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Abstract

:

In this paper, we generalize the problems of finding simple polygons with minimum area, maximum perimeter, and maximum number of vertices, so that they contain a given set of points and their angles are bounded by α+π where α (0≤α≤π) is a parameter. We also consider the maximum angle of each possible simple polygon crossing a given set of points, and derive an upper bound for the minimum of these angles. The correspondence between the problems of finding simple polygons with minimum area and maximum number of vertices is investigated from a theoretical perspective. We formulate these three generalized problems as nonlinear programming models, and then present a genetic algorithm to solve them. Finally, the computed solutions are evaluated on several datasets and the results are compared with those from the optimal approach.
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1. Introduction


Polygons are one of the fundamental objects in the field of computational geometry. Simple polygonization is a way to construct all possible simple polygons on a set of points in the plane. Global optimization problems, such as optimal area and perimeter polygonization [1,2], are of major interest to researchers and arise in various application areas, such as image processing [3,4], pattern recognition [3,5,6], geographic information systems (GIS) [7], sensor networks [8,9], and so on.



Minimum- and maximum-perimeter polygonization problems are known as the traveling salesman problem (TSP) and the maximum traveling salesman problem (Max-TSP), respectively, which are NP-complete problems [1,10]. Fekete considered a set of points on the grid and showed that the problems of minimum area polygonization (MAP) and maximum area polygonization (MAXP) on that set of points are NP-complete [2]. Recently, it has been shown that computing an α-concave hull (as a generalization of MAP) is still NP-hard [11].



To the best of our knowledge, little attention has been paid to the constraint on the internal angles of polygons in previous studies [12,13,14]. In this paper, we explore the optimum polygonization such that the internal angles of the polygons are bounded. Here, we define α-MAP, α-MPP, and α-MNP as the problems of computing simple polygons containing a set of points in the plane with minimum area, maximum perimeter, and maximum number of vertex points, respectively, such that all internal angles of the polygons are less than or equal to π+α. We consider α-MAP, α-MPP and α-MNP as generalizations of computing the convex hull, and formulate them as nonlinear programming models.



For a set S of points in the plane and for k≥2, an algorithm for finding k convex polygons that covers S is presented in [15], such that the total area of the convex polygons is minimized. Also, for k=2, another algorithm is presented, to minimize the total perimeter of the convex polygons.



There are many NP-complete problems such as TSP [16], packing problems [17], convex shape decomposition [18], and the path planning problem [19] that can be formulated as integer programming problems. In [20], a nonlinear programming model is presented for the problem of cutting circles from rectangles with minimum area. In [21], the rectangular cartogram problem is formulated as a bilinear program. Raimund Seidel constructs convex hulls of n points in Rd for d>3, using a linear programming algorithm [22].



There have been many studies on approximation and randomized algorithms for MAP [11,23,24], MAXP [23], TSP [25,26], and Max-TSP [27,28]. Here, we apply a genetic algorithm (GA) to solve α-MAP, α-MPP, and α-MNP, and then compare the results with those from the optimal approach. A genetic algorithm is used to solve many problems such as TSP [29,30,31], packing of polygons [32], path planning [33,34], and pattern recognition [35].



χ-shape [36], α-shape [37], concave hull [7], simple-shape [38], RGG [39], and crust [40] are all bounding hulls of a set of points, same as the convex hull. α-shape and concave hull are generalizations of the convex hull to cover a set of points, and can be used in the fields of space decomposition [41], sensor networks [42], bioinformatics [43], feature detection [44], GIS [45], dataset classification [46], shape reconstruction [47,48], and so on. We implement the concave hull algorithm [49], and then use the computed results to compare against those obtained from the GA.



The rest of the paper is as follows: In Section 2, we present some notation and definitions which are required throughout the paper. In Section 3, we first formulate the required functions and then introduce nonlinear programming models for α-MAP, α-MPP, and α-MNP. In Section 4, our theoretical results are discussed. For a set S of points, an upper bound for θ is obtained, such that θ is the minimum of maximum angles of each simple polygon containing S. Also, the similarity of the two problems α-MAP and α-MNP is investigated on the grid points. Section 5 is devoted to a full evaluation of our experimental results obtained by implementing the GA and the brute-force algorithm. Section 6 concludes the paper, highlighting its main contribution.




2. Preliminaries


Let S={s1,s2,…,sn} be a set of points in the plane, and CH be the convex hull of S. The vertices and edges of CH are denoted by VCH={c1,c2,…,cm} and ECH={e1,e2,…,em}, respectively. Furthermore, let IP={a1,a2,…,ar} be the inner points of CH, such that r=n−m. A polygon P containing S is specified by a closed chain of vertices P=(p1,p2,…,pl,p1). Table 1 shows more notation that is used in the rest of the paper. The simple polygon P contains S iff VP⊆S and ∀i∈{1,2,…,n}, si∈P. Moreover, P crosses a point x iff x∈VP.



MAP is the problem of computing the simple polygon M∈℘(S), such that ∀P∈℘(S),Area(M)≤Area(P); MPP is the problem of computing the simple polygon E∈℘(S), such that ∀P∈℘(S),Perimeter(E)≥Perimeter(P); and MNP is the problem of computing the simple polygon C∈℘(S), such that ∀P∈℘(S),Boundary(C)≥Boundary(P). The following definitions introduce the problems of computing α-MAP, α-MPP, and α-MNP.



Definition 1.

For 0≤α≤π, a simple polygon P∈℘(S) is an α-polygon if all internal angles of P are less than or equal to π+α [11].





Definition 2.

α-MAP, α-MPP and α-MNP are the problems of computing the α-polygon containing S with minimum area, maximum perimeter and maximum number of vertices, respectively.





In the case of α=π, the α-polygon, α-MAP, α-MPP, and α-MNP will be converted into the simple polygon, MAP, MPP, and MNP, respectively. Also, in the case of α=0, the α-polygon will be converted into the convex polygon, and all of the α-MAP, α-MPP, and α-MNP will be converted into CHP. We formulate these as binary nonlinear programming models:



Definition 3.

Let {c1,c2,…,cm} be the vertices of CH, ej=cjcj+1¯ be the jth edge of CH and P be a simple polygon containing S. The points {b1,j,b2,j,…,bt,j}∈S are assigned to the edge ej if (cj,b1,j,b2,j,…,bt,j,cj+1) is a chain in P.





Figure 1 shows that the polygon P assigns the points {b1,1,b2,1,b3,1} to the edge e1, the point {b1,2} to the edge e2, and so on. The inner points of P are unassigned. We assume that cj is assigned to ej.




3. Modeling


In this section we present nonlinear programming models for α-MAP, α-MPP, and α-MNP. We first introduce the indices, input data, and variables that are used in our models, and then formulate the required functions.



3.1. Indices


The following indices are utilized to formulate the problems α-MAP, α-MPP, and α-MNP as binary nonlinear programming models:

	
i∈{1,2,…,n} is an index counting the points of S. The point sn+1 is identified by s1, and the point sn+2 is identified by s2.



	
j∈{1,2,…,m} is an index counting the edges in ECH and the vertices in VCH. The edge em+1 is identified by e1, and the vertex cm+1 is identified by c1.



	
k∈{0,1,…,r} specifies the order of assigned points for an edge of convex hull. bk,j is the kth point which is assigned to ej. Assume that ci is assigned to ei at the position 0.









3.2. Input Data


The input data is as follows:

	
n is the number of points in S.



	
(xi,yi)∈R2 is the coordinate of the point si.



	
α∈[0,π] is the constraint for angles.









3.3. Assumptions


	
x(j) is the x-coordinate of cj.



	
y(j) is the y-coordinate of cj.







