
mathematics

Article

NLP Formulation for Polygon Optimization Problems

Saeed Asaeedi , Farzad Didehvar * and Ali Mohades

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran 15875-4413,
Iran; asaeedi@aut.ac.ir (S.A.); mohades@aut.ac.ir (A.M.)
* Correspondence: didehvar@aut.ac.ir; Tel.: +982164545665

Received: 11 November 2018; Accepted: 19 December 2018; Published: 27 December 2018 ����������
�������

Abstract: In this paper, we generalize the problems of finding simple polygons with minimum area,
maximum perimeter, and maximum number of vertices, so that they contain a given set of points
and their angles are bounded by α + π where α (0 ≤ α ≤ π) is a parameter. We also consider the
maximum angle of each possible simple polygon crossing a given set of points, and derive an upper
bound for the minimum of these angles. The correspondence between the problems of finding simple
polygons with minimum area and maximum number of vertices is investigated from a theoretical
perspective. We formulate these three generalized problems as nonlinear programming models, and
then present a genetic algorithm to solve them. Finally, the computed solutions are evaluated on
several datasets and the results are compared with those from the optimal approach.

Keywords: α-MAP; α-MPP; α-MNP; polygon optimization; nonlinear programming; computational
geometry

1. Introduction

Polygons are one of the fundamental objects in the field of computational geometry. Simple
polygonization is a way to construct all possible simple polygons on a set of points in the plane.
Global optimization problems, such as optimal area and perimeter polygonization [1,2], are of major
interest to researchers and arise in various application areas, such as image processing [3,4], pattern
recognition [3,5,6], geographic information systems (GIS) [7], sensor networks [8,9], and so on.

Minimum- and maximum-perimeter polygonization problems are known as the traveling
salesman problem (TSP) and the maximum traveling salesman problem (Max-TSP), respectively,
which are NP-complete problems [1,10]. Fekete considered a set of points on the grid and showed that
the problems of minimum area polygonization (MAP) and maximum area polygonization (MAXP) on
that set of points are NP-complete [2]. Recently, it has been shown that computing an α-concave hull
(as a generalization of MAP) is still NP-hard [11].

To the best of our knowledge, little attention has been paid to the constraint on the internal angles
of polygons in previous studies [12–14]. In this paper, we explore the optimum polygonization such
that the internal angles of the polygons are bounded. Here, we define α-MAP, α-MPP, and α-MNP as
the problems of computing simple polygons containing a set of points in the plane with minimum
area, maximum perimeter, and maximum number of vertex points, respectively, such that all internal
angles of the polygons are less than or equal to π + α. We consider α-MAP, α-MPP and α-MNP as
generalizations of computing the convex hull, and formulate them as nonlinear programming models.

For a set S of points in the plane and for k ≥ 2, an algorithm for finding k convex polygons
that covers S is presented in [15], such that the total area of the convex polygons is minimized. Also,
for k = 2, another algorithm is presented, to minimize the total perimeter of the convex polygons.

There are many NP-complete problems such as TSP [16], packing problems [17], convex shape
decomposition [18], and the path planning problem [19] that can be formulated as integer programming

Mathematics 2019, 7, 24; doi:10.3390/math7010024 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2980-3013
http://www.mdpi.com/2227-7390/7/1/24?type=check_update&version=1
http://dx.doi.org/10.3390/math7010024
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 24 2 of 25

problems. In [20], a nonlinear programming model is presented for the problem of cutting circles
from rectangles with minimum area. In [21], the rectangular cartogram problem is formulated as a
bilinear program. Raimund Seidel constructs convex hulls of n points in Rd for d > 3, using a linear
programming algorithm [22].

There have been many studies on approximation and randomized algorithms for MAP [11,23,24],
MAXP [23], TSP [25,26], and Max-TSP [27,28]. Here, we apply a genetic algorithm (GA) to solve
α-MAP, α-MPP, and α-MNP, and then compare the results with those from the optimal approach.
A genetic algorithm is used to solve many problems such as TSP [29–31], packing of polygons [32],
path planning [33,34], and pattern recognition [35].

χ-shape [36], α-shape [37], concave hull [7], simple-shape [38], RGG [39], and crust [40] are all
bounding hulls of a set of points, same as the convex hull. α-shape and concave hull are generalizations
of the convex hull to cover a set of points, and can be used in the fields of space decomposition [41],
sensor networks [42], bioinformatics [43], feature detection [44], GIS [45], dataset classification [46],
shape reconstruction [47,48], and so on. We implement the concave hull algorithm [49], and then use
the computed results to compare against those obtained from the GA.

The rest of the paper is as follows: In Section 2, we present some notation and definitions which
are required throughout the paper. In Section 3, we first formulate the required functions and then
introduce nonlinear programming models for α-MAP, α-MPP, and α-MNP. In Section 4, our theoretical
results are discussed. For a set S of points, an upper bound for θ is obtained, such that θ is the minimum
of maximum angles of each simple polygon containing S. Also, the similarity of the two problems
α-MAP and α-MNP is investigated on the grid points. Section 5 is devoted to a full evaluation of
our experimental results obtained by implementing the GA and the brute-force algorithm. Section 6
concludes the paper, highlighting its main contribution.

2. Preliminaries

Let S = {s1, s2, ..., sn} be a set of points in the plane, and CH be the convex hull of S. The vertices
and edges of CH are denoted by VCH = {c1, c2, ..., cm} and ECH = {e1, e2, ..., em}, respectively.
Furthermore, let IP = {a1, a2, ..., ar} be the inner points of CH, such that r = n − m. A polygon
P containing S is specified by a closed chain of vertices P = (p1, p2, ..., pl , p1). Table 1 shows more
notation that is used in the rest of the paper. The simple polygon P contains S iff VP ⊆ S and
∀i ∈ {1, 2, ..., n}, si ∈ P. Moreover, P crosses a point x iff x ∈ VP.

MAP is the problem of computing the simple polygon M ∈ ℘(S), such that ∀P ∈
℘(S), Area(M) ≤ Area(P); MPP is the problem of computing the simple polygon E ∈ ℘(S), such that
∀P ∈ ℘(S), Perimeter(E) ≥ Perimeter(P); and MNP is the problem of computing the simple polygon
C ∈ ℘(S), such that ∀P ∈ ℘(S), Boundary(C) ≥ Boundary(P). The following definitions introduce the
problems of computing α-MAP, α-MPP, and α-MNP.

Definition 1. For 0 ≤ α ≤ π, a simple polygon P ∈ ℘(S) is an α-polygon if all internal angles of P are less
than or equal to π + α [11].

Definition 2. α-MAP, α-MPP and α-MNP are the problems of computing the α-polygon containing S with
minimum area, maximum perimeter and maximum number of vertices, respectively.

In the case of α = π, the α-polygon, α-MAP, α-MPP, and α-MNP will be converted into the
simple polygon, MAP, MPP, and MNP, respectively. Also, in the case of α = 0, the α-polygon will be
converted into the convex polygon, and all of the α-MAP, α-MPP, and α-MNP will be converted into
CHP. We formulate these as binary nonlinear programming models:

Definition 3. Let {c1, c2, ..., cm} be the vertices of CH, ej = cjcj+1 be the jth edge of CH and P be a simple
polygon containing S. The points {b1,j, b2,j, ..., bt,j} ∈ S are assigned to the edge ej if (cj, b1,j, b2,j, ..., bt,j, cj+1)

is a chain in P.

Mathematics 2019, 7, 24 3 of 25

Figure 1 shows that the polygon P assigns the points {b1,1, b2,1, b3,1} to the edge e1, the point {b1,2}
to the edge e2, and so on. The inner points of P are unassigned. We assume that cj is assigned to ej.

Table 1. Notations of symbols.

Notation Description

S A set of points in the plane
n cardinality of S
si ith point of S (1 ≤ i ≤ n)
CH convex hull of S
m number of vertices of CH
IP inner points of CH
P a simple polygon containing S
VP vertices of P
EP edges of P
r cardinality of IP
cj jth vertex of CH (1 ≤ j ≤ m)
ej jth edge of CH (1 ≤ j ≤ m)
P a simple Polygon containing S
sisj an edge of P with si and sj as its end points (1 ≤ i, j ≤ n, i 6= j)
℘(S) set of all simple polygons containing S
Area(P) area of polygon P
Perimeter(P) perimeter of polygon P
Boundary(P) number of vertices of P
α an angle between 0 and π
MAP problem of computing a simple polygon containing S with minimum area
MPP problem of computing a simple polygon containing S with maximum perimeter
MNP problem of computing a simple polygon containing S with maximum number of vertices
CHP problem of computing convex hull of S
SPP problem of computing a simple polygon crossing S
_

AB the measure of arc AB

Figure 1. Polygon P assigns internal points to convex hull edges.

