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Abstract: In order to solve the Sylvester equations more efficiently, a new four parameters positive
and skew-Hermitian splitting (FPPSS) iterative method is proposed in this paper based on the
previous research of the positive and skew-Hermitian splitting (PSS) iterative method. We prove that
when coefficient matrix A and B satisfy certain conditions, the FPPSS iterative method is convergent
in the parameter’s value region. The numerical experiment results show that compared with previous
iterative method, the FPPSS iterative method is more effective in terms of iteration number IT
and runtime.

Keywords: Sylvester equation; Positive and skew-Hermitian iterative method; FPPSS
iterative method

1. Introduction

In this paper, we mainly consider the problem of solving the continuous Sylvester equations with
the following form:

AX + XB = C, (1)

where A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n are given matrices that satisfy the following conditions:

(I) A, B, and C are large-scale and sparse matrices;
(II) At least one of A and B is a non-Hermitian matrix;
(III) At least one of the positive semidefinite matrices A and B is a positive definite matrix.

The solution of Equation (1) exists and is unique.
This kind of matrix equation has a wide range of applications in scientific computing and

engineering fields. Problems like digital image restoration, control systems, electromagnetic field
processing, neural networks, and model reduction will eventually involve the solution of large-scale
Sylvester equations [1–3]. Because the time required to solve the Sylvester equation is related to the
speed of solving actual problems, designing an effective method for solving the Sylvester equation is a
subject with theoretical research and practical application value.

In the past few decades, scholars have focused on the methods of solving such problems.
Therefore, more and more direct and iterative solutions are proposed. However, because the coefficient
matrix of the equation to be solved is mostly a large and sparse matrix, the direct method is not
applicable compared with the iterative method. In 1952, the conjugate gradient method (CG) was
proposed to solve symmetric positive definite linear equations [4].

In 1986, in order to solve the problem of asymmetric coefficient matrix, Saad. Y et al. put forward
the famous Generalized Minimal Residual (GMRES) algorithm which has better stability and less
storage space than the previous Krylov subspace algorithm [5].
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In 2003, Bai Zhongzhi et al. proposed the Hermitian and skew-Hermitian splitting iterative
method, namely HSS iterative method [6]. After that, many academicians at home and abroad have
improved this kind of method, such as the method based on positive definite and skew-Hermitian
splitting of coefficient matrix, i.e., the PSS iteration method [7]; the NSS iteration method in views
of normal and skew-Hermitian splitting [8]; and according to various preconditioning technique,
the preconditioned HSS iterative method [9,10], lopsided HSS iterative method [11], modified
generalization HSS iterative method [12], and so on.

The HSS iterative method and its variants have many mature and effective extensions to solve
continuous Sylvester equation.

In 2011, based on the Hermitian splitting and skew-Hermitian splitting of coefficient matrices, Bai
et al. applied HSS iteration method to solve continuous Sylvester equation for the first time [6].

In 2013, Wang Xiang and others solved Sylvester equation by PSS iteration method [13].
In 2014, Zheng Qingqing and others used NSS iteration method to solve Sylvester equation [14].
In 2015, MHSS iteration method and GHSS iteration method were proposed successively [15,16].
In 2017, PMHSS iteration method was proposed [17].
It can be seen that most of the methods for solving Sylvester equation are improved and

generalized based on HSS iteration method and there is still room for research on the promotion
and application of PSS algorithms. Based on the above reasons, in order to further improve the solving
speed of Sylvester equation, a new four-parameter PSS iteration method, namely FPPSS iteration
method is proposed to solve the continuous Sylvester equation. The parameters that minimize the
upper bound of the spectral radius of the iteration matrix are derived, and the effectiveness and
stability of the iteration method are proved by numerical experiments.

The structure in this paper is as follows. In Section 2, the iterative scheme of the FPPSS
iterative method for solving the large-scale continuous Sylvester equation with non-Hermitian
positive definite/semidefinite matrix is given, and the exact range of parameters for guaranteeing the
convergence of the FPPSS iterative method is theoretically calculated. Moreover, optimal iterative
parameters that bring the upper bound of the spectral radius of the iterative matrix to a minimum
are derived. In Section 3, numerical experiments compare the FPPSS iterative method with the PSS
iterative method to demonstrate the effectiveness and stability of FPPSS. Finally, in Section 4, some
conclusions are given.

