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Abstract: In this paper, we study differential equations arising from the generating functions of
Hermit Kampé de Fériet polynomials. Use this differential equation to give explicit identities for
Hermite Kampé de Fériet polynomials. Finally, use the computer to view the location of the zeros of
Hermite Kampé de Fériet polynomials.
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Hermite polynomials; generating functions; complex zeros

2000 Mathematics Subject Classification: 05A19; 11B83; 34A30; 65L99

1. Introduction

Numerous studies have been conducted on Bernoulli polynomials, Euler polynomials, tangent
polynomials, Hermite polynomials and Laguerre polynomials (see [1–13]). The special polynomials
of the two variables provided a new way to analyze solutions of various kinds of partial differential
equations that are often encountered in physical problems. Most of the special function of mathematical
physics and their generalization have been proposed as physical problems. For example, we recall that
the two variables Hermite Kampé de Fériet polynomials Hn(x, y) defined by the generating function
(see [2])

∞

∑
n=0

Hn(x, y)
tn

n!
= ext+yt2

= F(t, x, y) (1)

are the solution of heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2 Hn(x, y), Hn(x, 0) = xn.

We note that Hn(2x,−1) = Hn(x), where Hn(x) are the classical Hermite polynomials (see [1]).
The differential equation and relation are given by(

2y
∂2

∂x2 + x
∂

∂x
− n

)
Hn(x, y) = 0 and

∂

∂y
Hn(x, y) =

∂2

∂x2 Hn(x, y),

respectively.
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By (1) and Cauchy product, we get

∞

∑
n=0

Hn(x1 + x2, y)
tn

n!
= e(x1+x2)t+yt2

=
∞

∑
n=0

Hn(x1, y)
tn

n!

∞

∑
n=0

xn
2

tn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Hl(x1, y)xn−l

2

)
tn

n!
.

(2)

By comparing the coefficients on both sides of (2), we have the following theorem:

Theorem 1. For any positive integer n, we have

Hn(x1 + x2, y) =
n

∑
l=0

(
n
l

)
Hl(x1, y)xn−l

2 .

The following elementary properties of the two variables Hermite Kampé de Fériet polynomials
Hn(x, y) are readily derived from (1).

Theorem 2. For any positive integer n, we have

(1) Hn(x, y1 + y2) = n!
[ n

2 ]

∑
l=0

Hn−2l(x, y1)yl
2

l!(n− 2l)!
,

(2) Hn(x, y) =
n

∑
l=0

(
n
l

)
Hl(x)Hn−l(−x, y + 1),

(3) Hn(x1 + x2, y1 + y2) =
n

∑
l=0

(
n
l

)
Hl(x1, y1)Hn−l(x2, y2).

Recently, many mathematicians have studied differential equations that occur in the generating
functions of special polynomials (see [8,9,14–16]). The paper is organized as follows. We derive the
differential equations generated from the generating function of Hermite Kampé de Fériet polynomials:(

∂

∂t

)N
F(t, x, y)− a0(N, x, y)F(t, x, y)− · · · − aN(N, x, y)tN F(t, x, y) = 0.

By obtaining the coefficients of this differential equation, we obtain explicit identities for the
Hermite Kampé de Fériet polynomials in Section 2. In Section 3, we investigate the zeros of the
Hermite Kampé de Fériet polynomials using numerical methods. Finally, we observe the scattering
phenomenon of the zeros of Hermite Kampé de Fériet polynomials.

2. Differential Equations Associated with Hermite Kampé de Fériet Polynomials

In order to obtain explicit identities for special polynomials, differential equations arising from
the generating functions of special polynomials are studied by many authors (see [8,9,14–16]). In this
section, we introduce differential equations arising from the generating functions of Hermite Kampé de
Fériet polynomials and use these differential equations to obtain the explicit identities for the Hermite
Kampé de Fériet polynomials.

Let

F = F(t, x, y) = ext+yt2
=

∞

∑
n=0

Hn(x, y)
tn

n!
, x, y, t ∈ C. (3)



Mathematics 2019, 7, 23 3 of 11

Then, by (3), we have

F(1) =
∂

∂t
F(t, x, y) =

∂

∂t

(
ext+yt2

)
= ext+yt2

(x + 2yt)

= (x + 2yt)F(t, x, y),

F(2) =
∂

∂t
F(1)(t, x, y) = 2yF(t, x, y) + (x + 2yt)F(1)(t, x, y)

= (2y + x2 + (4xy)t + 4y2t2)F(t, x, y),

and
F(3) =

∂

∂t
F(2)(t, x, y)

= (4xy + 8y2t)F(t, x, y) + (2y + x2 + (4xy)t + 4y2t2)F(1)(t, x, y)

= (6xy + x3)F(2)(t, x, y)

+ (8y2 + 4x2y + 4y2 + 2x2y)tF(t, x, y)

+ (4xy2 + 8xy2)t2F(t, x, y).

