
mathematics

Article

L-Fuzzy Sets and Isomorphic Lattices: Are All the
“New” Results Really New? †

Erich Peter Klement 1,* ID and Radko Mesiar 2

1 Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040 Linz, Austria
2 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,

Slovak University of Technology, 810 05 Bratislava, Slovakia; radko.mesiar@stuba.sk
* Correspondence: ep.klement@jku.at; Tel.: +43-650-2468290
† These authors contributed equally to this work.

Received: 23 June 2018; Accepted: 20 August 2018; Published: 23 August 2018

Abstract: We review several generalizations of the concept of fuzzy sets with two- or three-dimensional
lattices of truth values and study their relationship. It turns out that, in the two-dimensional case, several
of the lattices of truth values considered here are pairwise isomorphic, and so are the corresponding
families of fuzzy sets. Therefore, each result for one of these types of fuzzy sets can be directly rewritten
for each (isomorphic) type of fuzzy set. Finally we also discuss some questionable notations, in particular,
those of “intuitionistic” and “Pythagorean” fuzzy sets.
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1. Introduction

In the paper “Fuzzy sets” [1] L. A. Zadeh suggested the unit interval [0, 1] (which we shall denote
by I throughout the paper) as set of truth values for fuzzy sets, in a generalization of Boolean logic and
Cantorian set theory where the two-element Boolean algebra {0, 1} is used.

Soon after a further generalization was proposed in J. Goguen [2]: to replace the unit interval I
by an abstract set L (in most cases a lattice), noticing that the key feature of the unit interval in this
context is its lattice structure. In yet another generalization L. A. Zadeh [3,4] introduced fuzzy sets of
type 2 where the value of the membership function is a fuzzy subset of I.

Since then, many more variants and generalizations of the original concept in [1] were presented,
most of them being either L-fuzzy sets, type-n fuzzy sets or both. In a recent and extensive
“historical account”, H. Bustince et al. ([5], Table 1) list a total of 21 variants of fuzzy sets and study
their relationships.

In this paper, we will deal with the concepts of (generalizations of) fuzzy sets where the set of
truth values is either one-dimensional (the unit interval I), two-dimensional (e.g., a suitable subset of
the unit square I× I) or three-dimensional (a subset of the unit cube I3).

The one-dimensional case (where the set of truth values equals I) is exactly the case of fuzzy sets
in the sense of [1].

Concerning the two-dimensional case, we mainly consider the following subsets of the unit square
I× I:

L∗ = {(x1, x2) ∈ I× I | x1 + x2 ≤ 1},
L2(I) = {(x1, x2) ∈ I× I | 0 ≤ x1 ≤ x2 ≤ 1},

P∗ = {(x1, x2) ∈ I× I | x2
1 + x2

2 ≤ 1},
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and the related set of all closed subintervals of the unit interval I:

I(I) = {[x1, x2] ⊆ I | 0 ≤ x1 ≤ x2 ≤ 1}.

Equipped with suitable orders, these lattices of truth values give rise to several generalizations
of fuzzy sets known from the literature: L∗-fuzzy sets, “intuitionistic” fuzzy sets [6,7], grey sets [8,9],
vague sets [10], 2-valued sets [11], interval-valued fuzzy sets [4,12–14], and “Pythagorean” fuzzy
sets [15].

In the three-dimensional case, the following subsets of the unit cube I3 will play a major role:

D∗ = {(x1, x2, x3) ∈ I3 | x1 + x2 + x3 ≤ 1},
L3(I) = {(x1, x2, x3) ∈ I3 | 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1}.

Equipped with suitable orders, these lattices of truth values lead to the concepts of 3-valued
sets [11] and picture fuzzy sets [16].

While it is not surprising that lattices of truth values of higher dimension correspond to more
complex types of fuzzy sets, it is remarkable that in the two-dimensional case the lattices with the
carriers L∗, L2(I), P∗, and I(I) are mutually isomorphic, i.e., the families of fuzzy sets with these truth
values have the same lattice-based properties. This implies that mathematical results for one type
of fuzzy sets can be carried over in a straightforward way to the other (isomorphic) types. This also
suggests that, in a mathematical sense, often only one of these lattices of truth values (and only one of
the corresponding types of fuzzy sets) is really needed.

Note that if some algebraic structures are isomorphic, then it is meaningful to consider all of them
only if they have different meanings and interpretations.

This is, e.g., the case for the arithmetic mean (on [−∞, ∞[) and for the geometric mean (on [0, ∞[).
On the other hand, concerning results dealing with such isomorphic structures, it is enough to prove
them once and then to transfer them to the other isomorphic structures simply using the appropriate
isomorphisms. For example, in the case of the arithmetic and geometric means mentioned here, the
additivity of the arithmetic mean is equivalent to the multiplicativity of the geometric mean.

Another example are pairs (a, b) of real numbers which can be interpreted as points in the real
plane, as (planar) vectors, as complex numbers, and (if a ≤ b) as closed sub-intervals of the real line.
Most algebraic operations for these objects are defined for the representing pairs of real numbers; in
the case of the addition, the exact same formula is used.

We only mention that in the case of three-dimensional sets of truth values, the corresponding
lattices (and the families of fuzzy sets based on them) are not isomorphic, which means that they have
substantially different properties.

The paper is organized as follows. In Section 2, we discuss the sets of truth values for Cantorian
(or crisp) sets and for fuzzy sets and present the essential notions of abstract lattice theory, including
the crucial concept of isomorphic lattices. In Section 3, we review the two- and three-dimensional
sets of truth values mentioned above and study the isomorphisms between them and between the
corresponding families of fuzzy sets. Finally, in Section 4, we discuss some further consequences of
lattice isomorphisms as well as some questionable notations appearing in the literature, in particular
“intuitionistic” fuzzy sets and “Pythagorean” fuzzy sets.

2. Preliminaries

Let us start with collecting some of the basic and important prerequisites from set theory, fuzzy
set theory, and some generalizations thereof.
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2.1. Truth Values and Bounded Lattices

The set of truth values in Cantorian set theory [17,18] (and in the underlying Boolean logic [19,20])
is the Boolean algebra {0, 1}, which we will denote by 2 in this paper. Given a universe of discourse,
i.e., a non-empty set X, each Cantorian (or crisp) subset A of X can be identified with its indicator function
1A : X → 2, defined by 1A(x) = 1 if and only if x ∈ A.

In L. A. Zadeh’s seminal paper on fuzzy sets [1] (compare also the work of K. Menger [21–23] and
D. Klaua [24,25]), the unit interval [0, 1] was proposed as set of truth values, thus providing a natural
extension of the Boolean case. As usual, a fuzzy subset A of the universe of discourse X is described by
its membership function µA : X → I, and µA(x) is interpreted as the degree of membership of the object x
in the fuzzy set A. The standard order reversing involution (or double negation) NI : I→ I is given by
NI(x) = 1− x.