2. The Four-Parameter PSS Iterative Method

In order to further improve the convergence speed of the PSS iterative method, a four-parameter
PSS iterative method, namely FPPSS iterative method, is proposed to solve the continuous
Sylvester equation.

Now, we use P(V) and S(V) to represent the positive and skew-Hermitian part of matrix V ∈
Cn×n, respectively. Obviously, matrix V has positive definite and skew-Hermitian splitting, i.e., PSS
iterative method [7]:

V = P(V) + S(V).

Analogy to the PSS method, the matrix A and B have the following forms of splitting:

A = (α1 I + P(A))− (α1 I − S(A)) = (β1 I + S(A))− (β1 I − P(A)),
B = (α2 I + P(B))− (α2 I − S(B)) = (β2 I + S(B))− (β2 I − P(B)),

where αj(j = 1, 2) are given non-negative constants and β j(j = 1, 2) are positive constants, I is the
identity matrix with the appropriate dimension.

Then Equation (1) can be equivalently rewritten as:{
(α1 I + P(A))X + X(α2 I + P(B)) = (α1 I − S(A))X + X(α2 I − S(B)) + C,
(β1 I + S(A))X + X(β2 I + S(B)) = (β1 I − P(A))X + X(β2 I − P(B)) + C.
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In the assumption (I)–(III), we can observe that matrices α1 I + P(A) and −(α2 I + P(B)) have no
common eigenvalues, while matrices β1 I +S(A) and−(β2 I + S(B)) also have no common eigenvalues,
so the above two equations have a unique solution for any given right end, which results in the
following four-parameter positive definite and skew-Hermitian splitting iterative method for solving
the continuous Sylvester Equation (1), namely the FPPSS iterative method.

Theorem 1. Given any initial matrix X(0) ∈ Cm×n, for k = 0, 1, 2, . . ., X(k+1) ∈ Cm×n is calculated in the

following format until the iteration sequence
{

X(k)
}∞

k=0
satisfies the convergence condition:


(α1 I + P(A))X(k+ 1

2 ) + X(k+ 1
2 )(α2 I + P(B))

= (α1 I − S(A))X(k) + X(k)(α2 I − S(B)) + C,
(β1 I + S(A))X(k+1) + X(k+1)(β2 I + S(B))

= (β1 I − P(A))X(k+ 1
2 ) + X(k+ 1

2 )(β2 I − P(B)) + C,

(2)

where αj(j = 1, 2) are given non-negative constants and β j(j = 1, 2) are positive constants, I is the identity
matrix with the appropriate dimension.

Let P(A), P(B) and S(A), S(B) be the positive definite and skew-Hermitian parts of matrices A
and B, respectively.

Let
λ
(P(A))
max = max

λj∈sp(P(A))

{∣∣λj
∣∣}, µ

(P(B))
max = max

µk∈sp(P(B))
{|µk|},

λ
(P(A))
min = min

λj∈sp(P(A))

{∣∣λj
∣∣}, µ

(P(B))
min = min

µk∈sp(P(B))
{|µk|},

ξ
(S(A))
max = max

iξ j∈sp(S(A))

{∣∣ξ j
∣∣}, ζ

(S(B))
max = max

iζk∈sp(S(B))
{|ζk|},

ξ
(S(A))
min = min

iξ j∈sp(S(A))

{∣∣ξ j
∣∣}, ζ

(S(B))
min = min

iζk∈sp(S(B))
{|ζk|},

with i =
√
−1 and

Θmax = λ
(P(A))
max + µ

(P(B))
max , Υmax = ξ

(S(A))
max + ζ

(S(B))
max ,

Θmin = λ
(P(A))
min + µ

(P(B))
min , Υmin = ξ

(S(A))
min + ζ

(S(B))
min .

