 −6,249,998.750220 −3124.5000267

100 −99,999,999.857747 −12,499.5000067
...

...
...

Therefore, τ + F(p( f x, f y)) ≤ F(λMg
p(x, y)).

Case II Let x = 1
n and y = 1

m , when n, m ≥ 2. We can assume that n ≤ m; then,

p( f x, f y) = max
{

1
n4 ,

1
m4

}
=

1
n4 > 0

and
Mg

p(x, y) = max{p(gx, gy), p(gx, f x), p(gy, f y), p(gx, f y), p(gy, f x)}

= max{ 1
n2 , 1

m2 }

=
1
n2.

(27)

Similar to case I, we can see that τ + F(p( f x, f y)) ≤ F(λMg
p(x, y)).

Case III Let x = 1
n , when n ≥ 2 and y = 0 (or y = 1). Then,

p( f x, f y) = max
{

1
n4 , 0

}
=

1
n4 > 0

and
Mg

p(x, y) = max{p(gx, gy), p(gx, f x), p(gy, f y), p(gx, f y), p(gy, f x)}

= max{gx, 0, f x}

=
1
n2.

(28)

Hence, the L.H.S. of (4),

τ + F(p( f x, f y)) = 0.75 +
1

1− e
1

n4

and the R.H.S. of (4),

F(λMg
p( f x, f y)) =

1

1− e0.8· 1
n2

.
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Similar to case I, we can see that τ + F(p( f x, f y)) ≤ F(λMg
p(x, y)).

Thus, all the conditions of Theorem 1 are satisfied and x = 0 is unique common fixed point of f and g.
Moreover, p(0, 0) = 0. For any x0 ∈ X, define f xn = gxn+1. Then, {gxn} converges to 0 ∈ X and

lim
n→∞

p(g f xn, f (0)) = 0 = lim
n→∞

p( f gxn, g(0)).

Next, we improve the CFg-contraction mapping by removing the constant λ in (4) and prove new
common fixed point theorems as follows:

Theorem 2. Let (X, d) be a complete metric space equipped with a w-distance p and f : X → X and g : X → X
be two mappings such that f (X) ⊆ g(X) and g commutes with f . Assume that there exist F ∈ F and the
following holds:

(i) for any x, y ∈ X, with f x 6= f y, there exits τ > 0 such that

p( f x, f y) > 0 implies τ + F(p( f x, f y)) ≤ F(Mg
p(x, y)); (29)

(ii) limn→∞ F(δp(Og
p(x0, n))) exits;

(iii) for all y ∈ X with gy 6= f y,
inf{p(gx, y) + p(gx, f x)} > 0. (30)

Then, f and g have a unique common fixed point u? in X and p(u?, u?) = 0. Furthermore, if {gxn}
converges to u? ∈ X, then

lim
n→∞

p(g f xn, f u?) = 0 = lim
n→∞

p( f gxn, gu?).

Proof. By (7), (9), (14) and (15), we get

F(p( f xn−1, f xn) ≤ F(Mg
p(xn−1, xn))− τ

≤ F(max{Mg
p(xi, xj) : n− 2 ≤ i ≤ n− 1, n− 1 ≤ j ≤ n})− τ

= F(max{p(gxi, gxj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n + 1})− τ.

Continuing this process and using (F1), we have

F(p( f xn−1, f xn) ≤ F(max{p(gxi, gxj) : n− 2 ≤ i ≤ n, n− 1 ≤ j ≤ n + 1})− τ

≤ F(max{Mg
p(xi, xj) : n− 3 ≤ i ≤ n− 1, n− 2 ≤ j ≤ n})− 2τ

≤ F(max{p(gxi, gxj) : n− 3 ≤ i ≤ n, n− 2 ≤ j ≤ n + 1})− 2τ

≤ · · ·
≤ F

(
max{p(gxi, gxj) : 1 ≤ i ≤ n, 2 ≤ j ≤ n + 1}

)
− (n− 1)τ

≤ F
(
δp(Og

p(x0, n + 1))
)
− (n− 1)τ.