For the rest of this paper, we will reserve the shortcut I for the unit interval [0, 1] of the real line R.
On each subset of the real line, the order ≤ will denote the standard linear order inherited from R.

In a further generalization, J. Goguen [2] suggested to use the elements of an abstract set L as
truth values and to describe an L-fuzzy subset A of X by means of its membership function µA : X → L,
where µA(x) stands for the degree of membership of the object x in the L-fuzzy set A.

Several important examples for L were discussed in [2], such as complete lattices or complete
lattice-ordered semigroups. There is an extensive literature on L-fuzzy sets dealing with various aspects
of algebra, analysis, category theory, topology, and stochastics (see, e.g., [26–44]). For a more recent
overview of these and other types and generalizations of fuzzy sets see [5].

In most of these papers the authors work with a lattice (L,≤L), i.e., a non-empty, partially ordered
set (L,≤L) such that each finite subset of L has a meet (or greatest lower bound) and a join (or least upper
bound) in L. If each arbitrary subset of L has a meet and a join then the lattice is called complete, and if
there exist a bottom (or smallest) element 0L and a top (or greatest) element 1L in L, then the lattice is
called bounded.

For notions and results in the theory of general lattices we refer to the book of G. Birkhoff [45].
There is an equivalent, purely algebraic approach to lattices without referring to a partial order:
if ∧L : L× L → L and ∨L : L× L → L are two commutative, associative operations on a set L that
satisfy the two absorption laws, i.e., for all x, y ∈ L we have x ∧L (x ∨L y) = x and x ∨L (x ∧L y) = x,
and if we define the binary relation ≤L on L by x ≤L y if and only if x ∧L y = x (which is equivalent
to saying that x ≤L y if and only if x ∨L y = y), then ≤L is a partial order on L and (L,≤L) is a lattice
such that, for each set {x, y} ⊆ L, the elements x ∧L y and x ∨L y coincide with the meet and the join,
respectively, of the set {x, y} with respect to the order ≤L.

Clearly, the lattices (2,≤) and (I,≤) already mentioned are examples of complete bounded
lattices: 2-fuzzy sets are exactly crisp sets, I-fuzzy sets are the fuzzy sets in the sense of [1].

If (L1,≤L1), (L2,≤L2), . . . , (Ln,≤Ln) are lattices and
n
∏
i=1

Li = L1 × L2 × · · · × Ln is the Cartesian

product of the underlying sets, then also ( n

∏
i=1

Li,≤comp

)
, (1)

is a lattice, the so-called product lattice of (L1,≤L1), (L2,≤L2), . . . , (Ln,≤Ln), where ≤comp is the
componentwise partial order on the Cartesian product ∏ Li given by

(x1, x2, . . . , xn) ≤comp(y1, y2, . . . , yn) (2)

⇐⇒ x1 ≤L1 y1 AND x2 ≤L2 y2 AND . . . AND xn ≤Ln yn.

The componentwise partial order is not the only partial order that can be defined on ∏ Li.
An alternative is, for example, the lexicographical partial order ≤lexi given by (x1, x2, . . . , xn) ≤lexi
(y1, y2, . . . , yn) if and only if ((x1, x2, . . . , xn) = (y1, y2, . . . , yn) or (x1, x2, . . . , xn) <lexi (y1, y2, . . . , yn)),
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where the strict inequality (x1, x2, . . . , xn) <lexi (y1, y2, . . . , yn) holds if and only if there is an i0 ∈
{1, 2, . . . , n} such that xi = yi for each i ∈ {1, 2, . . . , i0 − 1} and xi0 <Li0

yi0 .
Obviously, whenever (L1,≤L1), (L2,≤L2), . . . , (Ln,≤Ln) are lattices then also( n

∏
i=1

Li,≤lexi

)
is a lattice. Moreover, if each of the partial orders ≤L1 ,≤L2 , . . . ,≤Ln is linear, then ≤lexi is also a linear
order. Note that this is not the case for ≤comp whenever n > 1 and at least two of the sets L1, L2, . . . , Ln

contain two or more elements. To take the simplest example: the lattice (2× 2,≤lexi) is a chain, i.e.,
(0, 0) <lexi (0, 1) <lexi (1, 0) <lexi (1, 0), but in the product lattice (2× 2,≤comp) the elements (0, 1)
and (1, 0) are incomparable with respect to ≤comp.

We only mention that also the product of infinitely many lattices may be a lattice. As an example,
if (L,≤L) is a lattice and X a non-empty set, then the set LX of all functions from X to L, equipped
with the componentwise partial order ≤comp, is again a lattice. Recall that, for functions f , g : X → L,
the componentwise partial order ≤comp is defined by f ≤comp g if and only if f (x) ≤L g(x) for all
x ∈ X. If no confusion is possible, we simply shall write f ≤L g rather than f ≤comp g.

2.2. Isomorphic Lattices: Some General Consequences

For two partially ordered sets (L1,≤L1) and (L2,≤L2), a function ϕ : L1 → L2 is called an order
homomorphism if it preserves the monotonicity, i.e., if x ≤L1 y implies ϕ(x) ≤L2 ϕ(y).

If (L1,≤L1) and (L2,≤L2) are two lattices then a function ϕ : L1 → L2 is called a lattice
homomorphism if it preserves finite meets and joins, i.e., if for all x, y ∈ L1

ϕ(x ∧L1 y) = ϕ(x) ∧L2 ϕ(y) and ϕ(x ∨L1 y) = ϕ(x) ∨L2 ϕ(y). (3)

Each lattice homomorphism is an order homomorphism, but the converse is not true in general.
A lattice homomorphism ϕ : L1 → L2 is called an embedding if it is injective, an epimorphism if it is
surjective, and an isomorphism if it is bijective, i.e., if it is both an embedding and an epimorphism.

If a function ϕ : L1 → L2 is an embedding from a lattice (L1,≤L1) into a lattice (L2,≤L2) then the
set {ϕ(x) | x ∈ L1} (equipped with the partial order inherited from (L2,≤L2)) forms a sublattice of
(L2,≤L2) which is isomorphic to (L1,≤L1). If (L1,≤L1) is bounded or complete, so is this sublattice of
(L2,≤L2). Conversely, if (L1,≤L1) is a sublattice of (L2,≤L2) then (L1,≤L1) trivially can be embedded
into (L2,≤L2) (the identity function idL1 : L1 → L2 provides an embedding).

The word “isomorphic” is derived from the composition of the two Greek words “isōs” (meaning
similar, equal, corresponding) and “morphē” (meaning shape, structure), so it means having the same shape
or the same structure.