3. Modeling

In this section we present nonlinear programming models for α-MAP, α-MPP, and α-MNP. We first
introduce the indices, input data, and variables that are used in our models, and then formulate the
required functions.

Mathematics 2019, 7, 24 4 of 25

3.1. Indices

The following indices are utilized to formulate the problems α-MAP, α-MPP, and α-MNP as binary
nonlinear programming models:

• i ∈ {1, 2, ..., n} is an index counting the points of S. The point sn+1 is identified by s1, and the
point sn+2 is identified by s2.

• j ∈ {1, 2, ..., m} is an index counting the edges in ECH and the vertices in VCH . The edge em+1 is
identified by e1, and the vertex cm+1 is identified by c1.

• k ∈ {0, 1, ..., r} specifies the order of assigned points for an edge of convex hull. bk,j is the kth
point which is assigned to ej. Assume that ci is assigned to ei at the position 0.

3.2. Input Data

The input data is as follows:

• n is the number of points in S.
• (xi, yi) ∈ R2 is the coordinate of the point si.
• α ∈ [0, π] is the constraint for angles.

3.3. Assumptions

• x(j) is the x-coordinate of cj.
• y(j) is the y-coordinate of cj.

3.4. Variables

In this model, we have n×m× r variables, denoted by z, which is defined as follows: Zi,j,k is
a binary variable such that Zi,j,k = 1 iff the point si is assigned to ej at the position of k. In Figure 1,
Assume that b3,1 is the tenth point of S. Since b3,1 is assigned to e1 at the position of 3, we have
Z10,1,3 = 1.

3.5. Functions

The functions used in this model are listed below.

• Area(P) is the area of the polygon P.
• Perimeter(P) is the perimeter of the polygon P.
• Boundary(P) is the number of vertices of the polygon P.
• X(a) is the x-coordinate of the point a in the plane.
• Y(a) is the y-coordinate of the point a in the plane.
• X(j, k) is the x-coordinate of the kth points that is assigned to ej.

X(j, k) = Σn
i=1Zi,j,k · xi (1)

• Y(j, k) is the y-coordinate of the kth points that is assigned to ej.

Y(j, k) = Σn
i=1Zi,j,k · yi (2)

• Adjust(i1, i2): if ∃e ∈ EP such that si1 and si2 are endpoints of e, then Adjust(i1, i2) = 1, otherwise,
Adjust(i1, i2) = 0.

• Con f lict(i1, i2, i3, i4): if two edges si1 si2 and si3 si4 cross each other, then Con f lict(i1, i2, i3, i4) = 1,
otherwise, Con f lict(i1, i2, i3, i4) = 0.

• Angle(i1, i2, i3) is the clockwise angle between si1 si2 and si2 si3 .

Figure 2 is an example of a polygon P containing the set S = {s1, s2, ..., s19}. In this example,
the points {s5, s6, s10} are assigned to e1. Hence, we have Z5,1,1 = Z6,1,2 = Z10,1,3 = 1. Also, since s1

is assigned to e1 at the position 0, Z1,1,0 = 1. In the same way, for the other edges of CH, we have:

Mathematics 2019, 7, 24 5 of 25

Z11,2,0 = Z15,2,1 = 1 , Z19,3,0 = 1, Z18,4,0 = Z17,4,1 = Z16,4,2 = Z13,4,3 = 1, Z12,5,0 = Z7,5,1 = 1, Z2,6,0 =

Z3,6,1 = Z4,6,2 = 1. In Figure 2, to compute X(j, k) for j = 4 and k = 2 we have:

X(4, 2) = Σ19
i=1Zi,4,2 · xi = 0 + ... + 0 + x16 + 0 + 0 + 0 = x16.

Figure 2. The polygon P = (s1, s5, s6, ..., s4, s1) containing S = {s1, ..., s19} assigns internal points to
convex hull edges.

3.6. Models

Here, we present the nonlinear programming formulations for α-MAP, α-MPP, and α-MNP.
We first formulate the functions Adjust, Con f lict and Angle as follows: The Adjust function is used
to determine if two points are adjacent to each other in the polygon, the Con f lict function is used to
check if the polygon is simple and the Angle function is used to compute the angle between two edges
to verify the angular constraint.

Adjust function

The Adjust function is computed as follows:

Adjust(i1, i2) =

1 ∃k ∈ {0, ..., r− 1}, ∃j ∈ {1, ..., m} | Zi1,j,k = Zi2,j,k+1 = 1
1 ∃k ∈ {0, ..., r− 1}, ∃j ∈ {1, ..., m} | Zi2,j,k = Zi1,j,k+1 = 1
1 ∃k ∈ {1, ..., r}, ∃j ∈ {1, ..., m} | Zi1,j,k = Zi2,j+1,0 = 1,

∀i ∈ {1, ..., n}Zi,j,k+1 = 0
1 ∃k ∈ {1, ..., r}, ∃j ∈ {1, ..., m} | Zi2,j,k = Zi1,j+1,0 = 1,

∀i ∈ {1, ..., n}Zi,j,k+1 = 0
0 otherwise

(3)

As seen in Figure 2, s6 is adjusted to s10. Since Z6,1,2 = Z10,1,3 = 1, we have Adjust(6, 10) = 1.
Also, since Z10,1,3 = Z11,2,0 = 1 and ∀i ∈ {1, ..., n}Zi,1,4 = 0, we have Adjust(10, 11) = 1.

Conflict function

To compute the conflict function, consider the following expression:

Ei1,i2 = (X(si2)− X(si1), Y(si2)−Y(si1))

Ri1,i2 = (−Y(Ei1,i2), X(Ei1,i2))

h(i1, i2, i3, i4) = (Ei3,i1 .Ri1,i2)/(Ei3,i4 .Ri1,i2)

=
(X(Ei3,i1

)·X(Ri1,i2)+Y(Ei3,i1
)·Y(Ri1,i2))

(X(Ei3,i4
)·X(Ri1,i2)+Y(Ei3,i4

)·Y(Ri1,i2))
.

(4)

Mathematics 2019, 7, 24 6 of 25

So, the function Con f lict(i1, i2, i3, i4) is computed as follows:

Con f lict(i1, i2, i3, i4) =

0 ≤ h(i1, i2, i3, i4) ≤ 1 and

1 Adjust(i1, i2) = Adjust(i3, i4) = 1 and
Adjust(i1, i3) = Adjust(i2, i4) = 0

0 otherwise

(5)

Based on the mentioned notation, P is simple if ∀i1, i2, i3, i4 ∈ {1, 2, ..., n}, such that i1 6=
i2 6= i3 6= i4, Adjust(i1, i2) = Adjust(i3, i4) = 1, and Adjust(i1, i3) = Adjust(i2, i4) = 0, we have
Con f lict(i1, i2, i3, i4) = 0.

Angle function

The polygon P is an α-polygon iff ∀i1, i2, i3 ∈ {1, 2, ..., n} such that i1 6= i2 6= i3, Adjust(i1, i2) =
Adjust(i2, i3) = 1 and Adjust(i1, i3) = 0, we have Angle(i1, i2, i3) ≤ π + α. The angle between two
line segments A and B can be computed as follows:

θ = arccos
A.B

(|A| · |B|) . (6)

Based on the mentioned notation, let

Ai1,i2 = (X(si2)− X(si1), Y(si2)−Y(si1)),
Bi2,i3 = (X(si3)− X(si2), Y(si3)−Y(si2)).

(7)

If Adjust(i1, i2) = Adjust(i2, i3) = 1 and Adjust(i1, i3) = 0, Angle(i1, i2, i3) is computed as
follows, otherwise Angle(i1, i2, i3) = 0.