3.4. Variables


In this model, we have n×m×r variables, denoted by z, which is defined as follows: Zi,j,k is a binary variable such that Zi,j,k=1 iff the point si is assigned to ej at the position of k. In Figure 1, Assume that b3,1 is the tenth point of S. Since b3,1 is assigned to e1 at the position of 3, we have Z10,1,3=1.




3.5. Functions


The functions used in this model are listed below.

	
Area(P) is the area of the polygon P.



	
Perimeter(P) is the perimeter of the polygon P.



	
Boundary(P) is the number of vertices of the polygon P.



	
X(a) is the x-coordinate of the point a in the plane.



	
Y(a) is the y-coordinate of the point a in the plane.



	
X(j,k) is the x-coordinate of the kth points that is assigned to ej.


X(j,k)=Σi=1nZi,j,k·xi



(1)







	
Y(j,k) is the y-coordinate of the kth points that is assigned to ej.


Y(j,k)=Σi=1nZi,j,k·yi



(2)







	
Adjust(i1,i2): if ∃e∈EP such that si1 and si2 are endpoints of e, then Adjust(i1,i2)=1, otherwise, Adjust(i1,i2)=0.



	
Conflict(i1,i2,i3,i4): if two edges si1si2¯ and si3si4¯ cross each other, then Conflict(i1,i2,i3,i4)=1, otherwise, Conflict(i1,i2,i3,i4)=0.



	
Angle(i1,i2,i3) is the clockwise angle between si1si2¯ and si2si3¯.








Figure 2 is an example of a polygon P containing the set S={s1,s2,…,s19}. In this example, the points {s5,s6,s10} are assigned to e1. Hence, we have Z5,1,1=Z6,1,2=Z10,1,3=1. Also, since s1 is assigned to e1 at the position 0, Z1,1,0=1. In the same way, for the other edges of CH, we have: Z11,2,0=Z15,2,1=1, Z19,3,0=1, Z18,4,0=Z17,4,1=Z16,4,2=Z13,4,3=1, Z12,5,0=Z7,5,1=1,Z2,6,0=Z3,6,1=Z4,6,2=1. In Figure 2, to compute X(j,k) for j=4 and k=2 we have:


X(4,2)=Σi=119Zi,4,2·xi=0+…+0+x16+0+0+0=x16.












3.6. Models


Here, we present the nonlinear programming formulations for α-MAP, α-MPP, and α-MNP. We first formulate the functions Adjust, Conflict and Angle as follows: The Adjust function is used to determine if two points are adjacent to each other in the polygon, the Conflict function is used to check if the polygon is simple and the Angle function is used to compute the angle between two edges to verify the angular constraint.



Adjust function



The Adjust function is computed as follows:


Adjust(i1,i2)=1∃k∈{0,…,r−1},∃j∈{1,…,m}∣Zi1,j,k=Zi2,j,k+1=11∃k∈{0,…,r−1},∃j∈{1,…,m}∣Zi2,j,k=Zi1,j,k+1=11∃k∈{1,…,r},∃j∈{1,…,m}∣Zi1,j,k=Zi2,j+1,0=1,∀i∈{1,…,n}Zi,j,k+1=01∃k∈{1,…,r},∃j∈{1,…,m}∣Zi2,j,k=Zi1,j+1,0=1,∀i∈{1,…,n}Zi,j,k+1=00otherwise



(3)







As seen in Figure 2, s6 is adjusted to s10. Since Z6,1,2=Z10,1,3=1, we have Adjust(6,10)=1. Also, since Z10,1,3=Z11,2,0=1 and ∀i∈{1,…,n}Zi,1,4=0, we have Adjust(10,11)=1.



Conflict function



To compute the conflict function, consider the following expression:


Ei1,i2=(X(si2)−X(si1),Y(si2)−Y(si1))Ri1,i2=(−Y(Ei1,i2),X(Ei1,i2))h(i1,i2,i3,i4)=(Ei3,i1.Ri1,i2)/(Ei3,i4.Ri1,i2)=(X(Ei3,i1)·X(Ri1,i2)+Y(Ei3,i1)·Y(Ri1,i2))(X(Ei3,i4)·X(Ri1,i2)+Y(Ei3,i4)·Y(Ri1,i2)).



(4)







So, the function Conflict(i1,i2,i3,i4) is computed as follows:


Conflict(i1,i2,i3,i4)=0≤h(i1,i2,i3,i4)≤1and1Adjust(i1,i2)=Adjust(i3,i4)=1andAdjust(i1,i3)=Adjust(i2,i4)=00otherwise



(5)







Based on the mentioned notation, P is simple if ∀i1,i2,i3,i4∈{1,2,…,n}, such that i1≠i2≠i3≠i4, Adjust(i1,i2)=Adjust(i3,i4)=1, and Adjust(i1,i3)=Adjust(i2,i4)=0, we have Conflict(i1,i2,i3,i4)=0.



Angle function



The polygon P is an α-polygon iff ∀i1,i2,i3∈{1,2,…,n} such that i1≠i2≠i3, Adjust(i1,i2)=Adjust(i2,i3)=1 and Adjust(i1,i3)=0, we have Angle(i1,i2,i3)≤π+α. The angle between two line segments A and B can be computed as follows:


θ=arccosA.B(|A|·|B|).



(6)







Based on the mentioned notation, let


Ai1,i2=(X(si2)−X(si1),Y(si2)−Y(si1)),Bi2,i3=(X(si3)−X(si2),Y(si3)−Y(si2)).



(7)







If Adjust(i1,i2)=Adjust(i2,i3)=1 and Adjust(i1,i3)=0, Angle(i1,i2,i3) is computed as follows, otherwise Angle(i1,i2,i3)=0.


Angle(i1,i2,i3)=arccosX(Ai1,i2)·X(Bi2,i3)+Y(Ai1,i2)·Y(Bi2,i3)X(Ai1,i2)2+Y(Ai1,i2)2·X(Bi2,i3)2+Y(Bi2,i3)2.



(8)








3.6.1. Modeling α-MAP


α-MAP is the problem of computing the α-polygon with the minimum area on a set of points. Since ℘(S) is the set of all simple polygons containing S, α-MAP can be formulated as follows:


minP∈℘(S)Area(P)suchthatAllinternalanglesofParelessthanorequaltoπ+α



(9)







As seen in Figure 1, each polygon P∈℘(S) assigns the points of S to the edges of CH. Therefore, each simple polygon containing S is equivalent to an assignments of the points of S to the edges of CH, and each assignment is determined by an evaluation of Zi,j,k for all i,j,k. In the following, the area function is formulated as an objective function of the model.



Theorem 1.

Let P∈℘(S) be a simple polygon and Z be the corresponding assignment for P. The area of P is computed as follows:


Area(P)=Σj=1mΣk=1r[[Σi=1nZi,j,k·xi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k))·x(j+1)+Σi=1nZi,j,k−1·xi]×[Σi=1nZi,j,k·yi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k))·y(j+1)−Σi=1nZi,j,k−1·yi]].



(10)









Proof. 

Based on the Shoelace formula (also known as the surveyor’s formula [50]), the area of a polygon P=(p1,p2,…,pl,p1) is:


Area(P)=Σi=1l(X(pi+1)+X(pi))·(Y(pi+1)−Y(pi)).



(11)







As an example, assume that P is the polygon of Figure 2. So, p1=s1, p2=s5, p3=s6, p4=s10, and p5=s11. Let Ti=(X(pi+1)+X(pi))·(Y(pi+1)−Y(pi)), thus we have:


T1=(X(p2)+X(p1))·(Y(p2)−Y(p1))=(X(s5)+X(s1))·(Y(s5)−Y(s1)).