If two lattices (L1,≤L1) and (L2,≤L2) are isomorphic this means that they have the same
mathematical structure in the sense that there is a bijective function ϕ : L1 → L2 that preserves
the order as well as finite meets and joins, compare (3).

However, being isomorphic does not necessarily mean to be identical, for example (not in the
lattice framework), consider the arithmetic mean on [−∞, ∞[ and the geometric mean on [0, ∞[ [46,47]
which are isomorphic aggregation functions on Rn, but they have some different properties and they
are used for different purposes.

If (L1,≤L1) and (L2,≤L2) are isomorphic and if (L1,≤L1) has additional order theoretical
properties, these properties automatically carry over to the lattice (L2,≤L2).

For instance, if the lattice (L1,≤L1) is complete so is (L2,≤L2). Or, if the lattice (L1,≤L1) is
bounded (with bottom element 0L1 and top element 1L1) then also (L2,≤L2) is bounded, and the
bottom and top elements of (L2,≤L2) are obtained via 0L2 = ϕ(0L1) and 1L2 = ϕ(1L1).

Moreover, it is well-known that corresponding constructs over isomorphic structures are again
isomorphic. Here are some particularly interesting cases:
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Remark 1. Suppose that (L1,≤L1) and (L2,≤L2) are isomorphic lattices and that ϕ : L1 → L2 is a lattice
isomophism between (L1,≤L1) and (L2,≤L2).

(i) If f : L1 → L1 is a function then the composite function ϕ ◦ f ◦ ϕ−1 : L2 → L2 has the same order
theoretical properties as f .

(ii) If F : L1 × L1 → L1 is a binary operation on L1 and if we define
(

ϕ−1, ϕ−1) : L2 × L2 → L2 × L2 by(
ϕ−1, ϕ−1)((x, y)) =

(
ϕ−1(x), ϕ−1(y)

)
, then the function ϕ ◦ F ◦

(
ϕ−1, ϕ−1) : L2 × L2 → L2 is a

binary operation on L2 with the same order theoretical properties as F.
(iii) If A1 : (L1)

n → L1 is an n-ary operation on L1 then, as a straightforward generalization, the composite
function ϕ ◦A1 ◦

(
ϕ−1, ϕ−1, . . . , ϕ−1) : (L2)

n → L2 given by

ϕ ◦A1 ◦
(

ϕ−1, ϕ−1, . . . , ϕ−1)(x1, x2, . . . , xn) = ϕ
(

A1
(

ϕ−1(x1), ϕ−1(x2), . . . , ϕ−1(xn)
))

,

is an n-ary operation on L2 with the same order theoretical properties as A1.

As a consequence of Remark 1, many structures used in fuzzy set theory can be carried over to
any isomorphic lattice, for example, order reversing involutions or residua [45], which are used in
BL-logics [48–62]. The same is true for many connectives (mostly on the unit interval I but also on
more general and more abstract structures (see, e.g., [63,64])) for many-valued logics such as triangular
norms and conorms (t-norms and t-conorms for short), going back to K. Menger [65] and B. Schweizer
and A. Sklar [66–68] (see also [69–73]), uninorms [74], and nullnorms [75]. Another example are
aggregation functions which have been extensively studied on the unit interval I in, e.g., [46,47,76–78].

Example 1. Let (L1,≤L1) and (L2,≤L2) be isomorphic bounded lattices, suppose that ϕ : L1 → L2 is a lattice
isomorphism between (L1,≤L1) and (L2,≤L2), and denote the bottom and top elements of (L1,≤L1) by 0L1 and
1L1 , respectively.

(i) Let NL1 : L1 → L1 be an order reversing involution (or double negation) on L1, i.e., x ≤L1 y implies
NL1(y) ≤L1 NL1(x), and NL1 ◦ NL1 = idL1 . Then the function ϕ ◦ NL1 ◦ ϕ−1 is an order reversing
involution on L2, and the complemented lattice

(
L2,≤2, ϕ ◦NL1 ◦ ϕ−1) is isomorphic to (L1,≤1, NL1).

(ii) Let (L1,≤L1 , ∗1, e1,→1,←1) be a residuated lattice, i.e., (L1, ∗1) is a (not necessarily commutative)
monoid with neutral element e1, and for the residua →1,←1 : L1 × L1 → L1 we have that for all
x, y, z ∈ L1 the assertion (x ∗1 y) ≤L1 z is equivalent to both y ≤L1 (x →1 z) and x ≤L1 (z←1 y). Then(

L2,≤L2 , ϕ ◦ ∗1 ◦
(

ϕ−1, ϕ−1), ϕ(e1), ϕ ◦→1 ◦
(

ϕ−1, ϕ−1), ϕ ◦←1 ◦
(

ϕ−1, ϕ−1))
is an isomorphic residuated lattice.

(iii) Let T1 : L1 × L1 → L1 be a triangular norm on L1, i.e., T1 is an associative, commutative order
homomorphism with neutral element 1L1 . Then the function ϕ ◦ T1 ◦

(
ϕ−1, ϕ−1) is a triangular norm

on L2.
(iv) Let S1 : L1 × L1 → L1 be a triangular conorm on L1, i.e., S1 is an associative, commutative order

homomorphism with neutral element 0L1 . Then the function ϕ ◦ S1 ◦
(

ϕ−1, ϕ−1) is a triangular conorm
on L2.

(v) Let U1 : L1 × L1 → L1 be a uninorm on L1, i.e., U1 is an associative, commutative order homomorphism
with neutral element e ∈ L1 such that 0L1 <L1 e <L1 1L1 . Then the function ϕ ◦U1 ◦

(
ϕ−1, ϕ−1) is a

uninorm on L2 with neutral element ϕ(e).
(vi) Let V1 : L1 × L1 → L1 be a nullnorm on L1, i.e., V1 is an associative, commutative order homomorphism

such that there is an a ∈ L1 with 0L1 <L1 a <L1 1L1 such that for all x ≤L1 a we have V1((x, 0L1)) = x,
and for all x ≥L1 a we have V1((x, 1L1)) = x. Then the function ϕ ◦ V1 ◦

(
ϕ−1, ϕ−1) is a nullnorm

on L2.
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(vii) Let A1 : (L1)
n → L1 be an n-ary aggregation function on L1, i.e., A1 is an order homomorphism which

satisfies A1(0L1 , 0L1 , . . . , 0L1) = 0L1 and A1(1L1 , 1L1 , . . . , 1L1) = 1L1 . Then the function ϕ ◦ A1 ◦(
ϕ−1, ϕ−1, . . . , ϕ−1) is an n-ary aggregation function on L2.