Angle(i1, i2, i3) = arccos
X(Ai1,i2) · X(Bi2,i3) + Y(Ai1,i2) ·Y(Bi2,i3)√

X(Ai1,i2)
2 + Y(Ai1,i2)

2 ·
√

X(Bi2,i3)
2 + Y(Bi2,i3)

2
. (8)

3.6.1. Modeling α-MAP

α-MAP is the problem of computing the α-polygon with the minimum area on a set of points.
Since ℘(S) is the set of all simple polygons containing S, α-MAP can be formulated as follows:

min
P∈℘(S)

Area(P)
such that

All internal angles of P are less than or equal to π + α

(9)

As seen in Figure 1, each polygon P ∈ ℘(S) assigns the points of S to the edges of CH. Therefore,
each simple polygon containing S is equivalent to an assignments of the points of S to the edges of CH,
and each assignment is determined by an evaluation of Zi,j,k for all i, j, k. In the following, the area
function is formulated as an objective function of the model.

Theorem 1. Let P ∈ ℘(S) be a simple polygon and Z be the corresponding assignment for P. The area of P is
computed as follows:

Area(P) = Σm
j=1Σr

k=1
[[Σn

i=1Zi,j,k · xi + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k)) · x(j+1) + Σn
i=1Zi,j,k−1 · xi]×

[Σn
i=1Zi,j,k · yi + (Σn

i=1Zi,j,k−1) · (1− Σn
i=1Zi,j,k)) · y(j+1) − Σn

i=1Zi,j,k−1 · yi]].
(10)

Mathematics 2019, 7, 24 7 of 25

Proof. Based on the Shoelace formula (also known as the surveyor’s formula [50]), the area of a
polygon P = (p1, p2, ..., pl , p1) is:

Area(P) = Σl
i=1(X(pi+1) + X(pi)) · (Y(pi+1)−Y(pi)). (11)

As an example, assume that P is the polygon of Figure 2. So, p1 = s1, p2 = s5, p3 = s6, p4 = s10,
and p5 = s11. Let Ti = (X(pi+1) + X(pi)) · (Y(pi+1)−Y(pi)), thus we have:

T1 = (X(p2) + X(p1)) · (Y(p2)−Y(p1)) = (X(s5) + X(s1)) · (Y(s5)−Y(s1)). (12)

Since the points s5 and s1 are assigned to e1 at positions 1 and 0, respectively, we have:

T1 = (X(1, 1) + X(1, 0)) · (Y(1, 1)−Y(1, 0)). (13)

In the same way,

T2 = (X(p3) + X(p2)) · (Y(p3)−Y(p2)) = (X(1, 2) + X(1, 1)) · (Y(1, 2)−Y(1, 1)),
T3 = (X(p4) + X(p3)) · (Y(p4)−Y(p3)) = (X(1, 3) + X(1, 2)) · (Y(1, 3)−Y(1, 2)),
T4 = (X(p5) + X(p4)) · (Y(p5)−Y(p4)) = (X(2, 0) + X(1, 3)) · (Y(2, 0)−Y(1, 3)).

(14)

Based on the above equations, we employ the below formula for T1,T2, and T3 so that:

Tk = (X(1, k) + X(1, k− 1)) · (Y(1, k)−Y(1, k− 1)). (15)

Equation (15) cannot be used for T4:

(X(1, 4) + X(1, 3)) · (Y(1, 4)−Y(1, 3)) 6= (X(2, 0) + X(1, 3)) · (Y(2, 0)−Y(1, 3)).

In other words, Equation (15) can be used while the points are assigned to the same edge.
In Equation (14), for T4, the point p5 = s11 is assigned to e2 while the point p4 is assigned to e1. Based
on Equation (1), since ∀i ∈ {1, 2, ..., n}, Zi,1,4 = 0⇒ X(1, 4) = Σn

i=1Zi,1,4 = 0⇒ (1−Σn
i=1Zi,1,4) · x(2) =

x(2) ⇒ (1− Σn
i=1Zi,1,4) · x(2) = X(p5). Hence, (1− Σn

i=1Zi,1,4) · x(2) can be used to compute X(p5).

Tk = (X(1, k) + (1− Σn
i=1Zi,1,k) · x(2) + X(1, k− 1))×

(Y(1, k) + (1− Σn
i=1Zi,1,k) · y(2) −Y(1, k− 1)).

(16)

Based on Equation (16):

T4 = (X(1, 4) + (1− Σn
i=1Zi,1,4) · x(2) + X(1, 3))×

(Y(1, 4) + (1− Σn
i=1Zi,1,4) · y(2) −Y(1, 3)),

T4 = (0 + (1− 0)x(2) + X(1, 3)) · (0 + (1− 0)y(2) −Y(1, 3)),
T4 = (X(2, 0) + X(1, 3)) · (Y(2, 0)−Y(1, 3)).

(17)

Since, based on Equation (1), X(1,k) is equal to 0 for all k ≥ 4, we have:

T5 = (0 + (1− 0)x(2) + X(1, 4)) · (0 + (1− 0)y(2) −Y(1, 4)),
T5 = (0 + X(2, 0) + 0) · (0 + Y(2, 0)− 0).

(18)

Hence, in order to avoid extra summation, we employ the following equation:

Tk = [X(1, k) + (Σn
i=1Zi,1,k−1) · (1− Σn

i=1Zi,1,k) · x(2) + X(1, k− 1)]×
[Y(1, k) + (Σn

i=1Zi,1,k−1) · (1− Σn
i=1Zi,1,k) · y(2) −Y(1, k− 1)].

(19)

Mathematics 2019, 7, 24 8 of 25

From Equation (19), for all k ≥ 5 we have:

Tk = (0 + (0) · (1− 0) · x(2) + 0)× (0 + (0) · (1− 0) · y(2) − 0) = 0. (20)

Considering the points that are assigned to ej, Equation (19) can be extended as follows:

Tj,k = [X(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · x(j+1) + X(j, k− 1)]×
[Y(j, k) + (Σn

i=1Zi,j,k−1) · (1− Σn
i=1Zi,j,k) · y(j+1) −Y(j, k− 1)].

(21)

Based on Equation (11), the area of the polygon P is computed as follows:

Area(P) = Σm
j=1Σr

k=1Tj,k = Σm
j=1Σr

k=1
[[X(j, k) + (Σn

i=1Zi,j,k−1) · (1− Σn
i=1Zi,j,k) · x(j+1) + X(j, k− 1)]×

[Y(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · y(j+1) −Y(j, k− 1)]].
(22)

From Equations (1), (2) and (22), we have:

Area(P) = Σm
j=1Σr

k=1
[[Σn

i=1Zi,j,k · xi + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · x(j+1) + Σn
i=1Zi,j,k−1 · xi]×

[Σn
i=1Zi,j,k · yi + (Σn

i=1Zi,j,k−1) · (1− Σn
i=1Zi,j,k) · y(j+1) − Σn

i=1Zi,j,k−1 · yi]].
(23)

Based on Theorem 1, Equation (9) is formulated as follows:

min Σm
j=1Σr

k=1
[[Σn

i=1Zi,j,k · xi + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · x(j+1) + Σn
i=1Zi,j,k−1 · xi]×

[Σn
i=1Zi,j,k · yi + (Σn

i=1Zi,j,k−1) · (1− Σn
i=1Zi,j,k) · y(j+1) − Σn

i=1Zi,j,k−1 · yi]]

such that
Zi,j,k ∈ {0, 1} ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., m}, ∀k ∈ {1, ..., r}, (a)
Σm

j=1Σr
k=1Zi,j,k ≤ 1 ∀i ∈ {1, 2, ..., n}, (b)

con f lict(i1, i2, i3, i4) = 0 ∀i1, i2, i3, i4 ∈ {1, 2, ..., n} | i1 6= i2 6= i3 6= i4, (c)
angle(i1, i2, i3) ≤ π + α ∀i1, i2, i3 ∈ {1, 2, ..., n} | i1 6= i2 6= i3. (d)

(24)

In Equation (24), constraint (a) considers all assignments of the points while constraint (b) prevents
assigning a point to more than one edge. The point si is unassigned if Σm

j=1Σr
k=1Zi,j,k = 0, and assigned

to one edge if Σm
j=1Σr

k=1Zi,j,k = 1. Also, constraint (b) prevents assigning a point to more than one
position on an edge. In addition, constraint (c) guarantees that the constructed polygon is simple,
while constraint (d) ensures that it is an α-polygon.

When α = 0, the solution of Equation (24) is an assignment that constructs the convex hull of
the points, and when α = π the solution of Equation (24) is an assignment that constructs M as the
solution of MAP on the points. There is an algorithm to compute CH in O(n log n) time [51], while
MAP is NP-complete.