(12)







Since the points s5 and s1 are assigned to e1 at positions 1 and 0, respectively, we have:


T1=(X(1,1)+X(1,0))·(Y(1,1)−Y(1,0)).



(13)







In the same way,


T2=(X(p3)+X(p2))·(Y(p3)−Y(p2))=(X(1,2)+X(1,1))·(Y(1,2)−Y(1,1)),T3=(X(p4)+X(p3))·(Y(p4)−Y(p3))=(X(1,3)+X(1,2))·(Y(1,3)−Y(1,2)),T4=(X(p5)+X(p4))·(Y(p5)−Y(p4))=(X(2,0)+X(1,3))·(Y(2,0)−Y(1,3)).



(14)







Based on the above equations, we employ the below formula for T1,T2, and T3 so that:


Tk=(X(1,k)+X(1,k−1))·(Y(1,k)−Y(1,k−1)).



(15)







Equation (15) cannot be used for T4:


(X(1,4)+X(1,3))·(Y(1,4)−Y(1,3))≠(X(2,0)+X(1,3))·(Y(2,0)−Y(1,3)).











In other words, Equation (15) can be used while the points are assigned to the same edge. In Equation (14), for T4, the point p5=s11 is assigned to e2 while the point p4 is assigned to e1. Based on Equation (1), since ∀i∈{1,2,…,n},Zi,1,4=0⇒X(1,4)=Σi=1nZi,1,4=0⇒(1−Σi=1nZi,1,4)·x(2)=x(2)⇒(1−Σi=1nZi,1,4)·x(2)=X(p5). Hence, (1−Σi=1nZi,1,4)·x(2) can be used to compute X(p5).


Tk=(X(1,k)+(1−Σi=1nZi,1,k)·x(2)+X(1,k−1))×(Y(1,k)+(1−Σi=1nZi,1,k)·y(2)−Y(1,k−1)).



(16)







Based on Equation (16):


T4=(X(1,4)+(1−Σi=1nZi,1,4)·x(2)+X(1,3))×(Y(1,4)+(1−Σi=1nZi,1,4)·y(2)−Y(1,3)),T4=(0+(1−0)x(2)+X(1,3))·(0+(1−0)y(2)−Y(1,3)),T4=(X(2,0)+X(1,3))·(Y(2,0)−Y(1,3)).



(17)







Since, based on Equation (1), X(1,k) is equal to 0 for all k≥4, we have:


T5=(0+(1−0)x(2)+X(1,4))·(0+(1−0)y(2)−Y(1,4)),T5=(0+X(2,0)+0)·(0+Y(2,0)−0).



(18)







Hence, in order to avoid extra summation, we employ the following equation:


Tk=[X(1,k)+(Σi=1nZi,1,k−1)·(1−Σi=1nZi,1,k)·x(2)+X(1,k−1)]×[Y(1,k)+(Σi=1nZi,1,k−1)·(1−Σi=1nZi,1,k)·y(2)−Y(1,k−1)].



(19)







From Equation (19), for all k≥5 we have:


Tk=(0+(0)·(1−0)·x(2)+0)×(0+(0)·(1−0)·y(2)−0)=0.



(20)







Considering the points that are assigned to ej, Equation (19) can be extended as follows:


Tj,k=[X(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)+X(j,k−1)]×[Y(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Y(j,k−1)].



(21)







Based on Equation (11), the area of the polygon P is computed as follows:


Area(P)=Σj=1mΣk=1rTj,k=Σj=1mΣk=1r[[X(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)+X(j,k−1)]×[Y(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Y(j,k−1)]].



(22)







From Equations (1), (2) and (22), we have:


Area(P)=Σj=1mΣk=1r[[Σi=1nZi,j,k·xi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)+Σi=1nZi,j,k−1·xi]×[Σi=1nZi,j,k·yi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Σi=1nZi,j,k−1·yi]].



(23)




 □





Based on Theorem 1, Equation (9) is formulated as follows:


minΣj=1mΣk=1r[[Σi=1nZi,j,k·xi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)+Σi=1nZi,j,k−1·xi]×[Σi=1nZi,j,k·yi+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Σi=1nZi,j,k−1·yi]]suchthatZi,j,k∈{0,1}∀i∈{1,…,n},∀j∈{1,…,m},∀k∈{1,…,r},(a)Σj=1mΣk=1rZi,j,k≤1∀i∈{1,2,…,n},(b)conflict(i1,i2,i3,i4)=0∀i1,i2,i3,i4∈{1,2,…,n}∣i1≠i2≠i3≠i4,(c)angle(i1,i2,i3)≤π+α∀i1,i2,i3∈{1,2,…,n}∣i1≠i2≠i3.(d)



(24)







In Equation (24), constraint (a) considers all assignments of the points while constraint (b) prevents assigning a point to more than one edge. The point si is unassigned if Σj=1mΣk=1rZi,j,k=0, and assigned to one edge if Σj=1mΣk=1rZi,j,k=1. Also, constraint (b) prevents assigning a point to more than one position on an edge. In addition, constraint (c) guarantees that the constructed polygon is simple, while constraint (d) ensures that it is an α-polygon.



When α=0, the solution of Equation (24) is an assignment that constructs the convex hull of the points, and when α=π the solution of Equation (24) is an assignment that constructs M as the solution of MAP on the points. There is an algorithm to compute CH in O(nlogn) time [51], while MAP is NP-complete.



Figure 3 illustrates the solution of α-MAP on a set of points for different values of α.




3.6.2. Modeling α-MPP


α-MPP is the problem of computing the α-polygon with the maximum perimeter on a set of points. Since ℘(S) is the set of all simple polygons containing S, α-MPP is computed as follows:


maxP∈℘(S)Perimeter(P)suchthatAllinternalanglesofParelessthanorequaltoπ+α



(25)







Let P=(p1,p2,…,pl,p1) be a polygon containing S. The perimeter of P is the total length of its edges:


Perimeter(P)=Σi=1l(X(pi+1)−X(pi))2+(Y(pi+1)−Y(pi))2.



(26)







By using Z as the corresponding assignment for P, similar to Theorem 1, the perimeter of P is computed as follows:


Perimeter(P)=Σj=1mΣk=1r(X(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)−X(j,k−1))2+(Y(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Y(j,k−1))2



(27)







Based on Equations (25) and (27), we have the following formula for α-MPP:


maxΣj=1mΣk=1r(X(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·x(j+1)−X(j,k−1))2+(Y(j,k)+(Σi=1nZi,j,k−1)·(1−Σi=1nZi,j,k)·y(j+1)−Y(j,k−1))2suchthatZi,j,k∈{0,1}∀i∈{1,…,n},∀j∈{1,…,m},∀k∈{1,…,r},(a)Σj=1mΣk=1rZi,j,k≤1∀i∈{1,2,…,n},(b)conflict(i1,i2,i3,i4)=0∀i1,i2,i3,i4∈{1,2,…,n}∣i1≠i2≠i3≠i4,(c)angle(i1,i2,i3)≤π+α∀i1,i2,i3∈{1,2,…,n}∣i1≠i2≠i3.(d)



(28)







When α=0, the solution of Equation (28) is an assignment that constructs the convex hull of the points, and when α=π it is an assignment that constructs E as the solution of MPP, which is known as Max-TSP, on the points. There is an algorithm to compute CH in O(nlogn) time, while Max-TSP is a well-known NP-complete problem.



Figure 4 illustrates the solution of α-MPP on a set of points for different values of α.