3. Some Generalizations of Truth Values and Fuzzy Sets

In this section we first review the lattices of truth values for crisp sets and for fuzzy sets as
introduced in [1], followed by a detailed description of various generalizations thereof by means of
sets of truth values of dimension two and higher.

3.1. The Classical Cases: Crisp and Fuzzy Sets

Now we shall consider different lattices of types of truth values and, for a fixed non-empty
universe of discourse X, the corresponding classes of (fuzzy) subsets of X.

Recall that if the set of truth values is the classical Boolean algebra {0, 1} (denoted in this paper
simply by 2), then the corresponding set of all crisp (or Cantorian) subsets of X will be denoted by P(X)

(called the power set of X). Each crisp subset A of X can be identified with its characteristic function
1A : X → 2, which is defined by 1A(x) = 1 if and only if x ∈ A. There are exactly two constant
characteristic functions: 1∅ : X → 2 maps every x ∈ X to 0, and 1X : X → 2 maps every x ∈ X to 1.

Obviously, we have A ⊆ B if and only if 1A ≤ 1B, i.e., 1A(x) ≤ 1B(x) for all x ∈ X,
and (P(X),⊆) is a complete bounded lattice with bottom element ∅ and top element X, i.e., (P(X),⊆)
is isomorphic to the product lattice (2X ,≤), where 2X is the set of all functions from X to 2, and ≤ is
the componentwise standard order.

Switching to the unit interval (denoted by I) as set of truth values in the sense of [1], the set of all
fuzzy subsets of X will be denoted by F (X). As usual, each fuzzy subset A ∈ F (X) is characterized
by its membership function µA : X → I, where µA(x) ∈ I describes the degree of membership of the object
x ∈ X in the fuzzy set A.

For fuzzy sets A, B ∈ F (X) we have A ⊆ B if and only if µA ≤ µB, i.e., µA(x) ≤ µB(x) for all
x ∈ X. Therefore, (F (X),⊆) is a complete bounded lattice with bottom element ∅ and top element X,
i.e., (F (X),⊆) is isomorphic to (IX ,≤), where IX is the set of all functions from X to I.

Only for the sake of completeness we mention that the bottom and top elements in
F (X) are also denoted by ∅ and X, and they correspond to the membership functions
µ∅ = 1∅ and µX = 1X, respectively.

The lattice (P(X),⊆) of crisp subsets of X can be embedded into the lattice (F (X),⊆) of fuzzy
sets of X: the function embP(X) : P(X) → F (X) given by µembP(X)(A) = 1A, i.e., the membership
function of embP(X)(A) is just the characteristic function of A, provides a natural embedding.

The membership function µA{ : X→ I of the complement A{ of a fuzzy set A ∈ F (X) is given by
µA{(x) = NI(µA(x)) = 1− µA(x).

For a fuzzy set A ∈ F (X) and α ∈ I, the α-cut (or α-level set) of A is defined as the crisp set
[A]α ∈P(X) given by

[A]α = {x ∈ X | µA(x) ≥ α}.

The 1-cut [A]1 = {x ∈ X | µA(x) = 1} of a fuzzy set A ∈ F (X) is often called the kernel of A,
and the crisp set {x ∈ X | µA(x) > 0} usually is called the support of the fuzzy set A.

The family ([A]α)α∈I of α-cuts of a fuzzy subset A of X carries the same information as the
membership function µA : X→ I in the sense that it is possible to reconstruct the membership function
µA from the family of α-cuts of A: for all x ∈ X we have [27,79]

µA(x) = sup
{

min
(
α, 1[A]α(x)

) ∣∣ α ∈ I
}

.

We only mention that this is no more possible if the unit interval I is replaced by some lattice L
which is not a chain.
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3.2. Generalizations: The Two-Dimensional Case

A simple example of a two-dimensional lattice is (I× I,≤comp) as defined by (1) and (2), i.e.,
the unit square of the real plane R2. In [63], triangular norms on this lattice (and on other product
lattices) were studied. The standard order reversing involution NI×I : I× I→ I× I in (I× I,≤comp) is
given by

NI×I((x, y)) = (1− y, 1− x). (4)

This product lattice was considered in several expert systems [80–82]. There, the first coordinate
was interpreted as a degree of positive information (measure of belief ), and the second coordinate
as a degree of negative information (measure of disbelief ). Note that though several operations for
this structure were considered in the literature (for a nice overview see [83]), a deeper algebraic
investigation is still missing in this case.

To the best of our knowledge, K. T. Atanassov [6,7,84] (compare [85,86]) was the first to consider
both the degree of membership and the degree of non-membership when using and studying the bounded
lattice (L∗,≤L∗) of truth values given by (5) and (6). Unfortunately, he called the corresponding
L∗-fuzzy sets “intuitionistic” fuzzy sets because of the lack of the law of excluded middle (for a critical
discussion of this terminology see Section 4.2):

L∗ = {(x1, x2) ∈ I× I | x1 + x2 ≤ 1}, (5)

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 AND x2 ≥ y2. (6)

Obviously, (L∗,≤L∗) is a complete bounded lattice: 0L∗ = (0, 1) and 1L∗ = (1, 0) are the bottom
and top elements of (L∗,≤L∗), respectively, and the meet ∧L∗ and the join ∨L∗ in (L∗,≤L∗) are given by

(x1, x2)∧L∗ (y1, y2) = (min(x1, y1), max(x2, y2)),

(x1, x2)∨L∗ (y1, y2) = (max(x1, y1), min(x2, y2)).

Moreover, (I,≤) can be embedded in a natural way into (L∗,≤L∗): the function embI : I → L∗
given by embI(x) = (x, 1− x) is an embedding. Observe that there are also other embeddings of (I,≤)
into (L∗,≤L∗), e.g., ϕ : I→ L∗ given by ϕ(x) = (x, 0).

Note that the order≤L∗ is not linear. However, it is possible to construct refinements of≤L∗ which
are linear [87].

Mirroring the set L∗ about the axis passing through the points (0, 0.5) and (1, 0.5) of the unit
square I× I one immediately sees that there is some other lattice which is isomorphic to (L∗,≤L∗).
Both lattices are visualized in Figure 1.

Proposition 1. The complete bounded lattice (L∗,≤L∗) is isomorphic to the upper left triangle L2(I) in I× I
(with vertexes (0, 0), (0, 1) and (1, 1)), i.e.,

L2(I) = {(x1, x2) ∈ I× I | 0 ≤ x1 ≤ x2 ≤ 1}, (7)

equipped with the componentwise partial order ≤comp, whose bottom and top elements are 0L2(I) = (0, 0)
and 1L2(I) = (1, 1), respectively. A canonical isomorphism between the lattices (L∗,≤L∗) and (L2(I),≤comp) is

provided by the function ϕ
L2(I)
L∗ : L∗ → L2(I) defined by ϕ

L2(I)
L∗ ((x1, x2)) = (x1, 1− x2).