Figure 3 illustrates the solution of α-MAP on a set of points for different values of α.

Mathematics 2019, 7, 24 9 of 25

Figure 3. Solution of α-MAP for different values of α.

3.6.2. Modeling α-MPP

α-MPP is the problem of computing the α-polygon with the maximum perimeter on a set of points.
Since ℘(S) is the set of all simple polygons containing S, α-MPP is computed as follows:

max
P∈℘(S)

Perimeter(P)
such that

All internal angles of P are less than or equal to π + α

(25)

Let P = (p1, p2, ..., pl , p1) be a polygon containing S. The perimeter of P is the total length of
its edges:

Perimeter(P) = Σl
i=1

√
(X(pi+1)− X(pi))2 + (Y(pi+1)−Y(pi))2. (26)

By using Z as the corresponding assignment for P, similar to Theorem 1, the perimeter of P is
computed as follows:

Perimeter(P) = Σm
j=1Σr

k=1√√√√(X(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · x(j+1) − X(j, k− 1))2+

(Y(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · y(j+1) −Y(j, k− 1))2

(27)

Based on Equations (25) and (27), we have the following formula for α-MPP:

max Σm
j=1Σr

k=1√√√√(X(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · x(j+1) − X(j, k− 1))2+

(Y(j, k) + (Σn
i=1Zi,j,k−1) · (1− Σn

i=1Zi,j,k) · y(j+1) −Y(j, k− 1))2

such that
Zi,j,k ∈ {0, 1} ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., m}, ∀k ∈ {1, ..., r}, (a)
Σm

j=1Σr
k=1Zi,j,k ≤ 1 ∀i ∈ {1, 2, ..., n}, (b)

con f lict(i1, i2, i3, i4) = 0 ∀i1, i2, i3, i4 ∈ {1, 2, ..., n} | i1 6= i2 6= i3 6= i4, (c)
angle(i1, i2, i3) ≤ π + α ∀i1, i2, i3 ∈ {1, 2, ..., n} | i1 6= i2 6= i3. (d)

(28)

Mathematics 2019, 7, 24 10 of 25

When α = 0, the solution of Equation (28) is an assignment that constructs the convex hull of the
points, and when α = π it is an assignment that constructs E as the solution of MPP, which is known
as Max-TSP, on the points. There is an algorithm to compute CH in O(n log n) time, while Max-TSP is
a well-known NP-complete problem.

Figure 4 illustrates the solution of α-MPP on a set of points for different values of α.

Figure 4. Solution of α-MPP for different values of α.

3.6.3. Modeling α-MNP

α-MNP on a set of points is the problem of computing the α-polygon with the maximum number
of vertices. Since ℘(S) is the set of all simple polygons containing S, α-MNP is computed as follows:

max
P∈℘(S)

Boundary(P)
such that

All internal angles of P are less than or equal to π + α

(29)

As stated before, Zi,j,k is equal to 1 iff the point si is assigned to the edge ej at the position k. Hence,
the following equation specifies the number of vertex points for the constructed polygon P:

Boundary(P) = Σn
i=1Σm

j=1Σr
k=0Zi,j,k. (30)

Similar to α-MAP and α-MPP, α-MNP is formulated as follows:

max Σn
i=1Σm

j=1Σr
k=0Zi,j,k

such that
Zi,j,k ∈ {0, 1} ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., m}, ∀k ∈ {1, ..., r}, (a)
Σm

j=1Σr
k=1Zi,j,k ≤ 1 ∀i ∈ {1, 2, ..., n}, (b)

con f lict(i1, i2, i3, i4) = 0 ∀i1, i2, i3, i4 ∈ {1, 2, ..., n} | i1 6= i2 6= i3 6= i4, (c)
angle(i1, i2, i3) ≤ π + α ∀i1, i2, i3 ∈ {1, 2, ..., n} | i1 6= i2 6= i3. (d)

(31)

When α = 0, the solution of Equation (31) is an assignment that constructs the convex hull of the
points, and when α = π the solution of Equation (31) is an assignment that constructs C as the solution

Mathematics 2019, 7, 24 11 of 25

of MNP on the points. C is a simple polygon that crosses all points. There are optimal algorithms to
compute CH and C in O(n log n) time.

Figure 5 illustrates the solution of α-MNP on a set of points, for different values of α.

Figure 5. Solution of α-MNP for different values of α.

4. Theoretical Results

In this section, we present our theoretical results. As stated before, α-MNP will be converted
into CHP and SPP when α = 0 and α = π, respectively, which are solvable in polynomial time.
When α = π, the constructed polygon crosses all points. For each set S of points, the smallest value of
α such that α-MNP crosses S is computed in the next subsection.

4.1. Upper Bound for α in α-MNP

For each polygon P ∈ ℘(S), assume that γP is the maximum angle of the polygon P. Let θ be
the minimum value of γP over all P ∈ ℘(S) that crosses S. For all α ≥ θ − π, there always exists an
α-polygon that crosses S. In other words, the polygon P′ such that γP′ = θ, satisfies α-MNP for all
α ≥ θ − π. Here, we present an upper bound for θ, on any set of points.

In Theorem 2, it is shown that 2π − 2π
2r−1m can be interpreted as an upper bound for θ, and in

Theorem 3 this bound is improved. In the following, we design an algorithm to construct a simple
polygon containing S which satisfies these bounds. Let us first define the concept of a “sweep arc”,
and then prove some lemmas.

Definition 4. Let e = AB be an edge of polygon P. A sweep arc on the edge e is a minor arc AB where
_

AB= 0

and expands to the major arc AB where
_

AB= π. The direction of expansion is to the inside of the polygon.
Figure 6 depicts the sweep arc on the edge e.

Mathematics 2019, 7, 24 12 of 25

Figure 6. A sweep arc on the edge e.

Let ej be an edge of the polygon P. We denote the major segment with length of β that corresponds

to ej by Mβ
j .

Lemma 1. Let x be a point inside the convex polygon P, E = {e1, e2, ..., em} be the edges of P and β = 2π− 4π
m .

Then ∃j ∈ {1, 2, ..., m}, such that x ∈ Mβ
j .

Proof. Let β j be the angle subtended by ej at the point x and βM be the maximum angle. Let e be the
edge that corresponds to βM. Since Σm

j=1β j = 2π, we have βM ≥ 2π
m and the corresponding arc of βM

is more than 4π
m . Hence, the measure of the sweep arc on the edge e at x is less than 2π − 4π

m , (see
Figure 7).

Figure 7. Measure of the sweep arc on the edge e is less than 2π − 4π
6 .

Lemma 2. Let P be a convex polygon, {e1, e2, ..., em} be the edges of P and βmax = 2π− 4π
m . The entirety of P

is covered by all major segments with length of βmax that correspond to the edges of P, i.e., P ⊂ ∪m
j=1Mβmax

j (see
Figure 8).

Figure 8. Measure of all major segments are βmax = 2π − 4π
6 .

Mathematics 2019, 7, 24 13 of 25

Proof. To prove the lemma by reductio ad absurdum, suppose that there exists a point x inside the
polygon P and outside of all the major segments. Since the measures of all major segments are equal to
2π − 4π

m , there is no edge e such that the sweep arc on e touches x at the measure β ≤ 2π − 4π
m , i.e.,

∀j ∈ {1, 2, ..., m}, x /∈ Mβmax
j . This contradicts Lemma 1.

Remark 1. Suppose that the convex hull of S has n− 1 edges; that is, one point is inside the convex hull. Based
on Lemma 2, 2π− 2π

n−1 is an upper bound for θ over all simple polygons containing S. It is noteworthy that this
bound is tight. The tightness is achieved when the inner point is at the center of a regular n-gons, as illustrated
in Figure 9.

Figure 9. Maximum angle of each polygon containing these points is equal to 2π − 2π
6 .

In the following, we generalize the upper bound for any set S of points, and then present an
algorithm to generate a polygon containing S that satisfies the generalized upper bound. However, let
us first consider a sweep arc on an edge to measure βmax that includes a set of n points.

Lemma 3. Let e = c1c2 be a line segment and S be a set of n points inside the major segment corresponding to
e, such that the measure of major arc is βmax = 2π− 4π

m for an integer number m (see Figure 10a). There exists
a chain (s1, s2, ..., sn) on S such that all internal angles of ŝi in the polygon (c1, s1, s2, ..., sn, c2, c1) are greater
than or equal to 2π

2n−1·m (see Figure 10b).