In addition, let A = P + S, in which

P =P(A) = I ⊗ P(A) + P(B)T ⊗ I, S =S(A) = I ⊗ S(A) + S(B)T ⊗ I. (3)

According to [18], Θmax, Υmax and Θmin, Υmin are the upper and lower bounds of the eigenvalues
of matrices P and S, respectively.

The convergence theorem of the FPPSS iterative method for solving the continuous Sylvester
Equation (1) is proved as follows.

Theorem 2. Suppose A ∈ Cm×m and B ∈ Cn×n are positive semidefinite matrices, and at least one of them is a
positive definite matrix. αj(j = 1, 2) are given non-negative constants and β j(j = 1, 2) are positive constants.
Let:

M(α, β) = (βI + S)−1(βI − P)(αI + P)−1(αI − S), (4)

and
α = α1 + α2, β = β1 + β2, (5)

then the upper bound of the spectral radius ρ(M(α, β)) of the iterative matrix (4) of the iterative method (2) is:

σ(α, β) = max
Θ

∣∣∣∣ β−Θ
α + Θ

∣∣∣∣ ·max
Υ

√
α2 + Υ2

β2 + Υ2 . (6)
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In the meantime, if parameters α and β satisfy:

(α, β) ∈
4
∪
`=1

Ω`, (7)

with
Ω1 = { (α, β)|α ≤ β ≤ β∗(α)},
Ω2 = { (α, β)|β ≥ max{α, β∗(α)}, φ1(α, β) > 0},
Ω3 = { (α, β)|β∗(α) ≤ β ≤ α},
Ω4 = { (α, β)|β < min{α, β∗(α)}, φ2(α, β) > 0},

where functions φ1(α, β), φ2(α, β) and β∗(α) are as follows:

φ1(α, β) = (β− α)
(

Θ2
min − Υ2

max

)
+ 2αβΘmin + 2Υ2

maxΘmin,

φ2(α, β) = (β− α)
(

Θ2
max − Υ2

min

)
+ 2αβΘmax + 2Υ2

minΘmax,

β∗(α) = α(Θmax+Θmin)+2ΘmaxΘmin
2α+Θmax+Θmin

∈ [Θmin, Θmax],

(8)

we can prove that σ(α, β) < 1 , that is, the FPPSS iterative method (2) converges to the exact solution X∗ of the
continuous Sylvester Equation (1).

Proof. By Kronecker product, the FPPSS iterative method (2) can be transformed into

[
I ⊗ (α1 I + P(A)) + (α2 I + P(B))T ⊗ I

]
x(k+

1
2 )

=
[

I ⊗ (α1 I − S(A)) + (α2 I − S(B))T ⊗ I
]

x(k) + c,[
I ⊗ (β1 I + S(A)) + (β2 I + S(B))T ⊗ I

]
x(k+1)

=
[

I ⊗ (β1 I − P(A)) + (β2 I − P(B))T ⊗ I
]

x(k+
1
2 ) + c,

(9)

and Equation (9) can be further turned into:

[
(α1 + α2)I + I ⊗ P(A) + P(B)T ⊗ I

]
x(k+

1
2 )

=
[
(α1 + α2)I − I ⊗ S(A)− S(B)T ⊗ I

]
x(k) + c,[

(β1 + β2)I + I ⊗ S(A) + S(B)T ⊗ I
]

x(k+1)

=
[
(β1 + β2)I − I ⊗ P(A)− P(B)T ⊗ I

]
x(k+

1
2 ) + c,

(10)

which can be rewritten equivalently as:{
[αI + P]x(k+

1
2 ) = [αI − S]x(k) + c,

[βI + S]x(k+1) = [βI − P]x(k+
1
2 ) + c.

(11)

After the Formula (11) is reorganized, we can get:

x(k+1) =
[
(βI + S)−1(βI − P)(αI + P)−1(αI − S)

]
x(k)

+
[
(α + β)(βI + S)−1(αI + P)−1

]
c

= M(α, β)x(k) + N(α, β)c,

(12)

where M(α, β) is an iterative matrix.
According to the [19], P is a positive definite matrix, S is a Skew-Hermitian matrix, α is a

non-negative constant, and β is a normal number.
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The spectral radius of the iterative matrix M(α, β) satisfies:

ρ(M(α, β)) = ρ
(
(βI + S)−1(βI − P)(αI + P)−1(αI − S)

)
≤ ‖(βI + S)−1(βI − P)(αI + P)−1(αI − S)‖2.