It is readily seen that (L2(I),≤comp) is a sublattice of the product lattice (I× I,≤comp), and the
standard order reversing involution NL2(I) : L2(I)→ L2(I) is given by

NL2(I)((x, y)) = (1− y, 1− x) (8)
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(compare (4)). On the other hand, the lattice (L∗,≤L∗) is not a sublattice of (I× I,≤comp), but it can be
embedded into (I× I,≤comp) using, e.g., the lattice monomorphism (as visualized in Figure 2)

idL2(I) ◦ ϕ
L2(I)
L∗ : L∗ −→ L2(I).

Several other lattices “look” different when compared with (L∗,≤L∗) or seem to address a different
context, but in fact they carry the same structural information as (L∗,≤L∗).

Well-known examples of this phenomenon are the lattices (I(I),≤I(I)), providing the basis
of interval-valued (or grey) fuzzy sets [4,8,9,12–14], and (P∗,≤L∗), giving rise to the so-called
“Pythagorean” fuzzy sets [15,88,89], both turning out to be isomorphic to the lattice (L∗,≤L∗).
The following statements can be verified by simply checking the required properties.

1L∗

0L∗

(L∗,≤L∗)(x1, x2)

(y1, y2)

(z1, z2)

NL∗((x1, x2))

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0L2(I)

1L2(I)

(L2(I),≤comp)

(u1, u2) (v1, v2)

(w1, w2)

NL2(I)((u1, u2))

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1. The lattices (L∗,≤L∗ ) (left) and (L2(I),≤comp) (right). Note the difference of two orders: we
have (x1, x2) ≤L∗ (y1, y2), (z1, z2) ≤L∗ (y1, y2), and (u1, u2) ≤comp (w1, w2), but (x1, x2) and (z1, z2)

are not comparable in (L∗,≤L∗ ), and (v1, v2) is neither comparable to (u1, u2) nor to (w1, w2) with
respect to ≤comp. Also, a hint for the constructions of the order reversing involutions NL∗ and NL2(I) as
reflections through the appropriate diagonal (dashed line) of I× I is given.

Proposition 2. The complete bounded lattice (L∗,≤L∗) is isomorphic to the following two lattices:

(i) to the lattice (I(I),≤I(I)) of all closed subintervals of the unit interval I, given by

I(I) = {[x1, x2] ⊆ I | 0 ≤ x1 ≤ x2 ≤ 1}, (9)

[x1, x2] ≤I(I) [y1, y2] ⇐⇒ x1 ≤ y1 AND x2 ≤ y2, (10)

with bottom and top elements 0I(I) = [0, 0] and 1I(I) = [1, 1], respectively; a canonical example of an

isomorphism between (L∗,≤L∗) and (I(I),≤I(I)) is provided by the function ϕ
I(I)
L∗ : L∗ → I(I) defined

by ϕ
I(I)
L∗ ((x1, x2)) = [x1, 1− x2];

(ii) to the lattice (P∗,≤L∗) of all points in the intersection of the unit square I× I and the unit disk with
center (0, 0), i.e.,

P∗ = {(x1, x2) ∈ I× I | x2
1 + x2

2 ≤ 1}; (11)

a canonical example of a lattice isomorphism from (P∗,≤L∗) to (L∗,≤L∗) is provided by the function
ϕL∗

P∗ : P∗ → L∗ defined by ϕL∗
P∗((x1, x2)) = (x2

1, x2
2).
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Example 2. Let us start with the standard order reversing involution NL2(I) on (L2(I),≤comp) given by (8).
The fact that (L2(I),≤comp) is isomorphic to each of the lattices (L∗,≤L∗), (P∗,≤L∗), and (I(I),≤I(I))

(see Propositions 1 and 2) and Example 1(i) allow us to construct the order reversing involutions NL∗ : L∗ → L∗,
NP∗ : P∗ → P∗, and NI(I) : I(I)→ I(I) on the lattices (L∗,≤L∗), (P∗,≤L∗), and (I(I),≤I(I)) are given by

NL∗((x1, x2)) = NP∗((x1, x2)) = (x2, x1), NI(I)([x1, x2]) = [1− x2, 1− x1] .

0L∗

1L∗

(L∗,≤L∗)

0L2(I)

1L2(I)

(L2(I),≤comp)

�
idL2(I)

0I×I

1I×I

(I× I,≤comp)

0 0.5 1

1

0 0.5 1

1

0 0.5 1

0.5

1

Figure 2. The lattices (L∗,≤L∗ ) (left), (L2(I),≤comp) (center), and (I × I,≤comp) (right). The
mirror symmetry between L∗ and L2(I) shows that (L∗,≤L∗ ) and (L2(I),≤comp) are isomorphic,
and (L2(I),≤comp) is a sublattice of (I× I,≤comp).

Given a universe of discourse X, i.e., a non-empty set X, and fixing a bounded lattice (L,≤L),
we obtain a special type of L-fuzzy subsets of X in the sense of [2] and, on the other hand, a particular
case of type-2 fuzzy sets (also proposed by L. A. Zadeh [3,4]; see [90,91] for some algebraic aspects of
truth values for type-2 fuzzy sets).

An L∗-fuzzy subset A of X is characterized by its membership function µL∗
A : X → L∗, where

the bounded lattice (L∗,≤L∗) is given by (5) and (6). The bottom and top elements of (L∗,≤L∗) are
0L∗ = (0, 1) and 1L∗ = (1, 0), respectively.

Over the years, different names for fuzzy sets based on the lattices that are isomorphic to (L∗,≤L∗)

according to Propositions 1 and 2 were used in the literature: in the mid-seventies I(I)-fuzzy sets were
called interval-valued in [4,12–14], in the eighties first the name “intuitionistic” fuzzy sets was used for
L∗-fuzzy sets in [6,7] (compare also [84–86]) and then grey sets in [8,9]), and even later vague sets in [10]
(see also [10,92]). More recently, the name “Pythagorean” fuzzy sets was introduced for P∗-fuzzy sets
in [15,88,89].

As a function µL∗
A : X → L∗ ⊆ I × I, the membership function µL∗

A has two components
µA, νA : X → I such that for each x ∈ X we have µL∗

A (x) = (µA(x), νA(x)) and µA(x) + νA(x) ≤ 1.
Both µA : X → I and νA : X → I can be seen as membership functions of fuzzy subsets of X,

say A+, A− ∈ F (X), respectively, i.e., for each x ∈ X we have

µA+(x) = µA(x), µA−(x) = νA(x), and µA+(x) + µA−(x) ≤ 1. (12)

The value µA+(x) is usually called the degree of membership of the object x in the L∗-fuzzy set A,
while µA−(x) is said to be the degree of non-membership of the object x in the L∗-fuzzy set A.