Figure 10. (a) Set of six points inside the major segment; (b) All internal angles of the polygon
(c1, s1, s2, s3, s4, s5, s6, c2, c1) are greater than or equal to 2π

32m .

Proof. Here, we employ the sweep arc algorithm to construct the polygon.

Algorithm 1 (Sweep Arc Algorithm)

Let us sweep the arc from measure 0 to βmax on e = c1c2. By so doing, the polygon is constructed,
while the arc hits the points. In the following, we show how to construct the polygon step by step.

Mathematics 2019, 7, 24 14 of 25

On the first hit:

Let x1 be the first point that the sweeping arc meets. We construct the polygon by connecting x1

to c1 and c2. Since the maximum measure of the arc is βmax, the internal angle of x̂1 in the triangle
(c1x1c2) is greater than or equal to 2π

m (see Figure 11).

Figure 11. Angle of x̂1 is greater than or equal to 2π
m .

On the second hit:

Let x1 be the first point that the sweeping arc meets and x2 be the second one. Also, let e1 = c1x1

and e2 = c2x1 be two constructed edges in the previous step. The edges e1 and e2 divide the sweeping
arc into 3 parts; the arc B1 where e1 is visible but e2 is not visible from all the points on it; the arc B2

where e2 is visible but e1 is not visible from all the points on it; and finally the arc B3 where e1 and e2

are visible from all points on it (see Figure 12).

Figure 12. The sweeping arc is divided into 3 parts B1, B2 and B3.

Case 1.

If x2 is placed on B1: The angle ĉ1x2x1 is greater than ĉ1x2c2, and the angle ĉ1x2c2 is greater than
or equal to 2π

m . Hence, the angle ĉ1x2x1 is greater than 2π
m . Since the internal angles x̂2 and x̂1 are

greater than 2π
2m , we consider the polygon (c1x2x1c2c1) as the constructed polygon.

Case 2.

If x2 is placed on B2: Based on the same reason mentioned above, the angle ĉ2x2x1 is greater than
2π
m . Since the internal angles x̂2 and x̂1 are greater than 2π

m , we consider the polygon (c1x1x2c2c1) as
the constructed polygon.

Case 3.

If x2 is placed on B3: In contrast to the previous cases, the angles ĉ1x2x1 and ĉ2x2x1 are less than
ĉ1x2c2, but the maximum of ĉ1x2x1 and ĉ2x2x1 is greater than ĉ1x2c2

2 . Since ĉ1x2c2 is greater than 2π
m , the

maximum of ĉ1x2x1 and ĉ2x2x1 is greater than 2π
2m . Hence, if ĉ1x2x1 > ĉ2x2x1, the constructed polygon

is (c1x2x1c2c1); otherwise, it is (c1x1x2c2c1).
In other words, the angular bisector of ĉ1x1c2 divides the sweeping arc into 2 parts, A1 and A2

(see Figure 13). Any point x2 on A1 constructs the angle ĉ1x2x1 greater than 2π
2m , and on A2 constructs

the angle x̂1x2c2 greater than 2π
2m . Hence, in the case where point x2 is placed on A1, we consider

the polygon (c1x2x1c2c1) as the constructed polygon and, if placed on A2, we consider the polygon
(c1x1x2c2c1) as the constructed polygon.

Mathematics 2019, 7, 24 15 of 25

Figure 13. The sweep arc is divided into 2 parts A1 and A2.

On the third hit:

Without loss of generality, assume that (c1x2x1c2c1) is the polygon obtained at the end of the
previous step. The angular bisector of ĉ1x2x1 divides A1 into 2 parts A11 and A12. Hence, the sweeping
arc is divided into 3 parts A2, A11 and A12 (see Figure 14).

Figure 14. The sweep arc is divided into 3 parts A2, A11 and A12.

Based on the previous step, any point x3 on A2 leads to the construction of the angle x̂1x3c2 which
is greater than 2π

2m . Similarly, any point x3 on A11 and A12 leads to the construction of the angles ĉ1x3x2

and x̂2x3x1, respectively, which are greater than ĉ1x3x1
2 . Since any angle ĉ1x3x1 on A1 is greater than

2π
2m , either the angle ĉ1x3x2 or x̂2x3x1 is greater than 2π

4m .
Let x3 be the third point that the sweeping arc meets. If x3 is placed on A2 , or on A11 or on A12, we

consider (c1x2x1x3c2c1) or (c1x3x2x1c2c1) or (c1x2x3x1c2c1) as the constructed polygon, respectively
(see Figure 15).

Figure 15. The angles of all constructed simple polygons are greater than or equal to 2π
4m .

Generalization:

Assume that (c1x1x2...xn−1c2c1) is the obtained polygon at the end of the previous step. Let xn be
the next point touched by the sweeping arc which is divided into n parts A1, A2, ..., An. Considering the
worst case, xn is placed on Ai or on Ai+1 such that the angular bisector of x̂i divides the corresponding
part into Ai and Ai+1. Any point xn on Ai, or on Ai+1, leads to the construction of the angle x̂n which
is greater than x̂i

2 . Based on the previous step and considering the worst case, the angle x̂i is greater
than 2π

2n−2m . Hence, the angle x̂n is greater than 2π
2n−1m . If xn is placed on A1, or on A2, ... or on An,

we consider the polygon (c1xnx1...xn−1c2c1), or (c1x1xnx2...xn−1c2c1), ... or (c1x1...xn−1xnc2c1) as the
constructed polygon, respectively.

Mathematics 2019, 7, 24 16 of 25

We refer to the polygon constructed by Algorithm 1 as a polygon corresponding to the line
segment e. In the following, based on the Lemma 3, we present an algorithm to generate a polygon
containing a given set of points, such that all internal angles are less than 2π − 2π

2r−1m .

Theorem 2. There exists a polygon P ∈ ℘(S) that crosses S, in which all internal angles of P are less than
2π − 2π

2r−1m .

Proof. Here, by presenting Algorithm 2, we construct the polygon.

Algorithm 2

1. Compute CH as the convex hull of S, and let IP be the set of inner points of CH.
2. For each edge ej of CH:

(a) Compute the polygon Pj corresponding to the edge ej using Algorithm 1 to meet the points
of IP.

(b) Remove the vertices of Pj from IP.

3. For all j ∈ {1, 2, ..., m}, the edges of Pj minus all edges of CH (except those that have no
corresponding polygon), construct the desired polygon.

Based on Lemma 2, the entire CH is covered by all major segments that correspond to the edges
of CH with length of βmax = 2π − 4π

m . Since the number of points inside the major segments is less
than r and also, based on Lemma 3, all internal angles of the corresponding polygons are greater than
or equal to 2π

2r−1m . Hence, all internal angles of the polygon computed by Algorithm 2 are less than
2π − 2π

2r−1m .

In step 2(a) of Algorithm 2, for each edge of CH, the measure of sweeping arc expands from 0 to
βmax, and the sweeping arc contains the inner points as much as possible. In Algorithm 3 (presented
below), the sweeping arcs that correspond to all edges of CH expand concurrently to contain all inner
points. In this way, the upper bound is improved to 2π − 2π

2d−1m , such that d is the depth of angular
onion peeling on S which is defined as follows:

Let us increase the measure of all sweeping arcs concurrently from 0 to the first hit (or βmax, if a
sweeping arc does not hit any point). All inner points that are hit by sweeping arcs form layer 1 of the
points. The next layers are formed by deleting the points of the computed layer from inner points and
keep increasing the measure of all sweeping arcs to the next hit. The process continues until all inner
points are hit. The process of peeling away the layers, described above, is defined as "angular onion
peeling" and the number of layers is called "depth of angular onion peeling" on these points.

Theorem 3. There exists a polygon P ∈ ℘(S) such that crosses S, and all internal angles of P are less than
2π − 2π

2d−1m where d denotes the depth of angular onion peeling on S.

Proof. Here, by presenting Algorithm 3, we construct such a polygon.

Algorithm 3

1. Compute CH as the convex hull of S, and let IP be the set of inner points.
2. While IP is not empty:

(a) Increase the measure of all sweeping arcs to the next hit or βmax.
(b) Based on Algorithm 1, reconstruct the polygons corresponding to each edge of CH.
(c) Remove the visited points from IP.