(13)

Because
(βI + S)−1(βI − P)(αI + P)−1(αI − S)

is similar to:
(βI − P)(αI + P)−1(αI − S)(βI + S)−1,

(13) can be rewritten as:

ρ(M(α, β)) = ρ
(
(βI + S)−1(βI − P)(αI + P)−1(αI − S)

)
≤ ‖(βI − P)(αI + P)−1(αI − S)(βI + S)−1‖2
≤ ‖(βI − P)(αI + P)−1‖2‖(αI − S)(βI + S)−1‖2
= ‖V1(α)‖2‖V2(α)‖2.

(14)

(1) Consider: ‖V1(α)‖2 = ‖(βI − P)(αI + P)−1‖2

‖V1(α)‖2
2 = maxλ

{[
(βI − P)(αI + P)−1

]T[
(βI − P)(αI + P)−1

]}
= maxλ

{
(αI + P)−T(βI − P)T(βI − P)(αI + P)−1

}
= maxλ

{[
(αI + P)T

]−1
(βI − P)T(βI − P)(αI + P)−1

}
,

(15)

for [
(αI + P)T

]−1
(βI − P)T(βI − P)(αI + P)−1

is similar to:
(βI − P)T(βI − P)(αI + P)−1

[
(αI + P)T

]−1
,

(15) can be rewritten as:

‖V1(α)‖2
2 = maxλ

{
(βI − P)T(βI − P)(αI + P)−1

[
(αI + P)T

]−1
}

= maxλ

{[
(βI − P)T(βI − P)

][
(αI + P)T(αI + P)

]−1
}

= maxλ
{[(

βI − PT)(βI − P)
][(

αI + PT)(αI + P)
]−1
}

= maxλ
{[

β2 I − β
(
P + PT)+ PTP

][
α2 I + α

(
P + PT)+ PTP

]−1
}

.

(16)

(16) can be equivalently rewritten as

‖V1(α)‖2
2 = max

λ[β2 I−β(P+PT)+PTP]
λ[α2 I+α(P+PT)+PTP]

= max β2−2βΘ+Θ2

α2+2αΘ+Θ2

= max
(

β−Θ
α+Θ

)2
,

(17)

so ‖V1(α)‖2 = max
Θ

∣∣∣ β−Θ
α+Θ

∣∣∣.
(2) Consider ‖V2(α)‖2 = ‖(αI − S)(βI + S)−1‖2
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In the same way as the proof process of ‖V1(α)‖2 = ‖(βI − P)(αI + P)−1‖2, we can get

‖V2(α)‖2
2 = max

λ[α2 I−α(S+ST)+STS]
λ[β2 I+β(S+ST)+STS]

= max α2+Υ2

β2+Υ2 ,
(18)

so ‖V2(α)‖ = max
Υ

√
α2+Υ2

β2+Υ2 .

Bring (17) and (18) into (14), we get:

ρ(M(α, β)) ≤ max
Θ

∣∣∣∣ β−Θ
α + Θ

∣∣∣∣ ·max
Υ

√
α2 + Υ2

β2 + Υ2 , (19)

which gives the upper bound σ(α, β) = max
Θ

∣∣∣ β−Θ
α+Θ

∣∣∣ ·max
Υ

√
α2+Υ2

β2+Υ2 of the spectral radius of the iterative

matrix M(α, β).
In the following, similar to the Theorem 2.2 of the literature [20] to prove the process idea, we can

get:

max
Θ

∣∣∣∣ β−Θ
α + Θ

∣∣∣∣ = max
{∣∣∣∣ β−Θmax

α + Θmax

∣∣∣∣, ∣∣∣∣ β−Θmin

α + Θmin

∣∣∣∣}, (20)

absorb the absolute value symbol on the right side of (20) to get:

β−Θmin

α + Θmin
=

Θmax − β

α + Θmax
. (21)

It can be solved from the Formula (21) that:

β∗(α) =
α(Θmax + Θmin) + 2ΘmaxΘmin

2α + Θmax + Θmin
∈ [Θmin, Θmax]. (22)

Simultaneously we have:

‖V1(α)‖2 = max
Θ

∣∣∣ β−Θ
α+Θ

∣∣∣
=

{ Θmax−β
Θmax+α , β < β∗(α),
β−Θmin
Θmin+α , β ≥ β∗(α).