Denoting the set of all L∗-fuzzy subsets of X by FL∗(X) and keeping the notations from (12),
for each A ∈ FL∗(X) and its membership function µL∗

A : X → L∗ ⊆ I× I we may write

µL∗
A = (µA, νA) = (µA+ , µA−).

As a consequence of (12), for the fuzzy sets A+ and A− we have A+ ⊆ (A−){. In other words, we can
identify each L∗-fuzzy subset A ∈ FL∗(X) with a pair of fuzzy sets (A+, A−) with A+ ⊆ (A−){, i.e.,

FL∗(X) = {(A+, A−) ∈ F (X)×F (X) | A+ ⊆ (A−){},
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and for two L∗-fuzzy subsets A = (A+, A−) and B = (B+, B−) of X the assertion A ⊆L∗ B is equivalent
to A+ ⊆ B+ and B− ⊆ A−. The complement of an L∗-fuzzy subset A = (A+, A−) is the L∗-fuzzy set
A{ = (A−, A+).

Then (FL∗(X),⊆L∗) is a complete bounded lattice with bottom element ∅ = (∅, X) and top
element X = (X, ∅), and the lattice (FL∗(X),⊆L∗) of L∗-fuzzy sets is isomorphic to (L∗X,≤L∗). Clearly,
(F (X),⊆) can be embedded into (FL∗(X),⊆L∗): a natural embedding is provided by the function
embF (X) : F (X)→ FL∗(X) defined by embF (X)(A) = (A, A{).

An interval-valued fuzzy subset A of the universe X (introduced independently in [4,12–14], some
authors called them grey sets [8,9]) is characterized by its membership function µA : X → I(I),
where (I(I),≤I(I)) is the bounded lattice of all closed subintervals of the unit interval I given by (9)
and (10). The bottom and top elements of (I(I),≤I(I)) are then0I(I) = [0, 0] and 1I(I) = [1, 1], respectively.

A “Pythagorean” fuzzy subset A of the universe X (first considered in [15,88,89]) is characterized
by its membership function µA : X→ P∗, where the bounded lattice (P∗,≤L∗) is given by (11) and (6).
The bottom and top elements of (P∗,≤L∗) are the same as in (L∗,≤L∗), i.e., we have 0P∗ = (0, 1)
and 1P∗ = (1, 0).

From Propositions 1 and 2 we know that the four bounded lattices (L∗,≤L∗), (I(I),≤I(I)),
(P∗,≤L∗), and (L2(I),≤comp) are isomorphic to each other. As an immediate consequence we obtain
the following result.

Proposition 3. Let X be a universe of discourse. Then we have:

(i) The product lattices ((L∗)X,≤L∗), ((I(I))X,≤I(I)), ((P∗)X,≤L∗), and ((L2(I))X,≤comp) are isomorphic
to each other.

(ii) The lattices of all L∗-fuzzy subsets of X, of all “intuitionistic” fuzzy subsets of X, of all interval-valued
fuzzy subsets of X, of all “Pythagorean” fuzzy subsets of X, and of all L2(I)-fuzzy subsets of X are
isomorphic to each other.

This means that, mathematically speaking, all the function spaces mentioned in Proposition 3(i)
and all the “different” classes of fuzzy subsets of X referred to in Proposition 3(ii) share an identical
(lattice) structure. Any differences between them only come from the names used for individual objects,
and from the interpretation or meaning of these objects. In other words, since any mathematical result
for one of these lattices immediately can be carried over to all isomorphic lattices, in most cases there
is no need to use different names for them.

3.3. Generalizations to Higher Dimensions

As a straightforward generalization of the product lattice (I× I,≤comp), for each n ∈ N the
n-dimensional unit cube (In,≤comp), i.e., the n-dimensional product of the lattice (I,≤), can be defined
by means of (1) and (2).

The so-called “neutrosophic” sets introduced by F. Smarandache [93] (see also [94–97] are based
on the bounded lattices (I3,≤I3) and (I3,≤I3

), where the orders ≤I3 and ≤I3
on the unit cube I3 are

defined by

(x1, x2, x3) ≤I3 (y1, y2, y3) ⇐⇒ x1 ≤ y1 AND x2 ≤ y2 AND x3 ≥ y3, (13)

(x1, x2, x3) ≤I3
(y1, y2, y3) ⇐⇒ x1 ≤ y1 AND x2 ≥ y2 AND x3 ≥ y3. (14)

Observe that ≤I3 is a variant of the order ≤comp: it is defined componentwise, but in the third
component the order is reversed. The top element of (I3,≤I3) is (1, 1, 0), and (0, 0, 1) is its bottom
element. Analogous assertions are true for the lattice (I3,≤I3

).
Clearly, the three lattices (I3,≤comp), (I3,≤I3), and (I3,≤I3

) are mutually isomorphic: the functions
ϕ, ψ : I3 → I3 given by ϕ((x1, x2, x3)) = (x1, x2, 1− x3) and ψ((x1, x2, x3)) = (x1, 1− x2, x3) are canonical
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isomorphisms between (I3,≤comp) and (I3,≤I3), on the one hand, and between (I3,≤I3) and (I3,≤I3
),

on the other hand.
For each n ∈ N the n-fuzzy sets introduced by B. Bedregal et al. in [11] (see also [98,99]) are based

on the bounded lattice (Ln(I),≤comp), where the set Ln(I) is a straightforward generalization of L2(I)
defined in (7):

Ln(I) = {(x1, x2, . . . , xn) ∈ In | x1 ≤ x2 ≤ · · · ≤ xn}. (15)

The order ≤comp on Ln(I) coincides with the restriction of the componentwise order ≤comp

on In to Ln(I), implying that (Ln(I),≤comp) is a sublattice of the product lattice (In,≤comp). As a
consequence, we also have the standard order reversing involution NLn(I) : Ln(I) → Ln(I) which
is defined coordinatewise, i.e., NLn(I)((x1, x2, . . . , xn)) = (1 − xn, . . . , 1 − x2, 1 − x1) (compare (8)).
Considering, for n > 3, lattices which are isomorphic to (Ln(I),≤comp), further generalizations of
“neuthrosophic” sets can be introduced.

B. C. Cuong and V. Kreinovich [16] proposed the concept of so-called picture fuzzy sets which are
based on the set D∗ ⊆ I3 of truth values given by

D∗ = {(x1, x2, x3) ∈ I3 | x1 + x2 + x3 ≤ 1}. (16)

The motivation for the set D∗ came from a simple voting scenario where each voter can act in one
of the four following ways: to vote for the nominated candidate (the proportion of these voters being
equal to x1), to vote against the candidate (described by x2), to have no preference and to abstain so
this vote will not be counted (described by x3), or to be absent (described by 1− x1− x2− x3).