All edges of corresponding polygons computed in step 2, minus all of the edges of CH (except
those that have no corresponding polygon), construct the desired polygon.

Mathematics 2019, 7, 24 17 of 25

Since, the number of points inside the major segments are less than d, all internal angles of
corresponding polygons are greater than or equal to 2π

2d−1m . Hence, all internal angles of the polygon
computed by Algorithm 3 are less than 2π − 2π

2d−1m .

4.2. α-MAP vice versa α-MNP

Let S be a set of points on the grid G and P ∈ ℘(S) be a simple polygon. Based on Pick’s
theorem [52], the area of P is equal to b

2 + i− 1 where b is the number of grid points on the boundary
of P and i is the number of grid points which are inside the polygon P.

The polygon P crosses both b1 points of S, which we call vertex points, and b2 non-vertex points
on G, which we call grid points. Hence, Area(P) = b1+b2

2 + i− 1.
Assume that two polygons A and B with the same number of inner grid points cross no grid

points (i.e., b2 = 0). Hence, based on Pick’s theorem, the area of polygon A is more than that of B iff
the number of vertex points in A is more than that in B. In this case, α-MAP is equivalent to α-MNP.

In the following, we show that for each polygon P ∈ ℘(S) on the grid and all ε > 0, there exists a
polygon P′ with the same vertices points such that |Area(P)− Area(P′)| < ε, and P′ does not cross
any grid point.

Let e = ab be an edge of P on the grid G. If a = (xa, ya) and b = (xb, yb), We = |xb − xa| is the
width of e and He = |yb − ya| is the height of e. (see Figure 16)

Figure 16. We and He are the width and height of e, respectively.

Lemma 4. Let e be an edge of P on the grid G. If We and He are coprime integers, then e does not cross any
grid point.

Proof. Assume e crosses n > 0 grid points. As shown in Figure 17, We is divided into n + 1 parts,
similar to He. Hence, n + 1 is common divisor of We and He.

Figure 17. Common divisor of We and He is 3.

Mathematics 2019, 7, 24 18 of 25

Lemma 5. Let a and b be two non-coprime integers. There exist infinitely many positive integers x > 1, such
that ax and bx− 1 are coprime integers.

Proof. Each common denominator of a and b satisfies x.

Definition 5. The polygon P ∈ ℘(S) is a grid-avoiding polygon if P does not cross any grid points.

The following theorem shows that if P crosses some grid points, for all ε > 0 there exists a
grid-avoiding polygon P′ such that |Area(P)− Area(P′)| < ε.

Theorem 4. Let e = ab be an edge of P ∈ ℘(S) that crosses a grid point. For all ε > 0, there exists a point
b′ such that e′ = ab′ does not cross any grid point, the number of inner grid points does not change, and
|Area(abb′)| < ε.

Proof. We convert the grid G to the grid G′ by dividing each cell of G into x2 subcells and placing b′

on the one grid point left or right of b, as shown in Figure 18. If the right (left) grid point is inside the
polygon P, place b′ on the right (left) side of b. Let n = xHe, m = xWe and m′ = xWe′ = m− 1. Based
on Lemma 5, there exist infinitely many integers x such that n and m′ are coprime integers. Based on
Lemma 4, since n and m′ are coprime integers, the edge e′ does not cross any grid point of G′. As seen
in Figure 18, the number of grid points inside the polygon does not change.

Figure 18. The grid G is shown in bold lines, and G′ in regular mode.

Let u be the length of each side of grid cells in G and u′ be the length of each side of grid cells
in G′. Based on Figure 18, Area(abb′) = 1

2 u′He. Since u′ = u
x and there exist infinitely many integers

x such that xWe′ and xHe are coprime integers, for each ε > 0 there exists an integer x such that
|Area(abb′)| < ε.

The following algorithm converts the grid G into the grid G′, and the polygon P into the
grid-avoiding polygon P′ on G′.

Algorithm 4

Let P = (a1, a2, a3, ..., an, a1) be the polygon on the grid G.

1. Set i = 1
2. If i = n go to 5, otherwise set e = aiai+1
3. If e does not cross any grid point

(a) i = i + 1
(b) Go to step 2.

4. Else

(a) Set x = LCD(We, He)

Mathematics 2019, 7, 24 19 of 25

(b) Convert G into the grid G′ using x (dividing each cell of G into x2 subcells).
(c) For j = 1 to i− 1

i. If d = ajaj+1 crosses any grid point

A. Move the vertex aj+1 to the left side or right side grid point (in G′).
(d) If e crosses any grid point

i. Move the vertex ai+1 to the left side or right side grid point (in G′).
(e) set i = i + 1 and go to step 2.

5. Exit.

Let Wi be the width of ei = aiai+1 and Hi be the length of ei. Let us further assume that W1 and
W2 are coprime to H1 and H2, respectively. Steps 3(a) and 3(b) avoid changing the position of these
vertices. Assume e3 = a3a4 crosses a grid point. The grid G is converted into the grid G′ in step 4(b).
In the new grid G′, since W1′=xW1 and H1′ = xH1, the width and length of e1 are not coprime integers
the same as the width and length of e2. Therefore, the position of the previous vertices should be
changed. Step 4(c) of Algorithm 4 updates the position of the previous vertices. Note that changing e1

may have an effect on the edge e2. Hence, we check the loop in step 4(c), to see if the edge crosses any
grid point. If so, then updating the last previous edge may have an effect on the edge e3. Hence, in
step 4(d), we change the position of a4 if e3 crosses any grid point. Finally, the position of all vertices
are updated such that the new edges do not cross any grid point.

Corollary 1. Let P1 and P2 be two simple polygons containing S with the same number of inner grid points.
Boundary(P1) > Boundary(P2) iff Area(P1) < Area(P2). In other words, under these conditions we have
the same solution for α-MAP and α-MNP.

Corollary 2. Let P1 and P2 be two simple polygons containing S. If Boundary(P1) ⊂ Boundary(P2), then
Area(P2) < Area(P1).

5. Numerical Experiments and Results

Considering Equations (24), (28) and (31), the time complexity of the brute-force algorithm is
O(2n·m·r) such that n is the number of points, m is the number of vertices of CH, and r is the number
of inner points. In this section, we present a genetic algorithm as a fast and accurate method to solve
these models. The genetic algorithm is a powerful stochastic search technique, which is applicable to a
variety of nonconvex optimization problems [53].

In order to evaluate the results, we implemented both the GA and the brute-force algorithm for
α-MAP, α-MPP, and α-MNP. We ran both algorithms on the same datasets of points. Each dataset
contained 100 sets of points with the same cardinality. We obtained the results for datasets of 5, 7, 10,
and 12 points which are tabulated in Table 2.

A polygon-match occurs if the result of the GA on a set of points is the same as that of the
brute-force algorithm. The quantity column in Table 2 shows the percentage of polygon-matches in
each dataset, and the quality column displays the average difference between the two areas; that is,
Area(P)− Area(P′) where P and P′ are the constructed polygons using the genetic and the brute force
algorithms, respectively.

Mathematics 2019, 7, 24 20 of 25

Table 2. Numerical results.

Number of
Points

Number of
Generations

Area Perimeter Boundary
Quality Quantity Quality Quantity Quality Quantity

n = 5

50 99.15344 96 98.35035 95 98.6 95
100 99.87179 99 99.46023 99 100 100
150 100 100 100 100 100 100
200 100 100 100 100 100 100

n = 7

50 97.05038 83 97.1653 88 97.4026 82
100 98.67008 92 98.77586 96 98.14285 93
150 98.91394 93 100 100 100 100
200 98.90656 95 100 100 100 100

n = 10

50 94.21655 55 89.56722 67 80.90909 24
100 95.14197 67 94.31243 80 89 50
150 97.79823 83 96.67498 93 97.5 87
200 97.88455 84 100 100 100 100

n = 12

50 87.95903 52 87.86893 59 80.53846 20
100 90.84784 63 93.45262 70 84.66667 44
150 96.67498 77 95.95328 84 93.91667 73
200 97.76408 82 96.15958 98 98.5 91

The pseudocode for the GA is presented as follows:

Algorithm 5 (Genetic Algorithm)

Inputs:

S : the points set α : constraint on angles
e : elitism rate mu : mutation rate
ittcount : iteration count

1. Initialize the population: Generate random α-polygons with m, m + 1, ..., n vertices containing S.
Also, set itt = 1.

2. Coding: Compute the vector C for each randomly generated polygon as a code such that C[i×
j× k] = 1 iff Zi,j,k=1. The length of C is n×m× r.