(23)

The same reason can be used to obtained:

‖V2(α)‖ = max
Υ

√
α2+Υ2

β2+Υ2

=


√

α2+Υmax2

β2+Υmax2 ,α ≤ β,√
α2+Υmin

2

β2+Υmin
2 , α > β.

(24)

At this point we can divide the area Ω = { (α, β)|α ≥ 0, β > 0} into the following four parts
according to (23) and (24):

Ω1 = { (α, β)|α ≤ β < β∗(α)}, Ω2 = { (α, β)|β ≥ max{α, β∗(α)}},
Ω3 = { (α, β)|β∗(α) ≤ β ≤ α}, Ω4 = { (α, β)|β < min{α, β∗(α)}}.

From (19), (23), and (24) we can know:
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(1) For (α, β) ∈ Ω1 = { (α, β)|α ≤ β ≤ β∗(α)},

ρ(M(α, β)) ≤ Θmax − β

Θmax + α
·

√
α2 + Υmax2

β2 + Υmax2 < 1.

(2) For (α, β) ∈ Ω2 = { (α, β)|β ≥ max{α, β∗(α)}},

ρ(M(α, β)) ≤ β−Θmin

Θmin + α
·

√
α2 + Υmax2

β2 + Υmax2 , (25)

to make (25) less than 1, if and only if

φ1(α, β) = (β− α)
(

Θ2
min − Υ2

max

)
+ 2αβΘmin + 2Υ2

maxΘmin > 0.

(3) For (α, β) ∈ Ω3 = { (α, β)|β∗(α) ≤ β ≤ α},

ρ(M(α, β)) ≤ β−Θmin

α + Θmin
·

√
α2 + Υmin

2

β2 + Υmin
2 <

β

α
· α

β
= 1.

(4) For (α, β) ∈ Ω4 = { (α, β)|β < min{α, β∗(α)}},

ρ(M(α, β)) ≤ Θmax − β

Θmax + α
·

√
α2 + Υmin

2

β2 + Υmin
2 , (26)

to make (26) less than 1, if and only if:

φ2(α, β) = (β− α)
(

Θ2
max − Υ2

min

)
+ 2αβΘmax + 2Υ2

minΘmax > 0.

In summary, we can draw the conclusion:

ρ(M(α, β)) ≤ σ(α, β) < 1, ∀(α, β) ∈
4
∪
`=1

Ω`.

Theorem 2 is verified. �

Theorem 3. The theoretical optimal parameter that makes σ(α, β) the minimum is:

(α∗, β∗) = argmin
α,β
{σ(α, β)} =


(α1, β∗(α1)), ΘmaxΘmin ≤ Υ2

min,
(α0, β∗(α0)), Υ2

min < ΘmaxΘmin < Υ2
max,

(α2, β∗(α2)), ΘmaxΘmin ≥ Υ2
max,

where

α1 =
Υ2

min−ΘmaxΘmin+
√
(Υ2

min+Θ2
max)(Υ2

min+Θ2
min)

Θmax+Θmin
,

α0 =
√

ΘmaxΘmin,

α2 =
Υ2

max−ΘmaxΘmin+
√
(Υ2

max+Θ2
max)(Υ2

max+Θ2
min)

Θmax+Θmin
.

The upper bound of the spectral radius of the corresponding iterative matrix is:

σ(α∗, β∗) =


σ(α1), ΘmaxΘmin ≤ Υ2

min,
σ(α0), Υ2

min < ΘmaxΘmin < Υ2
max,

σ(α2), ΘmaxΘmin ≥ Υ2
max,
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where

σ(α) = σ(α, β∗(α)) =


β∗(α)−Θmin

α+Θmin
·
√

α2+Υ2
min

β∗(α)2+Υ2
min

, α > α0,

β∗(α)−Θmin
α+Θmin

·
√

α2+Υ2
max

β∗(α)2+Υ2
max

, α ≤ α0.