If we continue this process, we can guess as follows:

F(N) =

(
∂

∂t

)N
F(t, x, y) =

N

∑
i=0

ai(N, x, y)tiF(t, x, y), (N = 0, 1, 2, . . .). (4)

Differentiating (4) with respect to t, we have

F(N+1) =
∂F(N)

∂t

=
N

∑
i=0

ai(N, x, y)iti−1F(t, x, y) +
N

∑
i=0

ai(N, x, y)tiF(1)(t, x, y)

=
N

∑
i=0

ai(N, x, y)iti−1F(t, x, y) +
N

∑
i=0

ai(N, x, y)ti(x + 2yt)F(t, x, y)

=
N

∑
i=0

iai(N, x, y)ti−1F(t, x, y) +
N

∑
i=0

xai(N, x, y)tiF(t, x, y)

+
N

∑
i=0

2yai(N, x, y)ti+1F(t, x, y)

=
N−1

∑
i=0

(i + 1)ai+1(N, x, y)tiF(t, x, y) +
N

∑
i=0

xai(N, x, y)tiF(t, x, y)

+
N+1

∑
i=1

2yai−1(N, x, y)tiF(t, x, y).

(5)

Now, replacing N by N + 1 in (4), we find

F(N+1) =
N+1

∑
i=0

ai(N + 1, x, y)tiF(t, x, y). (6)

Comparing the coefficients on both sides of (5) and (6), we obtain

a0(N + 1, x, y) = a1(N, x, y) + xa0(N, x, y),

aN(N + 1, x, y) = xaN(N, x, y) + 2yaN−1(N, x, y),

aN+1(N + 1, x, y) = 2yaN(N, x, y),

(7)
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and

ai(N + 1, x, y) = (i + 1)ai+1(N, x, y) + xai(N, x, y) + 2yai−1(N, x, y), (1 ≤ i ≤ N − 1). (8)

In addition, by (4), we have

F(t, x, y) = F(0)(t, x, y) = a0(0, x, y)F(t, x, y), (9)

which gives
a0(0, x, y) = 1. (10)

It is not difficult to show that

xF(t, x, y) + 2ytF(t, x, y)

= F(1)(t, x, y)

=
1

∑
i=0

ai(1, x, y)F(t, x, y)

= a0(1, x, y)F(t, x, y) + a1(1, x, y)tF(t, x, y).

(11)

Thus, by (11), we also find

a0(1, x, y) = x, a1(1, x, y) = 2y. (12)

From (7), we note that

a0(N + 1, x, y) = a1(N, x, y) + xa0(N, x, y),

a0(N, x, y) = a1(N − 1, x, y) + xa0(N − 1, x, y), . . .

a0(N + 1, x, y) =
N

∑
i=0

xia1(N − i, x, y) + xN+1,

(13)

aN(N + 1, x, y) = xaN(N, x, y) + 2yaN−1(N, x, y),

aN−1(N, x, y) = xaN−1(N − 1, x, y) + 2yaN−2(N − 1, x, y), . . .

aN(N + 1, x, y) = (N + 1)x(2y)N ,

(14)

and
aN+1(N + 1, x, y) = 2yaN(N, x, y),

aN(N, x, y) = 2yaN−1(N − 1, x, y), . . .

aN+1(N + 1, x, y) = (2y)N+1.

(15)

For i = 1 in (8), we have

a1(N + 1, x, y) = 2
N

∑
k=0

xka2(N − k, x, y) + (2y)
N

∑
k=0

xka0(N − k, x, y). (16)

Continuing this process, we can deduce that, for 1 ≤ i ≤ N − 1,

ai(N + 1, x, y) = (i + 1)
N

∑
k=0

xkai+1(N − k, x, y) + (2y)
N

∑
k=0

xkai−1(N − k, x, y). (17)
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Note that here the matrix ai(j, x, y)0≤i,j≤N+1 is given by



1 x 2y + x2 6xy + x3 · · · ·

0 2y 2x(2y) · · · · ·

0 0 (2y)2 3x(2y)2 · · · ·

0 0 0 (2y)3 . . . ·

...
...

...
...

. . . (N + 1)x(2y)N

0 0 0 0 · · · (2y)N+1



.

Therefore, we obtain the following theorem.

Theorem 3. For N = 0, 1, 2, . . . , the differential equation

F(N) =

(
∂

∂t

)N
F(t, x, y) =

(
N

∑
i=0

ai(N, x, y)ti

)
F(t, x, y)

has a solution
F = F(t, x, y) = ext+yt2

,

where

a0(N, x, y) =
N−1

∑
k=0

xia1(N − 1− k, x, y) + xN ,

aN−1(N, x, y) = Nx(2y)N−1,

aN(N, x, y) = (2y)N ,

ai(N + 1, x, y) = (i + 1)
N

∑
k=0

xkai+1(N − k, x, y) + (2y)
N

∑
k=0

xkai−1(N − k, x, y),

(1 ≤ i ≤ N − 2).