In the original proposal [16] the set D∗ was equipped with the partial order ≤I3 given by (13),
as inherited from the lattice (I3,≤I3). As {(x1, x3) ∈ I× I | (x1, 0, x3) ∈ D∗} = L∗ and (6), we may
also write (x1, x2, x3) ≤I3 (y1, y2, y3) if and only if (x1, x3) ≤L∗ (y1, y3) and x2 ≤ y2. However, (D∗,≤I3)

is not a lattice, but only a meet-semilattice with bottom element 0D∗ = (0, 0, 1); indeed, the set
{(1, 0, 0), (0, 1, 0)} has no join in D∗ with respect to ≤P (to be more precise, the semi-lattice (D∗,≤P) has
infinitely many pairwise incomparable maximal elements of the form (a, 1− a, 0) with a ∈ I).

Therefore, (without modifications) it is impossible [100] to introduce logical operations such as
t-norms or t-conorms [69] and, in general, aggregation functions [46] on (D∗,≤I3).

As a consequence, the order ≤I3 on D∗ was replaced by the following partial order ≤D∗ on D∗
(compare [16,100–102]) which is a refinement of ≤I3 :

(x1, x2, x3) ≤D∗(y1, y2, y3) (17)

⇐⇒ (x1, x3) <L∗ (y1, y3) OR
(
(x1, x3) = (y1, y3) AND x2 ≤ y2

)
.

Note that the order≤D∗ can be seen as a kind of lexicographical order related to two orders: to the
order ≤L∗ on L∗ and to the standard order ≤ on I.

It is easy to see that (D∗,≤D∗) is a bounded lattice with bottom element 0D∗ = (0, 0, 1) and
top element 1D∗ = (1, 0, 0). This allows aggregation functions (as studied on the unit interval I in,
e.g., [46,47,76–78]) to be introduced on (D∗,≤D∗). Observe also that the lattice (D∗,≤D∗) was considered
in recent applications of picture fuzzy sets [103,104].
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We only recall [105] that the join ∨≤D∗ and the meet ∧≤D∗ in the lattice (D∗,≤D∗) are given by

(x1, x2, x3)∨≤D∗ (y1, y2, y3) =


(x1, x2, x3) if (x1, x2, x3) ≥D∗ (y1, y2, y3),

(y1, y2, y3) if (x1, x2, x3) ≤D∗ (y1, y2, y3),

(max(x1, y1), 0, min(x3, y3)) otherwise,

(x1, x2, x3)∧≤D∗ (y1, y2, y3) =



(x1, x2, x3) if (x1, x2, x3) ≤D∗ (y1, y2, y3),

(y1, y2, y3) if (x1, x2, x3) ≥D∗ (y1, y2, y3),

(min(x1, y1), 1−min(x1, y1)

−max(x3, y3), max(x3, y3)) otherwise,

and the standard order reversing involution ND∗ : D∗ → D∗ by ND∗((x1, x2, x3)) = (x3, x2, x1).
From the definition of ≤D∗ in (17) it is obvious that (L∗,≤L∗) can be embedded in a natural way

into (D∗,≤D∗); an example of an embedding is given by

embL∗ : L∗ −→ D∗ (18)

(x1, x2) 7−→ (x1, 0, x2).

Let us now have a look at the relationship between the lattice (D∗,≤D∗) and the lattice
(L3(I),≤comp) given by (2) and (15). It is not difficult to see that the function ψ : D∗ → L3(I) given
by ψ((x1, x2, x3)) = (x1, x1 + x2, 1− x3) is a bijection, its inverse ψ−1 : L3(I) → D∗ being given by
ψ−1((x1, x2, x3)) = (x1, x2− x1, 1− x3).

Observe that that the bijection ψ is not order preserving: we have (0.2, 0.5, 0) ≤D∗ (0.3, 0, 0),
but ψ((0.2, 0.5, 0)) = (0.2, 0.7, 1) and ψ((0.2, 0.5, 0)) = (0.3, 0.3, 1) are incomparable with respect to≤comp.

From ([105], Propositions 1 and 2) we have the following result:

Proposition 4. The lattices (L3(I),≤comp) and (D∗,≤D∗) are not isomorphic. However, we have

(i) The lattice (L3(I),≤comp) is isomorphic to the lattice (D∗,≤D∗3 ) with top element (1, 0, 0) and bottom
element (0, 0, 1), where the order ≤D∗3 is given by

(x1, x2, x3) ≤D∗3 (y1, y2, y3) ⇐⇒ x1 ≤ y1 AND x1 + x2 ≤ y1 + y2 AND x3 ≥ y3.

(ii) The lattice (D∗,≤D∗) is isomorphic to the lattice (L3(I),≤L3(I)) with top element (1, 1, 1) and bottom
element (0, 0, 0), where the order ≤L3(I) is given by

(x1, x2, x3) ≤L3(I) (y1, y2, y3)

⇐⇒ (x1, x3) <comp (y1, y3) OR ((x1, x3) = (y1, y3) AND x2− x1 ≤ y2− y1).

In summary, if a universe of discourse X is fixed, then a picture fuzzy subset A of X is based on
the bounded lattice (D∗,≤D∗) defined in (16) and (17). It is characterized by its membership function
µD∗

A : X → D∗ [16,100,106–109] where µD∗
A (x) = (µA1(x), µA2(x), µA3(x)) ∈ D∗ for some functions

µA1 , µA2 , µA3 : X→ I.
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Clearly, the function µA1 : X→ I can be interpreted as the membership function of the fuzzy set
A1 ∈ F (X) and, analogously, µA2 : X→ I and µA3 : X→ I as membership functions of the fuzzy sets
A2 and A3, respectively. In other words, for each picture fuzzy set A we may write A = (A1, A2, A3).

In this context, the values µA1(x), µA2(x) and µA3(x) are called the degree of positive membership, the
degree of neutral membership, and the degree of negative membership of the object x in the picture fuzzy set
A, respectively. The value 1− (µA1(x) + µA2(x) + µA3(x)) ∈ I is called the degree of refusal membership
of the object x in A.

If X is a fixed universe of discourse, then we denote the set of all picture fuzzy subsets of X by
FD∗(X). Obviously, for two picture fuzzy sets A, B ∈ FD∗(X) the assertion A ⊆D∗ B is equivalent
to (µA1 , µA2 , µA3) ≤D∗ (µB1 , µB2 , µB3), i.e., (αA(x), βA(x), γA(x)) ≤D∗ (αB(x), βB(x), γB(x)) for all
x ∈ X, and the membership function of the complement A{ of a picture fuzzy set A ∈ FD∗(X)

with membership function µD∗
A = (µA1 , µA2 , µA3) is given by µD∗

A{
= (µA3 , µA2 , µA1).