(31)

Using hypothesis (ii), we get limn→∞ F(p( f xn−1, f xn)) = −∞. Hence, limn→∞ p( f xn−1, f xn) = 0,
and then

p( f xn−1, f xn) ≤ γn (32)

for a sequence {γn} converging to zero. Using the same argument as the proof of Theorem 1,
the sequence {gxn} is a Cauchy sequence and converges to some element x? ∈ X. Furthermore,
by p(x, ·) being lower semi-continuous, we have

p(gxn, x?) ≤ lim inf
m→∞

p(gxn, gxm)

≤ βn
(33)
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for a sequence {βn} converges to zero. Now, we will prove that f x? = gx?. Suppose f x? 6= gx?;
then, by (6), (32), (33) and Lemma 3(iv) with (F1), imply

0 ≤ inf{p(gxn, x?) + p(gxn, f xn) : n ∈ N}
≤ inf{βn + p( f xn−1, f xn) : n ∈ N}
≤ inf{βn + γn : n ∈ N},
= 0

which is a contradiction and hence f x? = gx?. If p(gx?, gx?) 6= 0, then we can write

τ + F(p(gx?, gx?)) = τ + F(p( f x?, f x?))

≤ F(Mg
p(x?, x?))

= F(max{p(gx?, gx?), p(gx?, f x?), p(gx?, f x?), p(gx?, f x?), p(gx?, f x?)})
= F(p(gx?, gx?)),

which is a contradiction because τ > 0, and thus p(gx?, gx?) = 0. Moreover, if p(g2x?, g2x?) 6= 0,
then as g commutes with f , we have

τ + F(p(g2x?, g2x?)) = τ + F(p( f (gx?), f (g(x?)))

≤ F(Mg
p(gx?, gx?))

= F(max{p(g2x?, g2x?), p(g2x?, f gx?)})
= F(max{p(g2x?, g2x?)})
= F(p(g2x?, g2x?)).

By a similar argument as above, then we must have p(g2x?, g2x?) = 0. Now, we will show that
p(g2x?, gx?) = p(gx?, g2x?) = 0. Suppose that p(g2x?, gx?) 6= 0 and p(gx?, g2x?) 6= 0, then

τ + F(p(g2x?, gx?)) = τ + F(p( f gx?, f x?))

≤ F(Mg
p(gx?, x?))

= F(max{p(g2x?, gx?), p(g2x?, f gx?), p(g2x?, f x?), p(gx?, f x?), p(gx?, f gx?)})
= F(max{p(g2x?, gx?), p(g2x?, g2x?), p(g2x?, gx?), p(gx?, gx?), p(gx?, g2x?)})
= F(max{p(g2x?, gx?), p(gx?, g2x?)})

and

τ + F(p(gx?, g2x?)) = τ + F(p( f x?, g f x?))

≤ F(Mg
p(x?, gx?))

= F(max{p(gx?, g2x?), p(gx?, f x?), p(gx?, f gx?), p(g2x?, f x?), p(gx?, f x?)})
= F(max{p(gx?, g2x?), p(gx?, gx?), p(gx?, g2x?), p(g2x?, gx?), p(g2x?, gx?)})
= F(max{p(g2x?, gx?), p(gx?, g2x?)}).

On utilizing (F1), we get

p(g2x?, gx?) < max{p(g2x?, gx?), p(gx?, g2x?)} (34)

and
p(gx?, g2x?) < max{p(g2x?, gx?), p(gx?, g2x?)}. (35)
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Therefore, by (34) and (35), we have

max{p(g2x?, gx?), p(gx?, g2x?)} < max{p(g2x?, gx?), p(gx?, g2x?)},

which is a contradiction. Thus p(g2x?, gx?) = p(gx?, g2x?) = 0, by applying Lemma 1(i), we get
g2x? = gx?. Furthermore,

f gx? = g f x? = g2x? = gx?.

Putting u? = gx?, then we have f u? = gu? = u?. That is, u? is a common fixed point of f and
g. To prove the uniqueness part, suppose that there exists v? ∈ X such that f v? = gv? = v? with
p( f u?, f v?) > 0. By a similar argument as above, we can see that p(v?, v?) = 0 since

τ + F(p(u?, v?)) = τ + F(p( f u?, f v?))
≤ F(Mg

p(u?, v?))
= F(max{p(gu?, gv?), p(gu?, f u?), p(gu?, f v?), p(gv?, f v?), p(gv?, f u?)})
= F(max{p(u?, v?), p(v?, u?)})

(36)

and
τ + F(p(v?, u?)) = τ + F(p( f v?, f u?))