Making N-times derivative for (3) with respect to t, we have(
∂

∂t

)N
F(t, x, y) =

(
∂

∂t

)N
ext+yt2

=
∞

∑
m=0

Hm+N(x, y)
tm

m!
. (18)

By Cauchy product and multiplying the exponential series ext = ∑∞
m=0 xm tm

m!
in both sides of (18),

we get

e−nt
(

∂

∂t

)N
F(t, x, y) =

(
∞

∑
m=0

(−n)m tm

m!

)(
∞

∑
m=0

Hm+N(x, y)
tm

m!

)

=
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
(−n)m−k HN+k(x, y)

)
tm

m!
.

(19)

For non-negative integer m, assume that {a(m)}, {b(m)}, {c(m)}, {c̄(m)} are four sequences
given by

∞

∑
m=0

a(m)
tn

m!
,

∞

∑
m=0

b(m)
tm

m!
,

∞

∑
m=0

c(m)
tm

m!
,

∞

∑
m=0

c̄(m)
tm

m!
.
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If ∑∞
m=0 c(m)

tm

m!
×∑∞

m=0 c̄(m)
tm

m!
= 1, we have the following inverse relation:

a(m) =
m

∑
k=0

(
m
k

)
c(k)b(m− k)⇐⇒ b(m) =

m

∑
k=0

(
m
k

)
c̄(k)a(m− k). (20)

By (20) and the Leibniz rule, we have

e−nt
(

∂

∂t

)N
F(t, x, y) =

N

∑
k=0

(
N
k

)
nN−k

(
∂

∂t

)k (
e−ntF(t, x, y)

)
=

∞

∑
m=0

(
N

∑
k=0

(
N
k

)
nN−k Hm+k(x− n, y)

)
tm

m!
.

(21)

Hence, by (19) and (21), and comparing the coefficients of
tm

m!
gives the following theorem.

Theorem 4. Let m, n, N be nonnegative integers. Then,

m

∑
k=0

(
m
k

)
(−n)m−k HN+k(x, y) =

N

∑
k=0

(
N
k

)
nN−k Hm+k(x− n, y). (22)

If we take m = 0 in (22), then we have the following:

Corollary 1. For N = 0, 1, 2, . . . , we have

HN(x, y) =
N

∑
k=0

(
N
k

)
nN−k Hk(x− n, y).

For N = 0, 1, 2, . . . , the differential equation

F(N) =

(
∂

∂t

)N
F(t, x, y) =

(
N

∑
i=0

ai(N, x, y)ti

)
F(t, x, y)

has a solution
F = F(t, x, y) = ext+yt2

.

Here is a plot of the surface for this solution.
In Figure 1 (left), we choose −3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and y = 3. In Figure 1 (right), we choose

−3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and y = −3.
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Figure 1. The surface for the solution F(t, x, y).
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3. Zeros of the Hermite Kampé de Fériet Polynomials

By using software programs, many mathematicians can explore concepts more easily than in
the past. These experiments allow mathematicians to quickly create and visualize new ideas, review
properties of figures, create many problems, and find and guess patterns. This numerical survey is
particularly interesting because it helps many mathematicians understand basic concepts and solve
problems. In this section, we examine the distribution and pattern of zeros of Hermite Kampé de
Fériet polynomials Hn(x, y) according to the change of degree n. Based on these results, we present a
problem that needs to be approached theoretically.

By using a computer, the Hermite Kampé de Fériet polynomials Hn(x, y) can be determined
explicitly. First, a few examples of them are as follows:

H0(x, y) = 1,

H1(x, y) = x,

H2(x, y) = x2 + 2y,

H3(x, y) = x3 + 6xy,

H4(x, y) = x4 + 12x2y + 12y2,

H5(x, y) = x5 + 20x3y + 60xy2,

H6(x, y) = x6 + 30x4y + 180x2y2 + 120y3,

H7(x, y) = x7 + 42x5y + 420x3y2 + 840xy3,

H8(x, y) = x8 + 56x6y + 840x4y2 + 3360x2y3 + 1680y4,

H9(x, y) = x9 + 72x7y + 1512x5y2 + 10, 080x3y3 + 15, 120xy4,

H10(x, y) = x10 + 90x8y + 2520x6y2 + 25, 200x4y3 + 75, 600x2y4 + 30, 240y5.

Using a computer, we investigate the distribution of zeros of the Hermite Kampé de Fériet
polynomials Hn(x, y).