Proof. From (23) and (24) we can know:

σ(α, β) =



Θmax−β
Θmax+α ·

√
α2+Υmax2

β2+Υmax2 , (α, β) ∈ Ω1,
β−Θmin
Θmin+α ·

√
α2+Υmax2

β2+Υmax2 , (α, β) ∈ Ω2,

β−Θmin
α+Θmin

·
√

α2+Υmin
2

β2+Υmin
2 , (α, β) ∈ Ω3,

Θmax−β
Θmax+α ·

√
α2+Υmin

2

β2+Υmin
2 , (α, β) ∈ Ω4,

(27)

we can observe from (27) that σ′β(α, β) < 0 when (α, β) ∈ Ω1 and (α, β) ∈ Ω4, σ′β(α, β) > 0 when
(α, β) ∈ Ω2 and (α, β) ∈ Ω3, then at β = β∗(α), σ′β(α, β) has a minimum value and is also the minimum
value.

Substitute β = β∗(α) into (27), then:

σ(α) = σ(α, β∗(α)) =


β∗(α)−Θmin

α+Θmin
·
√

α2+Υ2
min

β∗(α)2+Υ2
min

, α > α0,

β∗(α)−Θmin
α+Θmin

·
√

α2+Υ2
max

β∗(α)2+Υ2
max

, α ≤ α0,
(28)

obviously, computing the minimum value of (27) is converted to solving the minimum value of (28).
Find the derivative number for (28) and get:

σ′(α) =

{
c1(α)η1(α), α > α0,
c2(α)η2(α), α < α0,

(29)

where c1(α) and c2(α) are two positive function, and:

η1(α) = (Θmax + Θmin)α
2 + 2α

(
ΘmaxΘmin − Υ2

min
)
− Υ2

min(Θmax + Θmin),
η2(α) = (Θmax + Θmin)α

2 + 2α
(
ΘmaxΘmin − Υ2

max
)
− Υ2

max(Θmax + Θmin).
(30)

It can be observed that η1(α) is similar to η2(α) format and has a positive root and a negative root.
The positive roots are denoted as α1 and α2, respectively, and because of Υmax > Υmin, α1 < α2. Also
note that Θmax + Θmin ≥ 0.

Bring α = α0 into (30) to get:

η1(α0) =
(√

Θmax +
√

Θmin
)2(ΘmaxΘmin − Υ2

min
)
,

η2(α0) =
(√

Θmax +
√

Θmin
)2(ΘmaxΘmin − Υ2

max
)
.

(31)

According to (31), we can find:
(1) When ΘmaxΘmin ≤ Υ2

min, we have η1(α0) < 0 and η2(α0) < 0, then there are α0 < α1 < α2, at
this time σ(α, β) takes the minimum at (α1, β∗(α1)).

(2) When Υ2
min < ΘmaxΘmin < Υ2

max, we have η1(α0) > 0 and η2(α0) < 0,then there are α1 <

α0 < α2, at this time σ(α, β) takes the minimum at (α0, β∗(α0)).
(3) When ΘmaxΘmin ≥ Υ2

max, we have η1(α0) > 0 and η2(α0) > 0,then there are α1 < α2 < α0, at
this time σ(α, β) takes the minimum at (α2, β∗(α2)).

In summary, Theorem 3 is verified. �
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3. Numerical Experiments

In this part, we use numerical experiments to compare the FPPSS iterative method, PSS iterative
method and HSS iterative method for solving the continuous Sylvester Equation (1) in term of iteration
steps (IT) and computing time (CPU).

In the implementation of the algorithm, for the convenience of calculation, the initial matrix X(0)

is taken as a zero matrix, and the iterative stopping criterion is ‖C−AX(k)−X(k)B‖F
‖C‖F

≤ 10−6. In addition,
in each step of the iterative method, the subproblem is solved by the direct method in [20].