≤ F(Mg
p(v?, u?))

= F(max{p(gv?, gu?), p(gv?, f v?), p(gv?, f u?), p(gu?, f u?), p(gu?, f v?)})
= F(max{p(v?, u?), p(u?, v?)}).

(37)

By (37) and (F1), we have

p(u?, v?) < max{p(u?, v?), p(v?, u?)}

and
p(v?, u?) < max{p(u?, v?), p(v?, u?)}.

Hence,
max{p(u?, v?), p(v?, u?)} < max{p(u?, v?), p(v?, u?)},

which is a contradiction, and hence p(u?, v?) = p(v?, u?) = 0. From p(v?, u?) = p(v?, v?) = 0, by
Lemma 1(i), we get v? = u?. This completes the proof.

If g is the identity mapping in Theorem 2, then the following holds:

Corollary 3. Let (X, d) be a complete metric space equipped with the w-distance p and f : X → X be a
mapping. Assume that there exist F ∈ F and the following holds:

(i) for any x, y ∈ X with f x 6= f y, there exits τ > 0 such that

p( f x, f y) > 0 implies τ + F(p( f x, f y)) ≤ F(Mp(x, y)); (38)

(ii) limn→∞ F(δp(Op(x0, n))) exits;
(iii) for all y ∈ X with y 6= f y,

inf{p(x, y) + p(x, f x)} > 0. (39)

Then, f has a unique common fixed point u? in X and p(u?, u?) = 0. Furthermore, if {xn} converges to
u? ∈ X, then lim

n→∞
p( f xn, u?) = 0.

Theorem 3. Let (X, d) be a complete metric space equipped with the w-distance p and f : X → X and
g : X → X be two mappings such that f (X) ⊆ g(X) and g commutes with f . Assume that there exist F ∈ F ,
f and g satisfy (29), limn→∞ F(δp(Og

p(x0, n))) exits and one of the following conditions holds:
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(i) for all y ∈ X with gy 6= f y,

inf{p(gx, y) + p(gx, f x) : x ∈ X} > 0;

(ii) if both {gxn} and { f xn} converge to u? ∈ X, then gu? = f u?;
(iii) g and f are continuous on X.

Then, f and g have a unique common fixed point u? in X and p(u?, u?) = 0. Furthermore, If {gxn}
converges to u? ∈ X, then

lim
n→∞

p(g f xn, f u?) = 0 = lim
n→∞

p( f gxn, gu?).

Proof. By Theorem 2, we get the conclusion of (i). Now, we prove that (ii) =⇒ (i). Suppose that there
exist y ∈ X with gy 6= f y, such that

inf{p(gx, y) + p(gx, f x) : x ∈ X} = 0.

Then, we can find a sequence {un} in X such that

inf{p(gun, y) + p(gun, f un)} = 0.

Hence, we have
lim

n→∞
p(gun, y) = lim

n→∞
p(gun, f un) = 0.

By Lemma 1, we have limn→∞ f un = y. In fact, by the similar argument in Theorem 1, {gun}
is Cauchy sequences and thus lim

m,n→∞
p(gum, gun) = 0. It follow from Lemma 1, we also have

limn→∞ gun = y. Hence, by the assumption (ii), implies that gy = Ty. Therefore (ii) =⇒ (i). Next,
we will prove (iii) =⇒ (ii). Let {gxn} and { f xn} converge to u? ∈ X . By assumption (iii), then
we have

gu? = lim
n→∞

gun = lim
n→∞

f un = f u?.

This completes the proof.

If g is the identity mapping in Theorem 3, then we obtain the following:

Corollary 4. Let (X, d) be a complete metric space equipped with the w-distance p and f : X → X be a
mappings such that f satisfy (38) and limn→∞ F(δp(Op(x0, n))) exits. Assume that one of the following
conditions holds:

(i) for all y ∈ X with y 6= f y,
inf{p(x, y) + p(x, f x) : x ∈ X} > 0;

(ii) if both {xn} and { f xn} converge to u? ∈ X, then u? = f u?;
(iii) f are continuous on X.