3.6.3. Modeling α-MNP


α-MNP on a set of points is the problem of computing the α-polygon with the maximum number of vertices. Since ℘(S) is the set of all simple polygons containing S, α-MNP is computed as follows:


maxP∈℘(S)Boundary(P)suchthatAllinternalanglesofParelessthanorequaltoπ+α



(29)







As stated before, Zi,j,k is equal to 1 iff the point si is assigned to the edge ej at the position k. Hence, the following equation specifies the number of vertex points for the constructed polygon P:


Boundary(P)=Σi=1nΣj=1mΣk=0rZi,j,k.



(30)







Similar to α-MAP and α-MPP, α-MNP is formulated as follows:


maxΣi=1nΣj=1mΣk=0rZi,j,ksuchthatZi,j,k∈{0,1}∀i∈{1,…,n},∀j∈{1,…,m},∀k∈{1,…,r},(a)Σj=1mΣk=1rZi,j,k≤1∀i∈{1,2,…,n},(b)conflict(i1,i2,i3,i4)=0∀i1,i2,i3,i4∈{1,2,…,n}∣i1≠i2≠i3≠i4,(c)angle(i1,i2,i3)≤π+α∀i1,i2,i3∈{1,2,…,n}∣i1≠i2≠i3.(d)



(31)







When α=0, the solution of Equation (31) is an assignment that constructs the convex hull of the points, and when α=π the solution of Equation (31) is an assignment that constructs C as the solution of MNP on the points. C is a simple polygon that crosses all points. There are optimal algorithms to compute CH and C in O(nlogn) time.



Figure 5 illustrates the solution of α-MNP on a set of points, for different values of α.





4. Theoretical Results


In this section, we present our theoretical results. As stated before, α-MNP will be converted into CHP and SPP when α=0 and α=π, respectively, which are solvable in polynomial time. When α=π, the constructed polygon crosses all points. For each set S of points, the smallest value of α such that α-MNP crosses S is computed in the next subsection.



4.1. Upper Bound for α in α-MNP


For each polygon P∈℘(S), assume that γP is the maximum angle of the polygon P. Let θ be the minimum value of γP over all P∈℘(S) that crosses S. For all α≥θ−π, there always exists an α-polygon that crosses S. In other words, the polygon P′ such that γP′=θ, satisfies α-MNP for all α≥θ−π. Here, we present an upper bound for θ, on any set of points.



In Theorem 2, it is shown that 2π−2π2r−1m can be interpreted as an upper bound for θ, and in Theorem 3 this bound is improved. In the following, we design an algorithm to construct a simple polygon containing S which satisfies these bounds. Let us first define the concept of a “sweep arc”, and then prove some lemmas.



Definition 4.

Let e=AB¯ be an edge of polygon P. A sweep arc on the edge e is a minor arc AB where AB⌢=0 and expands to the major arc AB where AB⌢=π. The direction of expansion is to the inside of the polygon. Figure 6 depicts the sweep arc on the edge e.





Let ej be an edge of the polygon P. We denote the major segment with length of β that corresponds to ej by Mjβ.



Lemma 1.

Let x be a point inside the convex polygon P, E={e1,e2,…,em} be the edges of P and β=2π−4πm. Then ∃j∈{1,2,…,m}, such that x∈Mjβ.





Proof. 

Let βj be the angle subtended by ej at the point x and βM be the maximum angle. Let e be the edge that corresponds to βM. Since Σj=1mβj=2π, we have βM≥2πm and the corresponding arc of βM is more than 4πm. Hence, the measure of the sweep arc on the edge e at x is less than 2π−4πm, (see Figure 7). □





Lemma 2.

Let P be a convex polygon, {e1,e2,…,em} be the edges of P and βmax=2π−4πm. The entirety of P is covered by all major segments with length of βmax that correspond to the edges of P, i.e., P⊂∪j=1mMjβmax (see Figure 8).





Proof. 

To prove the lemma by reductio ad absurdum, suppose that there exists a point x inside the polygon P and outside of all the major segments. Since the measures of all major segments are equal to 2π−4πm, there is no edge e such that the sweep arc on e touches x at the measure β≤2π−4πm, i.e., ∀j∈{1,2,…,m}, x∉Mjβmax. This contradicts Lemma 1. □





Remark 1.

Suppose that the convex hull of S has n−1 edges; that is, one point is inside the convex hull. Based on Lemma 2, 2π−2πn−1 is an upper bound for θ over all simple polygons containing S. It is noteworthy that this bound is tight. The tightness is achieved when the inner point is at the center of a regular n-gons, as illustrated in Figure 9.





In the following, we generalize the upper bound for any set S of points, and then present an algorithm to generate a polygon containing S that satisfies the generalized upper bound. However, let us first consider a sweep arc on an edge to measure βmax that includes a set of n points.



Lemma 3.

Let e=c1c2¯ be a line segment and S be a set of n points inside the major segment corresponding to e, such that the measure of major arc is βmax=2π−4πm for an integer number m (see Figure 10a). There exists a chain (s1,s2,…,sn) on S such that all internal angles of si^ in the polygon (c1,s1,s2,…,sn,c2,c1) are greater than or equal to 2π2n−1·m (see Figure 10b).





Proof. 

Here, we employ the sweep arc algorithm to construct the polygon.



Algorithm 1 (Sweep Arc Algorithm)



Let us sweep the arc from measure 0 to βmax on e=c1c2¯. By so doing, the polygon is constructed, while the arc hits the points. In the following, we show how to construct the polygon step by step.



On the first hit:



Let x1 be the first point that the sweeping arc meets. We construct the polygon by connecting x1 to c1 and c2. Since the maximum measure of the arc is βmax, the internal angle of x1^ in the triangle (c1x1c2) is greater than or equal to 2πm (see Figure 11).



On the second hit:



Let x1 be the first point that the sweeping arc meets and x2 be the second one. Also, let e1=c1x1¯ and e2=c2x1¯ be two constructed edges in the previous step. The edges e1 and e2 divide the sweeping arc into 3 parts; the arc B1 where e1 is visible but e2 is not visible from all the points on it; the arc B2 where e2 is visible but e1 is not visible from all the points on it; and finally the arc B3 where e1 and e2 are visible from all points on it (see Figure 12).



Case 1.



If x2 is placed on B1: The angle c1x2x1^ is greater than c1x2c2^, and the angle c1x2c2^ is greater than or equal to 2πm. Hence, the angle c1x2x1^ is greater than 2πm. Since the internal angles x2^ and x1^ are greater than 2π2m, we consider the polygon (c1x2x1c2c1) as the constructed polygon.



Case 2.



If x2 is placed on B2: Based on the same reason mentioned above, the angle c2x2x1^ is greater than 2πm. Since the internal angles x2^ and x1^ are greater than 2πm, we consider the polygon (c1x1x2c2c1) as the constructed polygon.



Case 3.



If x2 is placed on B3: In contrast to the previous cases, the angles c1x2x1^ and c2x2x1^ are less than c1x2c2^, but the maximum of c1x2x1^ and c2x2x1^ is greater than c1x2c2^2. Since c1x2c2^ is greater than 2πm, the maximum of c1x2x1^ and c2x2x1^ is greater than 2π2m. Hence, if c1x2x1^>c2x2x1^, the constructed polygon is (c1x2x1c2c1); otherwise, it is (c1x1x2c2c1).



In other words, the angular bisector of c1x1c2^ divides the sweeping arc into 2 parts, A1 and A2 (see Figure 13). Any point x2 on A1 constructs the angle c1x2x1^ greater than 2π2m, and on A2 constructs the angle x1x2c2^ greater than 2π2m. Hence, in the case where point x2 is placed on A1, we consider the polygon (c1x2x1c2c1) as the constructed polygon and, if placed on A2, we consider the polygon (c1x1x2c2c1) as the constructed polygon.