Example 1. In order to generate large and sparse matrices A and B, we established them in the following ways
which can also be seen in [13]:

A =


10 1 1
2 10 1

. . . . . . . . .
2 10 1

1 2 10

, B =


8 1 1
3 8 1

. . . . . . . . .
3 8 1

1 3 8

.

Tables 1 and 2 lists the numerical results of FPPSS, PSS, and HSS iterative method using
experimental optimal iterative parameters. α∗1 , β∗1, and α∗ (where β∗ = α∗) represent the experimental
quasi-optimal parameters of the FPPSS, PSS, and HSS iterative methods, respectively.

Table 1. IT and CPU for four parameters positive and skew-Hermitian splitting (FPPSS), positive and
skew-Hermitian splitting (PSS), and Hermitian and skew-Hermitian splitting iterative method (HSS)
for Example 1 when using experimental quasi-optimal parameters.

Method FPPSS PSS HSS

n IT CPU IT CPU IT CPU

n = 8 6 1.312 16 1.153 15 1.249
n = 16 6 1.318 16 1.147 16 1.166
n = 32 6 1.332 17 1.298 16 1.250
n = 64 6 1.424 17 1.559 16 1.495

n = 128 6 2.230 17 3.134 16 3.655
n = 256 6 8.406 17 19.187 16 26.811
n = 512 6 86.889 17 192.139 16 230.645

n = 1024 6 818.956 - - - -

Table 2. The practical optimal value for FPPSS, PSS, and HSS for Example 1.

Method FPPSS PSS HSS

n α∗1 β∗1 α∗ = β∗ α∗ = β∗

n = 8 0.3794 9 4.7843 4.7843
n = 16 0.4275 9 4.7750 4.7750
n = 32 0.4402 9 4.7714 4.7714
n = 64 0.4434 9 4.7702 4.7702
n = 128 0.4442 9 4.7698 4.7698
n = 256 0.4444 9 4.7697 4.7697
n = 512 0.4444 9 4.7697 4.7697

n = 1024 0.4444 9 - -
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Example 2. The continuous Sylvester equation (1) with m = n and the matrices:{
A = diag(1, 2, . . . , n) + 10−3LT,
B = 2−t I + diag(1, 2, . . . n) + 10−3LT + 2−tL,

with L the strictly lower triangular matrix having ones in the lower triangle part and t is a problem parameter to
be specified in actual computations.

Tables 3 and 4 lists the numerical results of FPPSS, PSS, and HSS iterative method using
experimental optimal iterative parameters. α∗1 , β∗1, and α∗ (where β∗ = α∗) represent the experimental
quasi-optimal parameters of the FPPSS, PSS, and HSS iterative methods, respectively.

Table 3. IT and CPU for FPPSS, PSS, and HSS for Example 2 when using experimental
quasi-optimal parameters.

Method FPPSS PSS HSS

n IT CPU IT CPU IT CPU

n = 8 2 1.280 40 1.132 30 1.368
n = 16 3 1.335 54 1.317 44 1.200
n = 32 3 1.399 73 1.702 65 1.443
n = 64 3 1.383 100 3.305 93 3.493

n = 128 4 1.863 139 22.177 134 27.289
n = 256 5 6.862 196 361.342 191 438.372
n = 512 6 69.461 - - - -
n = 1024 8 1122.085 - - - -

Table 4. The practical optimal value for FPPSS, PSS, and HSS for Example 2.

Method FPPSS PSS HSS

n α∗1 β∗1 α∗ = β∗ α∗ = β∗

n = 8 9.9114× 10−6 2.5500 1.4142 1.4142
n = 16 3.7485× 10−5 2.7500 2.0000 2.0000
n = 32 1.4448× 10−4 2.8678 2.8284 2.8284
n = 64 5.6589× 10−4 2.9323 4.0000 4.0000
n = 128 0.0022 2.9675 5.6569 5.6569
n = 256 0.0089 2.9912 8.0000 8.0000
n = 512 0.0351 3.0259 - -

n = 1024 0.1358 3.1305 - -

Example 3. Consider Equation (1), where m = n, A = B = M + qN + 100
(n+1)2 I and M, N ∈ Rn×n are the

following three diagonal matrices.