Plots the zeros of the polynomial Hn(x, y) for n = 20, y = 2,−2, 2 + i,−2 + i and x ∈ C are
as follows (Figure 1). In Figure 2 (top-left), we choose n = 20 and y = 2. In Figure 2 (top-right),
we choose n = 20 and y = −2. In Figure 2 (bottom-left), we choose n = 20 and y = 2 + i . In Figure 2
(bottom-right), we choose n = 20 and y = −2− i.

Stacks of zeros of the Hermite Kampé de Fériet polynomials Hn(x, y) for 1 ≤ n ≤ 20 from a 3D
structure are presented (Figure 3). In Figure 3 (top-left), we choose y = 2. In Figure 3 (top-right),
we choose y = −2. In Figure 3 (bottom-left), we choose y = 2+ i. In Figure 3 (bottom-right), we choose
y = −2− i. Our numerical results for approximate solutions of real zeros of the Hermite Kampé de
Fériet polynomials Hn(x, y) are displayed (Tables 1–3).

The plot of real zeros of the Hermite Kampé de Fériet polynomials Hn(x, y) for 1 ≤ n ≤ 20
structure are presented (Figure 4). It is expected that Hn(x, y), x ∈ C, y > 0, has Im(x) = 0 reflection
symmetry analytic complex functions (see Figures 2 and 3). We also expect that Hn(x, y), x ∈ C, y < 0,
has Re(x) = 0 reflection symmetry analytic complex functions (see Figures 2–4). We observe a
remarkable regular structure of the complex roots of the Hermite Kampé de Fériet polynomials
Hn(x, y) for y < 0. We also hope to verify a remarkable regular structure of the complex roots of the
Hermite Kampé de Fériet polynomials Hn(x, y) for y < 0 (Table 1). Next, we calculated an approximate
solution that satisfies Hn(x, y) = 0, x ∈ C. The results are shown in Table 3.
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Figure 2. Zeros of Hn(x, y).
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Table 1. Numbers of real and complex zeros of Hn(x,−2).

Degree n Real Zeros Complex Zeros

1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 6 0
7 7 0
8 8 0
9 9 0

10 10 0
11 11 0
12 12 0
13 13 0
14 14 0
...

...
...

29 29 0
30 30 0

Table 2. Numbers of real and complex zeros of Hn(x, 2).

Degree n Real Zeros Complex Zeros

1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9

10 0 10
11 0 11
12 0 12
13 0 13
14 0 14
...

...
...

29 0 29
30 0 30

-10 0 10

ReHxL

0

5

10

15

20

n

Figure 4. Real zeros of Hn(x,−2) for 1 ≤ n ≤ 20.
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Table 3. Approximate solutions of Hn(x,−2) = 0, x ∈ R .

Degree n x

1 0

2 −2.0000, 2.0000

3 −3.4641, 0, 3.4641

4 −4.669, −1.4839, 1.4839, 4.669

5 −5.714, −2.711, 0, 2.711, 5.714

6 −6.65, −3.778, −1.233, 1.233, 3.778, 6.65

7 −7.50, −4.73, −2.309, 0, 2.309, 4.73, 7.50

8 −8.3, −5.6, −3.27, −1.078, 1.078, 3.27, 5.6, 8.3

4. Conclusions and Future Developments

This study obtained the explicit identities for Hermite Kampé de Fériet polynomials Hn(x, y).
The location and symmetry of the roots of the Hermite Kampé de Fériet polynomials were investigated.
We examined the symmetry of the zeros of the Hermite Kampé de Fériet polynomials for various
variables x and y, but, unfortunately, we could not find a regular pattern. However, the following
special cases showed regularity. Through numerical experiments, we will make the following series
of conjectures.

If y > 0, we can see that Hn(x, y) has Re(x) = 0 reflection symmetry. Therefore, the following
conjecture is possible.

Conjecture 1. Prove or disprove that H(x, y), x ∈ C and y > 0, has Im(x) = 0 reflection symmetry analytic
complex functions. Furthermore, Hn(x, y) has Re(x) = 0 reflection symmetry for y < 0.

As a result of investigating more n variables, it is still unknown whether the conjecture is true or
false for all variables n (see Figure 1).

Conjecture 2. Prove or disprove that Hn(x, y) = 0 has n distinct solutions.

Let’s use the following notations. RHn(x,y) denotes the number of real zeros of Hn(x, y) lying on
the real plane Im(x) = 0 and CHn(x,y) denotes the number of complex zeros of Hn(x, y). Since n is the
degree of the polynomial Hn(x, y), we have RHn(x,y) = n− CHn(x,y) (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

RHn(x,y) =

{
n, if y < 0,
0, if y > 0,

CHn(x,y) =

{
0, if y < 0,
n, if y > 0.
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