3. Packing: Construct a chromosome chr for each code using C such that chr[k] = j iff the kth inner
point is assigned to the jth edge of CH, i.e., ∃t ∈ {1, 2, ..., r} : C[k× j× t] = 1. The length of chr
is r.

4. Elitist selection: Select e percent of the best chromosomes, and move them to the next generation.
5. Crossover: The single-point crossover is used. Select a random position ind (1 ≤ ind ≤ r) and two

random chromosomes as the parents.
6. Mutation: Each child that is constructed in step 5 is mutated with a probability of mu. Select a

random position ind (1≤ind≤r) and randomly change the value of chr[ind]. The mutation leads
an inner point to be assigned to another edge.

7. Unpacking: Convert each chromosome of the new generation into an individual code. Each chr
in the new generation is unpacking to a code C. In this step, the order of assigned points for each
edge is specified.

8. Re-evaluate: Based on the objective function (Area, Perimeter, and Boundary), re-evaluate the
new polygons and keep the best chromosome as the solution. Replace the old generation with the
new one and set itt = itt + 1. If itt < ittcount go to step 3, otherwise finish.

Because of the exponential time complexity of the brute-force algorithm, the exact result could
not be obtained on large datasets in a reasonable computational time. Thus, we ran the GA on datasets

Mathematics 2019, 7, 24 21 of 25

of 15, 20, 25, and 30 points and displayed the resulting polygons in Figure 19 which are the solutions
for α-MAP for α = π.

Figure 19. Solutions for α-MAP for α = π and n =15, 20, 25 and 30.

As stated in Section 1, the concave hull is a generalization of the convex hull, that identifies the
area occupied by a set of points. Moreira and Santos presented an algorithm to compute the concave
hull [49], and in [54] an algorithm was presented to compute the concave hull in d dimensions. We
implemented the said algorithm in [49], and compared the quality of the obtained result with that of
the GA. Figure 20 illustrates this comparison with the x-axis exhibiting the cardinality of datasets and
the y-axis exhibiting the approximation average quality of the results.

Figure 20. Genetic algorithm (GA) versus concave hull algorithm (CH), in terms of both area and
perimeter metrics.

Figures 21–23 illustrate the results of GA on a set of points which are the solutions for α-MAP,
α-MPP, and α-MNP for different values of α, respectively. For α = 0, the constructed polygons are the

Mathematics 2019, 7, 24 22 of 25

convex hull of points. As the value of α increases, the concave angles start to appear in the polygons.
For large values of α (e.g., for α = 180◦), the boundary of the polygons would pass through all of the
points; the results are simple polygons with approximately minimum area, maximum perimeter, and
maximum number of vertices, respectively.

Figure 21. Application of GA to approximate α-MAP, for different values of α.

Figure 22. Application of GA to approximate α-MPP, for different values of α.

Figure 23. Application of GA to approximate α-MNP, for different values of α.

6. Conclusions

In this paper, we considered the problem of finding optimal simple polygons containing a set of
points in the plane. We generalized the problems of finding the minimum area, maximum perimeter,

Mathematics 2019, 7, 24 23 of 25

and maximum number of vertices containing a set of points by adding constraint to the angles of
polygons. We formulated the generalized problems as nonlinear programming models.

Given that all simple polygons contain a set of points, we derived an upper bound for
the minimum of the maximum angles of each polygon. As a further theoretical achievement,
we demonstrated that the problem of computing a polygon with minimum area is almost equivalent
to that of computing a polygon with a maximum number of vertices.

We presented a genetic algorithm to solve these models, and conducted experiments on several
datasets. Finally, in comparison to the brute-force method and other previous studies, better results
were obtained.

Author Contributions: The authors contributed equally to this work. The authors read and approved the
final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977,
4, 237–244. [CrossRef]

2. Fekete, S.P.; Pulleyblank, W.R. Area optimization of simple polygons. In Proceedings of the Ninth Annual
Symposium on Computational Geometry, San Diego, CA, USA, 18–21 May 1993; ACM; pp. 173–182.

3. Pakhira, M.K. Digital Image Processing and Pattern Recognition; PHI Learning Pvt. Limited: New Delhi, India,
2011.

4. Marchand-Maillet, S.; Sharaiha, Y.M. Binary Digital Image Processing: A Discrete Approach; Academic Press:
San Diego, California, 2000.

5. Pavlidis, T. Structural Pattern Recognition; Springer: Berlin, Germany, 2013; Volume 1.
6. Abdi, M.N.; Khemakhem, M.; Ben-Abdallah, H. An effective combination of MPP contour-based features

for off-line text-independent arabic writer identification. In Signal Processing, Image Processing and Pattern
Recognition; Springer: Berlin, Germany, 2009; pp. 209–220.

7. Galton, A.; Duckham, M. What is the region occupied by a set of points? In Proceedings of the International
Conference on Geographic Information Science, Münster, Germany, 20–23 September 2006; pp. 81–98.

8. Li, X.; Frey, H.; Santoro, N.; Stojmenovic, I. Strictly localized sensor self-deployment for optimal focused
coverage. IEEE Trans. Mob. Comput. 2011, 10, 1520–1533. [CrossRef]

9. Nguyen, P.L.; Nguyen, K.V. Hole Approximation-Dissemination Scheme for Bounded-Stretch Routing in
Sensor Networks. In Proceedings of the 2014 IEEE International Conference on Distributed Computing in
Sensor Systems (DCOSS), Marina Del Rey, CA, USA, 26–28 May 2014; pp. 249–256.

10. Lawler, E.L.; Lenstra, J.K.; Kan, A.R.; Shmoys, D.B.; The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization; Wiley: New York, NY, USA, 1985; Volume 3.

11. Asaeedi, S.; Didehvar, F.; Mohades, A. α-Concave hull, a generalization of convex hull. Theor. Comput. Sci.
2017, 702, 48–59. [CrossRef]

12. Fekete, S.P.; Woeginger, G.J. Angle-restricted tours in the plane. Comput. Geom. 1997, 8, 195–218. [CrossRef]
13. Culberson, J.; Rawlins, G. Turtlegons: Generating simple polygons for sequences of angles. In Proceedings

of the First Annual Symposium on Computational Geometry, Baltimore, MD, USA, 5–7 June 1985; ACM; pp.
305–310.

14. Evans, W.S.; Fleszar, K.; Kindermann, P.; Saeedi, N.; Shin, C.S.; Wolff, A. Minimum Rectilinear Polygons
for Given Angle Sequences. In Discrete and Computational Geometry and Graphs; Springer: Cham, 2015;
pp. 105–119.

15. Cho, H.G.; Evans, W.; Saeedi, N.; Shin, C.S. Covering points with convex sets of minimum size.
In Proceedings of the International Workshop on Algorithms and Computation, Kathmandu, Nepal,
29–31 March 2016; Springer: Cham, 2016; pp. 166–178.

16. Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems.
J. ACM (JACM) 1960, 7, 326–329. [CrossRef]

http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1109/TMC.2010.261
http://dx.doi.org/10.1016/j.tcs.2017.08.014
http://dx.doi.org/10.1016/S0925-7721(96)00012-0
http://dx.doi.org/10.1145/321043.321046

Mathematics 2019, 7, 24 24 of 25

17. Fasano, G. A global optimization point of view to handle non-standard object packing problems.
J. Glob. Optim. 2013, 55, 279–299. [CrossRef]

18. Liu, H.; Liu, W.; Latecki, L.J. Convex shape decomposition. In Proceedings of the 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 97–104.

19. Masehian, E.; Habibi, G. Robot path planning in 3D space using binary integer programming. Int. J. Mech.
Ind. Aerospace Eng. 2007, 1, 26–31.