M = tridiag(−1,−2,−1) and N = tridiag(0.5, 0,−0.5), Tables 5 and 6 list the numerical results of
FPPSS and PSS iterative method using experimental optimal iterative parameters. α∗1 (where α∗1 = α∗2),
β∗1 (where β∗1 = β∗2) and α∗ (where β∗ = α∗) represent the experimental quasi-optimal parameters of
the FPPSS, PSS, and HSS iterative methods, respectively.
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Table 5. IT and CPU for FPPSS, PSS, and HSS for Example 3 when using experimental
quasi-optimal parameters.

Method FPPSS PSS HSS

q n IT CPU IT CPU IT CPU

q = 1 n = 8 8 1.302 20 1.192 28 1.124
n = 16 15 1.344 39 1.298 47 1.334
n = 32 34 1.439 81 1.673 93 1.874
n = 64 62 3.029 164 6.281 203 7.193
n = 128 104 13.175 - - - -
n = 256 175 256.191 - - - -

q = 10 n = 8 9 1.385 23 1.268 33 1.227
n = 16 14 1.464 43 1.259 60 1.436
n = 32 21 1.501 83 1.647 123 2.041
n = 64 30 2.119 166 5.409 251 10.950
n = 128 44 9.310 - - - -
n = 256 67 152.779 - - - -

q = 100 n = 8 11 1.544 24 1.290 39 1.151
n = 16 25 1.502 43 1.472 69 1.291
n = 32 61 1.824 84 1.585 133 1.900
n = 64 91 4.032 167 6.187 265 10.966
n = 128 123 25.951 - - - -
n = 256 182 365.007 - - - -

Table 6. The practical optimal value for FPPSS, PSS, and HSS for Example 3.

Method FPPSS PSS
HSS

q n α∗1 β∗1 α∗ = β∗ α∗ = β∗

q = 1 n = 8 0.2730 3.2346 1.3163 1.3163
n = 16 0.4119 2.3460 0.6010 0.6401
n = 32 0.4737 2.0918 0.3209 0.3209
n = 64 0.4930 2.0237 0.1617 0.1617
n = 128 0.4982 2.0060 - -
n = 256 0.4995 2.0015 - -

q = 10 n = 8 3.2346 3.2346 1.3163 1.3163
n = 16 2.3460 2.3460 0.6401 0.6401
n = 32 2.0918 2.0918 0.3209 0.3209
n = 64 2.0237 2.0237 0.1617 0.1617
n = 128 2.0060 2.0060 - -
n = 256 2.0015 2.0015 - -

q = 100 n = 8 3.2346 3.2346 1.3163 1.3163
n = 16 2.3460 2.3460 0.6401 0.6401
n = 32 2.0918 2.0918 0.3209 0.3209
n = 64 2.0237 2.0237 0.1617 0.1617
n = 128 2.0060 2.0060 - -
n = 256 2.0015 2.0015 - -

From the above three examples, we can see that although the runtime of FPPSS iteration method
is slightly higher than that of previous iteration method when the dimension of coefficient matrices
is small, but lower when the dimension is large. And the iteration steps of FPPSS iteration method
are less than that of previous iteration method regardless of the dimension of coefficient matrices.
When the matrix dimension is high, the results can still be calculated in a shorter runtime and less
iteration steps. Through the above numerical experiments, it is proved that FPPSS iteration method is
an effective improved algorithm.
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4. Conclusions

In this paper, a new four-parameter positive and skew-Hermitian iterative method, namely the
FPPSS iterative method, is applied to solve the Sylvester equation of the form AX + XB = C, which is
a generalization of the classical PSS iterative method [7]. This paper proves that when the parameters
satisfy certain conditions, the iterative sequence generated by the FPPSS method converges to the
unique solution of the Sylvester equation, and the PSS method is a special case of the FPPSS method.
We also give the theoretical optimal sum of the parameters that minimize the upper bound of the
spectral radius of the iterative matrix. In addition, it can be seen from the experimental data that the
FPPSS iterative method is superior to the PSS and HSS iterative method in most cases in CPU and IT,
which indicates that the newly constructed FPPSS iterative method is an effective iterative method for
solving the Sylvester equation.
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