On the third hit:



Without loss of generality, assume that (c1x2x1c2c1) is the polygon obtained at the end of the previous step. The angular bisector of c1x2x1^ divides A1 into 2 parts A11 and A12. Hence, the sweeping arc is divided into 3 parts A2, A11 and A12 (see Figure 14).



Based on the previous step, any point x3 on A2 leads to the construction of the angle x1x3c2^ which is greater than 2π2m. Similarly, any point x3 on A11 and A12 leads to the construction of the angles c1x3x2^ and x2x3x1^, respectively, which are greater than c1x3x1^2. Since any angle c1x3x1^ on A1 is greater than 2π2m, either the angle c1x3x2^ or x2x3x1^ is greater than 2π4m.



Let x3 be the third point that the sweeping arc meets. If x3 is placed on A2, or on A11 or on A12, we consider (c1x2x1x3c2c1) or (c1x3x2x1c2c1) or (c1x2x3x1c2c1) as the constructed polygon, respectively (see Figure 15).



Generalization:



Assume that (c1x1x2…xn−1c2c1) is the obtained polygon at the end of the previous step. Let xn be the next point touched by the sweeping arc which is divided into n parts A1,A2,…,An. Considering the worst case, xn is placed on Ai or on Ai+1 such that the angular bisector of xi^ divides the corresponding part into Ai and Ai+1. Any point xn on Ai, or on Ai+1, leads to the construction of the angle xn^ which is greater than xi^2. Based on the previous step and considering the worst case, the angle xi^ is greater than 2π2n−2m. Hence, the angle xn^ is greater than 2π2n−1m. If xn is placed on A1, or on A2, ... or on An, we consider the polygon (c1xnx1…xn−1c2c1), or (c1x1xnx2…xn−1c2c1), ... or (c1x1…xn−1xnc2c1) as the constructed polygon, respectively. □





We refer to the polygon constructed by Algorithm 1 as a polygon corresponding to the line segment e. In the following, based on the Lemma 3, we present an algorithm to generate a polygon containing a given set of points, such that all internal angles are less than 2π−2π2r−1m.



Theorem 2.

There exists a polygon P∈℘(S) that crosses S, in which all internal angles of P are less than 2π−2π2r−1m.





Proof. 

Here, by presenting Algorithm 2, we construct the polygon.



Algorithm 2




	
Compute CH as the convex hull of S, and let IP be the set of inner points of CH.



	
For each edge ej of CH:

	(a)

	
Compute the polygon Pj corresponding to the edge ej using Algorithm 1 to meet the points of IP.




	(b)

	
Remove the vertices of Pj from IP.









	
For all j∈{1,2,…,m}, the edges of Pj minus all edges of CH (except those that have no corresponding polygon), construct the desired polygon.








Based on Lemma 2, the entire CH is covered by all major segments that correspond to the edges of CH with length of βmax=2π−4πm. Since the number of points inside the major segments is less than r and also, based on Lemma 3, all internal angles of the corresponding polygons are greater than or equal to 2π2r−1m. Hence, all internal angles of the polygon computed by Algorithm 2 are less than 2π−2π2r−1m. □





In step 2(a) of Algorithm 2, for each edge of CH, the measure of sweeping arc expands from 0 to βmax, and the sweeping arc contains the inner points as much as possible. In Algorithm 3 (presented below), the sweeping arcs that correspond to all edges of CH expand concurrently to contain all inner points. In this way, the upper bound is improved to 2π−2π2d−1m, such that d is the depth of angular onion peeling on S which is defined as follows:



Let us increase the measure of all sweeping arcs concurrently from 0 to the first hit (or βmax, if a sweeping arc does not hit any point). All inner points that are hit by sweeping arcs form layer 1 of the points. The next layers are formed by deleting the points of the computed layer from inner points and keep increasing the measure of all sweeping arcs to the next hit. The process continues until all inner points are hit. The process of peeling away the layers, described above, is defined as "angular onion peeling" and the number of layers is called "depth of angular onion peeling" on these points.



Theorem 3.

There exists a polygon P∈℘(S) such that crosses S, and all internal angles of P are less than 2π−2π2d−1m where d denotes the depth of angular onion peeling on S.





Proof. 

Here, by presenting Algorithm 3, we construct such a polygon.



Algorithm 3




	
Compute CH as the convex hull of S, and let IP be the set of inner points.



	
While IP is not empty:



	(a)

	
Increase the measure of all sweeping arcs to the next hit or βmax.




	(b)

	
Based on Algorithm 1, reconstruct the polygons corresponding to each edge of CH.




	(c)

	
Remove the visited points from IP.












All edges of corresponding polygons computed in step 2, minus all of the edges of CH (except those that have no corresponding polygon), construct the desired polygon.



Since, the number of points inside the major segments are less than d, all internal angles of corresponding polygons are greater than or equal to 2π2d−1m. Hence, all internal angles of the polygon computed by Algorithm 3 are less than 2π−2π2d−1m. □






4.2. α-MAP vice versa α-MNP


Let S be a set of points on the grid G and P∈℘(S) be a simple polygon. Based on Pick’s theorem [52], the area of P is equal to b2+i−1 where b is the number of grid points on the boundary of P and i is the number of grid points which are inside the polygon P.



The polygon P crosses both b1 points of S, which we call vertex points, and b2 non-vertex points on G, which we call grid points. Hence, Area(P)=b1+b22+i−1.



Assume that two polygons A and B with the same number of inner grid points cross no grid points (i.e., b2=0). Hence, based on Pick’s theorem, the area of polygon A is more than that of B iff the number of vertex points in A is more than that in B. In this case, α-MAP is equivalent to α-MNP.



In the following, we show that for each polygon P∈℘(S) on the grid and all ϵ>0, there exists a polygon P′ with the same vertices points such that |Area(P)−Area(P′)|<ϵ, and P′ does not cross any grid point.



Let e=ab¯ be an edge of P on the grid G. If a=(xa,ya) and b=(xb,yb), We=|xb−xa| is the width of e and He=|yb−ya| is the height of e. (see Figure 16)



Lemma 4.

Let e be an edge of P on the grid G. If We and He are coprime integers, then e does not cross any grid point.





Proof. 

Assume e crosses n>0 grid points. As shown in Figure 17, We is divided into n+1 parts, similar to He. Hence, n+1 is common divisor of We and He. □





Lemma 5.

Let a and b be two non-coprime integers. There exist infinitely many positive integers x>1, such that ax and bx−1 are coprime integers.





Proof. 

Each common denominator of a and b satisfies x. □





Definition 5.

The polygon P∈℘(S) is a grid-avoiding polygon if P does not cross any grid points.





The following theorem shows that if P crosses some grid points, for all ϵ>0 there exists a grid-avoiding polygon P′ such that |Area(P)−Area(P′)|<ϵ.



Theorem 4.

Let e=ab¯ be an edge of P∈℘(S) that crosses a grid point. For all ϵ>0, there exists a point b′ such that e′=ab′¯ does not cross any grid point, the number of inner grid points does not change, and |Area(abb′)|<ϵ.





Proof. 

We convert the grid G to the grid G′ by dividing each cell of G into x2 subcells and placing b′ on the one grid point left or right of b, as shown in Figure 18. If the right (left) grid point is inside the polygon P, place b′ on the right (left) side of b. Let n=xHe, m=xWe and m′=xWe′=m−1. Based on Lemma 5, there exist infinitely many integers x such that n and m′ are coprime integers. Based on Lemma 4, since n and m′ are coprime integers, the edge e′ does not cross any grid point of G′. As seen in Figure 18, the number of grid points inside the polygon does not change.