Then, f has a unique fixed point u? in X and p(u?, u?) = 0. Furthermore, if {xn} converges to u? ∈ X,
then lim

n→∞
p( f xn, u?) = 0

4. Applications

Application to the Second Order Differential Equation

In this section, we present an application of our fixed point result to prove an existence theorem
for the solution of second order differential equation.
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Consider the following boundary value problem for second order differential equation of the form:{
d2u
dt2 + c

m
du
dt = K(t, u(t));

u(0) = 0, u′(0) = a,
(40)

where K : [0, I]×R+ → R, I > 0 is a continuous function.
The above differential equation exhibits the engineering problem of activation of spring that is

affected by an exterior force.
It is well known and easy to check that the problem (41) is equivalent to the following

integral equation:
u(t) =

∫ t
0 G(t, s)K(s, u(s))ds, t ∈ [0, I], (41)

where G(t, s) are the green functions given by

G(t, s) =

{
(t− s)eτ(t−s), if 0 ≤ s ≤ t ≤ I,
0, if 0 ≤ t ≤ s ≤ I,

(42)

with τ > 0 being a constant, calculated in terms of c and m in (40).
Let X := C([0, I],R+) be the set of all continuous functions from [0, I] into R+. For an arbitrary

u ∈ X, we define
‖u‖τ = sup

t∈[0,I]
{|u(t)|e−2τt} where τ > 0.

Define the w-distance p : X× X → [0, ∞) by

p(x, y) = max{‖x‖τ , ‖y‖τ}

for all x, y ∈ X. Consider a function f : X → X defined as follows:

f (u(t)) =
∫ t

0
G(t, s)K(s, u(s))ds (43)

for all x ∈ X and t ∈ [0, I].
Obviously, the existence of a solution to the Equation (41) is equivalent to the existence of a fixed

point of the mapping f .
Now, we prove the subsequent theorem to guarantee the existence of the fixed point of f .

Theorem 4. Consider the nonlinear integral Equation (41) and suppose that the following conditions hold:
(A) K is increasing function;
(B) there exists τ > 0 such that

|K(s, u)| ≤ λτ2e−τu,

where 0 ≤ λ < 1, s ∈ [0, I] and u ∈ R+.
(C) f : X → X is Ćirić type generalized F-contraction
Then, the integral Equation (41) has a solution.

Proof. Now, we show that the function f defined as (43) satisfies (3). For this, we have
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| f (u(s))| =
∫ t

0
G(t, s)|K(s, u(s))|ds

≤
∫ t

0
G(t, s)λτ2e−τ |u(s)|ds (from the conditions (A) & (B))

=
∫ t

0
G(t, s)λτ2e−τe2τse−2τs|u(s)|ds

=
∫ t

0
λτ2e−τ(t− s)eτ(t−s)e2τs‖u‖τds

= λτ2e−τ+τt‖u‖τ

∫ t

0
(t− s)eτsds

= λτ2e−τ+τt‖u‖τ

[−t
τ
− 1

τ2 +
eτt

τ2

]
= λe−τ‖u‖τe2τt[1− τte−τt − e−τt].

Since
[
1− τte−τt − e−τt] ≤ 1, then

‖ f (u(s)‖τ ≤ λe−τ‖u‖τ .

Similarly, we can see that

‖ f (v(s))‖τ ≤ λe−τ‖v‖τ .

Therefore,

p( f u, f v) = max{‖ f u‖τ , ‖ f v‖τ}
≤ λe−τ max{‖u‖τ , ‖v‖τ}
≤ e−τ(λMp(u, v))

for all u, v ∈ X.
By passing to the logarithm, we write

ln(p( f u, f v)) ≤ ln(e−τλMp(u, v))

and hence
τ + ln(p( f u, f v)) ≤ ln(λMp(u, v)).

Now, consider the function F ∈ 4F defined by F(α) = ln α; then, for each τ > 0, we have

τ + F(p( f x, f y)) ≤ F(λMp(x, y)),

which implies that f : X → X is Ćirić type generalized F-contraction. Thus, all the conditions of
Corollary 1 are satisfied. Hence, from Corollary 1, the integral Equation (41) admits a solution.

This completes the proof.
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