20. Kallrath, J. Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 2009, 43, 299–328.
[CrossRef]

21. Speckmann, B.; Kreveld, M.; Florisson, S. A linear programming approach to rectangular cartograms.
Prog. Spat. Data Handl. 2006, 529–546._34. [CrossRef]

22. Seidel, R. Small-dimensional linear programming and convex hulls made easy. Discret. Comput. Geom. 1991,
6, 423–434. [CrossRef]

23. Peethambaran, J.; Parakkat, A.D.; Muthuganapathy, R. An Empirical Study on Randomized Optimal Area
Polygonization of Planar Point Sets. J. Exp. Algorithmics (JEA) 2016, 21, 1–10. [CrossRef]

24. Taranilla, M.T.; Gagliardi, E.O.; Hernández Peñalver, G. Approaching Minimum Area Polygonization; In XVII
Congreso Argentino de Ciencias de la Computación. Universidad Nacional de La Plata: La Plata, Argentina,
2011; pp. 161–170.

25. Moylett, D.J.; Linden, N.; Montanaro, A. Quantum speedup of the traveling-salesman problem for
bounded-degree graphs. Phys. Rev. A 2017, 95, 032323. [CrossRef]

26. Bartal, Y.; Gottlieb, L.A.; Krauthgamer, R. The traveling salesman problem: Low-dimensionality implies a
polynomial time approximation scheme. SIAM J. Comput. 2016, 45, 1563–1581. [CrossRef]

27. Hassin, R.; Rubinstein, S. Better approximations for max TSP. Inf. Process. Lett. 2000, 75, 181–186. [CrossRef]
28. Dudycz, S.; Marcinkowski, J.; Paluch, K.; Rybicki, B. A 4/5-Approximation Algorithm for the Maximum

Traveling Salesman Problem. In Proceedings of the International Conference on Integer Programming and
Combinatorial Optimization, Waterloo, ON, Canada, 26–28 June 2017; Springer: Cham, Switzerland, 2017;
pp. 173–185.

29. Matei, O.; Pop, P. An efficient genetic algorithm for solving the generalized traveling salesman problem.
In Proceedings of the 2010 IEEE International Conference on Intelligent Computer Communication and
Processing (ICCP), Cluj-Napoca, Romania, 26–28 August 2010; pp. 87–92.

30. Lin, B.L.; Sun, X.; Salous, S. Solving travelling salesman problem with an improved hybrid genetic algorithm.
J. Comput. Commun. 2016, 4, 98–106. [CrossRef]

31. Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Mohamd Shoukry, A.; Gani, S. Genetic
Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci.
2017, 2017, 7430125:1–7430125:7. [CrossRef] [PubMed]

32. Jakobs, S. On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 1996, 88, 165–181. [CrossRef]
33. Parvez, W.; Dhar, S. Path planning of robot in static environment using genetic algorithm (GA) technique.

Int. J. Adv. Eng. Technol. 2013, 6, 1205.
34. Vadakkepat, P.; Tan, K.C.; Ming-Liang, W. Evolutionary artificial potential fields and their application in real

time robot path planning. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA,
USA, 16–19 July 2000; Volume 1, pp. 256–263.

35. Dalai, J.; Hasan, S.Z.; Sarkar, B.; Mukherjee, D. Adaptive operator switching and solution space probability
structure based genetic algorithm for information retrieval through pattern recognition. In Proceedings of
the 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil,
India, 20–21 March 2014; pp. 1624–1629.

36. Duckham, M.; Kulik, L.; Worboys, M.; Galton, A. Efficient generation of simple polygons for characterizing
the shape of a set of points in the plane. Pattern Recognit. 2008, 41, 3224–3236. [CrossRef]

37. Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans.
Inf. Theory 1983, 29, 551–559. [CrossRef]

38. Gheibi, A.; Davoodi, M.; Javad, A.; Panahi, F.; Aghdam, M.M.; Asgaripour, M.; Mohades, A. Polygonal
shape reconstruction in the plane. IET Comput. Vision 2011, 5, 97–106. [CrossRef]

39. Peethambaran, J.; Muthuganapathy, R. A non-parametric approach to shape reconstruction from planar
point sets through Delaunay filtering. Comput.-Aided Des. 2015, 62, 164–175. [CrossRef]

http://dx.doi.org/10.1007/s10898-012-9865-8
http://dx.doi.org/10.1007/s10898-007-9274-6
http://dx.doi.org/10.1007/3-540-35589-8_34
http://dx.doi.org/10.1007/BF02574699
http://dx.doi.org/10.1145/2896849
http://dx.doi.org/10.1103/PhysRevA.95.032323
http://dx.doi.org/10.1137/130913328
http://dx.doi.org/10.1016/S0020-0190(00)00097-1
http://dx.doi.org/10.4236/jcc.2016.415009
http://dx.doi.org/10.1155/2017/7430125
http://www.ncbi.nlm.nih.gov/pubmed/29209364
http://dx.doi.org/10.1016/0377-2217(94)00166-9
http://dx.doi.org/10.1016/j.patcog.2008.03.023
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1049/iet-cvi.2009.0079
http://dx.doi.org/10.1016/j.cad.2014.12.002

Mathematics 2019, 7, 24 25 of 25

40. Amenta, N.; Bern, M.; Eppstein, D. The crust and the β-skeleton: Combinatorial curve reconstruction.
Graph. Models Image Process. 1998, 60, 125–135. [CrossRef]

41. Ganapathy, H.; Ramu, P.; Muthuganapathy, R. Alpha shape based design space decomposition for island
failure regions in reliability based design. Struct. Multidiscip. Optim. 2015, 52, 121–136. [CrossRef]

42. Fayed, M.; Mouftah, H.T. Localised alpha-shape computations for boundary recognition in sensor networks.
Ad Hoc Netw. 2009, 7, 1259–1269. [CrossRef]

43. Ryu, J.; Kim, D.S. Protein structure optimization by side-chain positioning via beta-complex. J. Glob. Optim.
2013, 57, 217–250. [CrossRef]

44. Varytimidis, C.; Rapantzikos, K.; Avrithis, Y.; Kollias, S. α-shapes for local feature detection. Pattern Recognit.
2016, 50, 56–73. [CrossRef]

45. Siriba, D.N.; Matara, S.M.; Musyoka, S.M. Improvement of Volume Estimation of Stockpile of Earthworks
Using a Concave Hull-Footprint. Int. Sci. J. Micro Macro Mezzo Geoinf. 2015, 5, 11–25.

46. Chau, A.L.; Li, X.; Yu, W. Large data sets classification using convex–concave hull and support vector
machine. Soft Comput. 2013, 17, 793–804. [CrossRef]

47. Vishwanath, A.; Ramanathan, M. Concave hull of a set of freeform closed surfaces in R 3. Comput.-Aided
Des. Appl. 2012, 9, 857–868. [CrossRef]

48. Jones, J. Multi-agent Slime Mould Computing: Mechanisms, Applications and Advances. In Advances in
Physarum Machines; Springer: Cham, 2016; pp. 423–463.

49. Moreira, A.J.C.; Santos, M.Y. Concave hull: A k-nearest neighbours approach for the computation of the
region occupied by a set of points. In Proceedings of the Second International Conference on Computer
Graphics Theory and Applications (GRAPP 2007), Barcelona, Spain, 8–11 March 2007; pp. 61–68.

50. Braden, B. The surveyor’s area formula. Coll. Math. J. 1986, 17, 326–337. [CrossRef]
51. Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett.

1972, 1, 132–133. [CrossRef]
52. Pick, G. Geometrisches zur zahlenlehre. Sitzenber. Lotos (Prague) 1899, 19, 311–319.
53. Qing-feng, Z. The Application of Genetic Algorithm in Optimization Problems. J. Shanxi Norm. Univ. (Nat.

Sci. Ed.) 2014, 1, 008.
54. Park, J.S.; Oh, S.J. A new concave hull algorithm and concaveness measure for n-dimensional datasets. J. Inf.

Sci. Eng. 2013, 29, 379–392.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1006/gmip.1998.0465
http://dx.doi.org/10.1007/s00158-014-1224-6
http://dx.doi.org/10.1016/j.adhoc.2008.12.001
http://dx.doi.org/10.1007/s10898-012-9886-3
http://dx.doi.org/10.1016/j.patcog.2015.08.016
http://dx.doi.org/10.1007/s00500-012-0954-x
http://dx.doi.org/10.3722/cadaps.2012.857-868
http://dx.doi.org/10.1080/07468342.1986.11972974
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Modeling
	Indices
	Input Data
	Assumptions
	Variables
	Functions
	Models
	Modeling -MAP
	Modeling -MPP
	Modeling -MNP

	Theoretical Results
	Upper Bound for in -MNP
	-MAP vice versa -MNP

	Numerical Experiments and Results
	Conclusions
	References