Let u be the length of each side of grid cells in G and u′ be the length of each side of grid cells in G′. Based on Figure 18, Area(abb′)=12u′He. Since u′=ux and there exist infinitely many integers x such that xWe′ and xHe are coprime integers, for each ϵ>0 there exists an integer x such that |Area(abb′)|<ϵ. □





The following algorithm converts the grid G into the grid G′, and the polygon P into the grid-avoiding polygon P′ on G′.



Algorithm 4



Let P=(a1,a2,a3,…,an,a1) be the polygon on the grid G.

	
Set i=1



	
If i=n go to 5, otherwise set e=aiai+1¯



	
If e does not cross any grid point

	(a)

	
i=i+1




	(b)

	
Go to step 2.









	
Else

	(a)

	
Set x=LCD(We,He)




	(b)

	
Convert G into the grid G′ using x (dividing each cell of G into x2 subcells).




	(c)

	
For j=1 to i−1

	
If d=ajaj+1¯ crosses any grid point

	
Move the vertex aj+1 to the left side or right side grid point (in G′).














	(d)

	
If e crosses any grid point

	
Move the vertex ai+1 to the left side or right side grid point (in G′).









	(e)

	
set i=i+1 and go to step 2.









	
Exit.








Let Wi be the width of ei=aiai+1¯ and Hi be the length of ei. Let us further assume that W1 and W2 are coprime to H1 and H2, respectively. Steps 3(a) and 3(b) avoid changing the position of these vertices. Assume e3=a3a4¯ crosses a grid point. The grid G is converted into the grid G′ in step 4(b). In the new grid G′, since W1′=xW1 and H1′=xH1, the width and length of e1 are not coprime integers the same as the width and length of e2. Therefore, the position of the previous vertices should be changed. Step 4(c) of Algorithm 4 updates the position of the previous vertices. Note that changing e1 may have an effect on the edge e2. Hence, we check the loop in step 4(c), to see if the edge crosses any grid point. If so, then updating the last previous edge may have an effect on the edge e3. Hence, in step 4(d), we change the position of a4 if e3 crosses any grid point. Finally, the position of all vertices are updated such that the new edges do not cross any grid point.



Corollary 1.

Let P1 and P2 be two simple polygons containing S with the same number of inner grid points. Boundary(P1)>Boundary(P2) iff Area(P1)<Area(P2). In other words, under these conditions we have the same solution for α-MAP and α-MNP.





Corollary 2.

Let P1 and P2 be two simple polygons containing S. If Boundary(P1)⊂Boundary(P2), then Area(P2)<Area(P1).







5. Numerical Experiments and Results


Considering Equations (24), (28) and (31), the time complexity of the brute-force algorithm is O(2n·m·r) such that n is the number of points, m is the number of vertices of CH, and r is the number of inner points. In this section, we present a genetic algorithm as a fast and accurate method to solve these models. The genetic algorithm is a powerful stochastic search technique, which is applicable to a variety of nonconvex optimization problems [53].



In order to evaluate the results, we implemented both the GA and the brute-force algorithm for α-MAP, α-MPP, and α-MNP. We ran both algorithms on the same datasets of points. Each dataset contained 100 sets of points with the same cardinality. We obtained the results for datasets of 5, 7, 10, and 12 points which are tabulated in Table 2.



A polygon-match occurs if the result of the GA on a set of points is the same as that of the brute-force algorithm. The quantity column in Table 2 shows the percentage of polygon-matches in each dataset, and the quality column displays the average difference between the two areas; that is, Area(P)−Area(P′) where P and P′ are the constructed polygons using the genetic and the brute force algorithms, respectively.



The pseudocode for the GA is presented as follows:



Algorithm 5 (Genetic Algorithm)



Inputs:



S:thepointssetα:constraintonanglese:elitismratemu:mutationrateittcount:iterationcount

	
Initialize the population: Generate random α-polygons with m,m+1,…,n vertices containing S. Also, set itt=1.



	
Coding: Compute the vector C for each randomly generated polygon as a code such that C[i×j×k]=1 iff Zi,j,k=1. The length of C is n×m×r.



	
Packing: Construct a chromosome chr for each code using C such that chr[k]=j iff the kth inner point is assigned to the jth edge of CH, i.e., ∃t∈{1,2,…,r}:C[k×j×t]=1. The length of chr is r.



	
Elitist selection: Select e percent of the best chromosomes, and move them to the next generation.



	
Crossover: The single-point crossover is used. Select a random position ind (1≤ind≤r) and two random chromosomes as the parents.



	
Mutation: Each child that is constructed in step 5 is mutated with a probability of mu. Select a random position ind (1≤ind≤r) and randomly change the value of chr[ind]. The mutation leads an inner point to be assigned to another edge.



	
Unpacking: Convert each chromosome of the new generation into an individual code. Each chr in the new generation is unpacking to a code C. In this step, the order of assigned points for each edge is specified.



	
Re-evaluate: Based on the objective function (Area, Perimeter, and Boundary), re-evaluate the new polygons and keep the best chromosome as the solution. Replace the old generation with the new one and set itt=itt+1. If itt<ittcount go to step 3, otherwise finish.








Because of the exponential time complexity of the brute-force algorithm, the exact result could not be obtained on large datasets in a reasonable computational time. Thus, we ran the GA on datasets of 15, 20, 25, and 30 points and displayed the resulting polygons in Figure 19 which are the solutions for α-MAP for α=π.



As stated in Section 1, the concave hull is a generalization of the convex hull, that identifies the area occupied by a set of points. Moreira and Santos presented an algorithm to compute the concave hull [49], and in [54] an algorithm was presented to compute the concave hull in d dimensions. We implemented the said algorithm in [49], and compared the quality of the obtained result with that of the GA. Figure 20 illustrates this comparison with the x-axis exhibiting the cardinality of datasets and the y-axis exhibiting the approximation average quality of the results.



Figure 21, Figure 22 and Figure 23 illustrate the results of GA on a set of points which are the solutions for α-MAP, α-MPP, and α-MNP for different values of α, respectively. For α=0, the constructed polygons are the convex hull of points. As the value of α increases, the concave angles start to appear in the polygons. For large values of α (e.g., for α=180∘), the boundary of the polygons would pass through all of the points; the results are simple polygons with approximately minimum area, maximum perimeter, and maximum number of vertices, respectively.




6. Conclusions


In this paper, we considered the problem of finding optimal simple polygons containing a set of points in the plane. We generalized the problems of finding the minimum area, maximum perimeter, and maximum number of vertices containing a set of points by adding constraint to the angles of polygons. We formulated the generalized problems as nonlinear programming models.



Given that all simple polygons contain a set of points, we derived an upper bound for the minimum of the maximum angles of each polygon. As a further theoretical achievement, we demonstrated that the problem of computing a polygon with minimum area is almost equivalent to that of computing a polygon with a maximum number of vertices.



We presented a genetic algorithm to solve these models, and conducted experiments on several datasets. Finally, in comparison to the brute-force method and other previous studies, better results were obtained.







Author Contributions


The authors contributed equally to this work. The authors read and approved the final manuscript.




Funding


This research received no external funding.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977, 4, 237–244. [Google Scholar] [CrossRef]

	



Fekete, S.P.; Pulleyblank, W.R. Area optimization of simple polygons. In Proceedings of the Ninth Annual Symposium on Computational Geometry, San Diego, CA, USA, 18–21 May 1993; ACM; pp. 173–182. [Google Scholar]

	



Pakhira, M.K. Digital Image Processing and Pattern Recognition; PHI Learning Pvt. Limited: New Delhi, India, 2011. [Google Scholar]

	



Marchand-Maillet, S.; Sharaiha, Y.M. Binary Digital Image Processing: A Discrete Approach; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]

	



Pavlidis, T. Structural Pattern Recognition; Springer: Berlin, Germany, 2013; Volume 1. [Google Scholar]

	



Abdi, M.N.; Khemakhem, M.; Ben-Abdallah, H. An effective combination of MPP contour-based features for off-line text-independent arabic writer identification. In Signal Processing, Image Processing and Pattern Recognition; Springer: Berlin, Germany, 2009; pp. 209–220. [Google Scholar]

	



Galton, A.; Duckham, M. What is the region occupied by a set of points? In Proceedings of the International Conference on Geographic Information Science, Münster, Germany, 20–23 September 2006; 81–98. [Google Scholar]

	



Li, X.; Frey, H.; Santoro, N.; Stojmenovic, I. Strictly localized sensor self-deployment for optimal focused coverage. IEEE Trans. Mob. Comput. 2011, 10, 1520–1533. [Google Scholar] [CrossRef]

	



Nguyen, P.L.; Nguyen, K.V. Hole Approximation-Dissemination Scheme for Bounded-Stretch Routing in Sensor Networks. In Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina Del Rey, CA, USA, 26–28 May 2014; pp. 249–256. [Google Scholar]

	



Lawler, E.L.; Lenstra, J.K.; Kan, A.R.; Shmoys, D.B. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley: New York, NY, USA, 1985; Volume 3. [Google Scholar]

	



Asaeedi, S.; Didehvar, F.; Mohades, A. α-Concave hull, a generalization of convex hull. Theor. Comput. Sci. 2017, 702, 48–59. [Google Scholar] [CrossRef]

	



Fekete, S.P.; Woeginger, G.J. Angle-restricted tours in the plane. Comput. Geom. 1997, 8, 195–218. [Google Scholar] [CrossRef]

	



Culberson, J.; Rawlins, G. Turtlegons: Generating simple polygons for sequences of angles. In Proceedings of the First Annual Symposium on Computational Geometry, Baltimore, MD, USA, 5–7 June 1985; ACM; pp. 305–310. [Google Scholar]

	



Evans, W.S.; Fleszar, K.; Kindermann, P.; Saeedi, N.; Shin, C.S.; Wolff, A. Minimum Rectilinear Polygons for Given Angle Sequences. In Discrete and Computational Geometry and Graphs; Springer: Cham, Switzerland, 2015; pp. 105–119. [Google Scholar]

	



Cho, H.G.; Evans, W.; Saeedi, N.; Shin, C.S. Covering points with convex sets of minimum size. In Proceedings of the International Workshop on Algorithms and Computation, Kathmandu, Nepal, 29–31 March 2016; Springer: Cham, Switzerland, 2016; pp. 166–178. [Google Scholar]

	



Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM (JACM) 1960, 7, 326–329. [Google Scholar] [CrossRef]

	



Fasano, G. A global optimization point of view to handle non-standard object packing problems. J. Glob. Optim. 2013, 55, 279–299. [Google Scholar] [CrossRef]

	



Liu, H.; Liu, W.; Latecki, L.J. Convex shape decomposition. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 97–104. [Google Scholar]

	



Masehian, E.; Habibi, G. Robot path planning in 3D space using binary integer programming. Int. J. Mech. Ind. Aerospace Eng. 2007, 1, 26–31. [Google Scholar]

	



Kallrath, J. Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 2009, 43, 299–328. [Google Scholar] [CrossRef]

	



Speckmann, B.; Kreveld, M.; Florisson, S. A linear programming approach to rectangular cartograms. Prog. Spat. Data Handl. 2006, 529–546. [Google Scholar] [CrossRef]

	



Seidel, R. Small-dimensional linear programming and convex hulls made easy. Discret. Comput. Geom. 1991, 6, 423–434. [Google Scholar] [CrossRef]

	



Peethambaran, J.; Parakkat, A.D.; Muthuganapathy, R. An Empirical Study on Randomized Optimal Area Polygonization of Planar Point Sets. J. Exp. Algorithmics (JEA) 2016, 21, 1–10. [Google Scholar] [CrossRef]

	



Taranilla, M.T.; Gagliardi, E.O.; Hernández Peñalver, G. Approaching Minimum Area Polygonization. In XVII Congreso Argentino de Ciencias de la Computación; Universidad Nacional de La Plata: La Plata, Argentina, 2011; pp. 161–170. [Google Scholar]

	



Moylett, D.J.; Linden, N.; Montanaro, A. Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Phys. Rev. A 2017, 95, 032323. [Google Scholar] [CrossRef]

	



Bartal, Y.; Gottlieb, L.A.; Krauthgamer, R. The traveling salesman problem: Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput. 2016, 45, 1563–1581. [Google Scholar] [CrossRef]

	



Hassin, R.; Rubinstein, S. Better approximations for max TSP. Inf. Process. Lett. 2000, 75, 181–186. [Google Scholar] [CrossRef]

	



Dudycz, S.; Marcinkowski, J.; Paluch, K.; Rybicki, B. A 4/5-Approximation Algorithm for the Maximum Traveling Salesman Problem. In Proceedings of the International Conference on Integer Programming and Combinatorial Optimization, Waterloo, ON, Canada, 26–28 June 2017; Springer: Cham, Switzerland, 2017; pp. 173–185. [Google Scholar]

	



Matei, O.; Pop, P. An efficient genetic algorithm for solving the generalized traveling salesman problem. In Proceedings of the 2010 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 26–28 August 2010; pp. 87–92. [Google Scholar]

	



Lin, B.L.; Sun, X.; Salous, S. Solving travelling salesman problem with an improved hybrid genetic algorithm. J. Comput. Commun. 2016, 4, 98–106. [Google Scholar] [CrossRef]

	



Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Mohamd Shoukry, A.; Gani, S. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci. 2017, 2017, 7430125:1–7430125:7. [Google Scholar] [CrossRef] [PubMed]

	



Jakobs, S. On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 1996, 88, 165–181. [Google Scholar] [CrossRef]

	



Parvez, W.; Dhar, S. Path planning of robot in static environment using genetic algorithm (GA) technique. Int. J. Adv. Eng. Technol. 2013, 6, 1205. [Google Scholar]

	



Vadakkepat, P.; Tan, K.C.; Ming-Liang, W. Evolutionary artificial potential fields and their application in real time robot path planning. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 256–263. [Google Scholar]

	



Dalai, J.; Hasan, S.Z.; Sarkar, B.; Mukherjee, D. Adaptive operator switching and solution space probability structure based genetic algorithm for information retrieval through pattern recognition. In Proceedings of the 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2014; pp. 1624–1629. [Google Scholar]

	



Duckham, M.; Kulik, L.; Worboys, M.; Galton, A. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognit. 2008, 41, 3224–3236. [Google Scholar] [CrossRef]

	



Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef]

	



Gheibi, A.; Davoodi, M.; Javad, A.; Panahi, F.; Aghdam, M.M.; Asgaripour, M.; Mohades, A. Polygonal shape reconstruction in the plane. IET Comput. Vision 2011, 5, 97–106. [Google Scholar] [CrossRef]

	



Peethambaran, J.; Muthuganapathy, R. A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering. Comput.-Aided Des. 2015, 62, 164–175. [Google Scholar] [CrossRef]

	



Amenta, N.; Bern, M.; Eppstein, D. The crust and the β-skeleton: Combinatorial curve reconstruction. Graph. Models Image Process. 1998, 60, 125–135. [Google Scholar] [CrossRef]

	



Ganapathy, H.; Ramu, P.; Muthuganapathy, R. Alpha shape based design space decomposition for island failure regions in reliability based design. Struct. Multidiscip. Optim. 2015, 52, 121–136. [Google Scholar] [CrossRef]

	



Fayed, M.; Mouftah, H.T. Localised alpha-shape computations for boundary recognition in sensor networks. Ad Hoc Netw. 2009, 7, 1259–1269. [Google Scholar] [CrossRef]

	



Ryu, J.; Kim, D.S. Protein structure optimization by side-chain positioning via beta-complex. J. Glob. Optim. 2013, 57, 217–250. [Google Scholar] [CrossRef]

	



Varytimidis, C.; Rapantzikos, K.; Avrithis, Y.; Kollias, S. α-shapes for local feature detection. Pattern Recognit. 2016, 50, 56–73. [Google Scholar] [CrossRef]

	



Siriba, D.N.; Matara, S.M.; Musyoka, S.M. Improvement of Volume Estimation of Stockpile of Earthworks Using a Concave Hull-Footprint. Int. Sci. J. Micro Macro Mezzo Geoinf. 2015, 5, 11–25. [Google Scholar]

	



Chau, A.L.; Li, X.; Yu, W. Large data sets classification using convex–concave hull and support vector machine. Soft Comput. 2013, 17, 793–804. [Google Scholar] [CrossRef]

	



Vishwanath, A.; Ramanathan, M. Concave hull of a set of freeform closed surfaces in R 3. Comput.-Aided Des. Appl. 2012, 9, 857–868. [Google Scholar] [CrossRef]

	



Jones, J. Multi-agent Slime Mould Computing: Mechanisms, Applications and Advances. In Advances in Physarum Machines; Springer: Cham, Switzerland, 2016; pp. 423–463. [Google Scholar]

	



Moreira, A.J.C.; Santos, M.Y. Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. In Proceedings of the Second International Conference on Computer Graphics Theory and Applications (GRAPP 2007), Barcelona, Spain, 8–11 March 2007; pp. 61–68. [Google Scholar]

	



Braden, B. The surveyor’s area formula. Coll. Math. J. 1986, 17, 326–337. [Google Scholar] [CrossRef]

	



Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]

	



Pick, G. Geometrisches zur zahlenlehre. Sitzenber. Lotos (Prague) 1899, 19, 311–319. [Google Scholar]

	



Qing-feng, Z. The Application of Genetic Algorithm in Optimization Problems. J. Shanxi Norm. Univ. (Nat. Sci. Ed.) 2014, 1, 008. [Google Scholar]

	



Park, J.S.; Oh, S.J. A new concave hull algorithm and concaveness measure for n-dimensional datasets. J. Inf. Sci. Eng. 2013, 29, 379–392. [Google Scholar]








[image: Mathematics 07 00024 g001 550]





Figure 1. Polygon P assigns internal points to convex hull edges. 
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Figure 2. The polygon P=(s1,s5,s6,…,s4,s1) containing S={s1,…,s19} assigns internal points to convex hull edges. 
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Figure 3. Solution of α-MAP for different values of α. 
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Figure 4. Solution of α-MPP for different values of α. 
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Figure 5. Solution of α-MNP for different values of α. 
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Figure 6. A sweep arc on the edge e. 
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Figure 7. Measure of the sweep arc on the edge e is less than 2π−4π6. 
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Figure 8. Measure of all major segments are βmax=2π−4π6. 
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Figure 9. Maximum angle of each polygon containing these points is equal to 2π−2π6. 
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Figure 10. (a) Set of six points inside the major segment; (b) All internal angles of the polygon (c1,s1,s2,s3,s4,s5,s6,c2,c1) are greater than or equal to 2π32m. 
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Figure 11. Angle of x1^ is greater than or equal to 2πm. 
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Figure 12. The sweeping arc is divided into 3 parts B1, B2 and B3. 
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Figure 13. The sweep arc is divided into 2 parts A1 and A2. 
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Figure 14. The sweep arc is divided into 3 parts A2, A11 and A12. 
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Figure 15. The angles of all constructed simple polygons are greater than or equal to 2π4m. 
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Figure 16. We and He are the width and height of e, respectively. 
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Figure 17. Common divisor of We and He is 3. 
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Figure 18. The grid G is shown in bold lines, and G′ in regular mode. 
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Figure 19. Solutions for α-MAP for α=π and n=15, 20, 25 and 30. 
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Figure 20. Genetic algorithm (GA) versus concave hull algorithm (CH), in terms of both area and perimeter metrics. 
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Figure 21. Application of GA to approximate α-MAP, for different values of α. 
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Figure 22. Application of GA to approximate α-MPP, for different values of α. 
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Figure 23. Application of GA to approximate α-MNP, for different values of α. 
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Table 1. Notations of symbols.
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	Notation
	Description





	S
	A set of points in the plane



	n
	cardinality of S



	si
	ith point of S (1≤i≤n)



	CH
	convex hull of S



	m
	number of vertices of CH



	IP
	inner points of CH



	P
	a simple polygon containing S



	VP
	vertices of P



	EP
	edges of P



	r
	cardinality of IP



	cj
	jth vertex of CH (1≤j≤m)



	ej
	jth edge of CH (1≤j≤m)



	P
	a simple Polygon containing S



	sisj¯
	an edge of P with si and sj as its end points (1≤i,j≤n, i≠j)



	℘(S)
	set of all simple polygons containing S



	Area(P)
	area of polygon P



	Perimeter(P)
	perimeter of polygon P



	Boundary(P)
	number of vertices of P



	α
	an angle between 0 and π



	MAP
	problem of computing a simple polygon containing S with minimum area



	MPP
	problem of computing a simple polygon containing S with maximum perimeter



	MNP
	problem of computing a simple polygon containing S with maximum number of vertices



	CHP
	problem of computing convex hull of S



	SPP
	problem of computing a simple polygon crossing S



	AB⌢
	the measure of arc AB
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Table 2. Numerical results.
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Number of

Points

	
Number of

Generations

	
Area

	
Perimeter

	
Boundary




	
Quality

	
Quantity

	
Quality

	
Quantity

	
Quality

	
Quantity






	
n = 5

	
50

	
99.15344

	
96

	
98.35035

	
95

	
98.6

	
95




	
100

	
99.87179

	
99

	
99.46023

	
99

	
100

	
100




	
150

	
100

	
100

	
100

	
100

	
100

	
100




	
200

	
100

	
100

	
100

	
100

	
100

	
100




	
n = 7

	
50

	
97.05038

	
83

	
97.1653

	
88

	
97.4026

	
82




	
100

	
98.67008

	
92

	
98.77586

	
96

	
98.14285

	
93




	
150

	
98.91394

	
93

	
100

	
100

	
100

	
100




	
200

	
98.90656

	
95

	
100

	
100

	
100

	
100




	
n = 10

	
50

	
94.21655

	
55

	
89.56722

	
67

	
80.90909

	
24




	
100

	
95.14197

	
67

	
94.31243

	
80

	
89

	
50




	
150

	
97.79823

	
83

	
96.67498

	
93

	
97.5

	
87




	
200

	
97.88455

	
84

	
100

	
100

	
100

	
100




	
n = 12

	
50

	
87.95903

	
52

	
87.86893

	
59

	
80.53846

	
20




	
100

	
90.84784

	
63

	
93.45262

	
70

	
84.66667

	
44




	
150

	
96.67498

	
77

	
95.95328

	
84

	
93.91667

	
73




	
200

	
97.76408

	
82

	
96.15958

	
98

	
98.5

	
91
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