This means that (FD∗(X)),⊆D∗) is a bounded lattice with bottom element ∅ = (∅, ∅, X) and
top element X = (X, ∅, ∅), and it is isomorphic to the product lattice ((D∗)X,≤comp) of all functions
from X to D∗ (clearly, µD∗

A ≤comp µD∗
B means here µD∗

A (x) ≤D∗ µD∗
B (x) for all x ∈ X).

As a consequence, the lattice (FL∗(X)),⊆L∗) of all L∗-fuzzy subsets of X can be embedded into
the lattice (FD∗(X)),⊆D∗) of all picture fuzzy subsets of X via

embFL∗ (X) : FL∗(X) −→ FD∗(X)

(A+, A−) 7−→ (A+, ∅, A−),

and, using the embedding embL∗ : L∗ → D∗ defined in (18), the product lattice ((L∗)X,≤comp) can be
embedded into the product lattice ((D∗)X,≤comp).

We recognize a chain of subsets of X of increasing generality and complexity: crisp sets P(X),
fuzzy sets F (X), L∗-fuzzy sets FL∗(X), and picture fuzzy sets FD∗(X). This corresponds to the
increasing complexity and dimensionality of the lattices of truth values (2,≤), (I,≤), (L∗,≤L∗),
and (D∗,≤D∗). The commutative diagram in Figure 3 visualizes the relationship between these
types of (fuzzy) sets and their respective membership functions, and also of the corresponding lattices
of truth values.

The content of this subsection also makes clear that the situation in the case of three-dimensional
sets of truth values is much more complex than for the two-dimensional truth values considered before.

In Proposition 3, we have seen that several classes of fuzzy sets with two-dimensional sets of
truth values are isomorphic to each other, while, in the case of three-dimensional truth values, we have
given a number of lattices of truth values that are not isomorphic to each other.

Obviously, continuing in the series of generalizations from I over L∗ to D∗, for any arity n ∈ N
one can define a carrier

D∗n =
{
(x1, ..., xn) ∈ In

∣∣∣ n

∑
i=1

xi ≤ 1
}

and equip it with some order � such that (D∗n,�) is a bounded lattice with top element (1, 0, ..., 0) and
bottom element (0, ..., 0, 1). The problematic question is whether such a generalization is meaningful
and can be used to model some real problem.
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and can be used to model some real problem.

If the arrow indicates an embedding, an epimorphism, and an isomorphism, and if the
homomorphisms are defined by

embI(x) = (x, 1− x), conL∗ ((α1, α2)) = (α1 · 1X , α2 · 1X),

embL∗ ((x1, x2)) = (x1, 0, x2), conD∗ ((α1, α2, α3)) = (α1 · 1X , α2 · 1X , α3 · 1X),

embIX ( f ) = ( f , 1− f ), emb(L∗)X ((µA+ , µA− )) = (µA+ , 1∅, µA− ),

embF (X)(A) = (A, {A), embFL∗ (X)((A+, A−)) = (A+, ∅, A−),

πα( f ) = f (α), memI(A) = µA,

ind(A) = 1A, memL∗ (A) = (memI(A+), memI(A−)),

con(α) = α · 1X , memD∗ (A) = (memI(A+), memI(A(n)), memI(A−)),

then we obtain the following commutative diagram:

2 I L∗ D∗

2X IX (L∗)X (D∗)X

P(X) F (X) FL∗(X) FD∗(X)

con

id2

con

embI

conL∗

embL∗

conD∗πα

id2X

πα

embIX

πx

emb
(L∗)X

πx

ind

idP(X)

memI

embF(X)

memL∗

embFL∗ (X)

memD∗

Figure 3. Crisp sets, fuzzy sets, L∗-fuzzy sets, and picture fuzzy sets, and the corresponding sets of
truth values.

4. Discussion: Isomorphisms and Questionable Notations

In this section, we first mention some further consequences of isomorphic lattices for the
construction of logical and other connectives, and then we argue why, in our opinion, notations
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Many results for and constructions of operations on the lattices (L∗,≤L∗), (I(I),≤I(I)),
and (P∗,≤L∗), and, subsequently, for L∗-fuzzy sets (“intuitionistic” fuzzy sets), interval-valued fuzzy
sets, and “Pythagorean” fuzzy sets are a consequence of a rather general result for operations on
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4. Discussion: Isomorphisms and Questionable Notations

In this section, we first mention some further consequences of isomorphic lattices for the
construction of logical and other connectives, and then we argue why, in our opinion, notations
like “intuitionistic” fuzzy sets and “Pythagorean” fuzzy sets are questionable and why it would be
better to avoid them.

4.1. Isomorphic Lattices: More Consequences

From Propositions 1 and 2, we know that the bounded lattice (L2(I),≤comp) is isomorphic to each
of the lattices (L∗,≤L∗), (I(I),≤I(I)), and (P∗,≤L∗).

Many results for and constructions of operations on the lattices (L∗,≤L∗), (I(I),≤I(I)),
and (P∗,≤L∗), and, subsequently, for L∗-fuzzy sets (“intuitionistic” fuzzy sets), interval-valued fuzzy
sets, and “Pythagorean” fuzzy sets are a consequence of a rather general result for operations on
the lattice (L2(I),≤comp) and, because of the isomorphisms given in Propositions 1 and 2, they
automatically can be carried over to the isomorphic lattices (L∗,≤L∗), (I(I),≤I(I)), and (P∗,≤L∗).

The following result makes use of the fact that (L2(I),≤comp) is a sublattice of the product
lattice (I× I,≤comp) and is based on [63]. It can be verified in a straightforward way by checking the
required properties:
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Proposition 5. Let F1, F2 : I× I → I be two functions such that F1 ≤ F2, i.e., for each (x1, x2) ∈ I× I we
have F1((x1, x2)) ≤ F2((x1, x2)), and consider the function F : L2(I)× L2(I)→ L2(I) given by

F((x1, x2), (y1, y2)) = (F1((x1, y1)), F2((x2, y2))).

Then we have:

(i) if F1 and F2 are two binary aggregation functions then the function F is a binary aggregation function
on L2(I);

(ii) if F1 and F2 are two triangular norms then the function F is a triangular norm on L2(I);
(iii) if F1 and F2 are two triangular conorms then the function F is a triangular conorm on L2(I);
(iv) if F1 and F2 are two uninorms then the function F is a uninorm on L2(I);
(v) if F1 and F2 are two nullnorms then the function F is a nullnorm on L2(I).

Not all t-(co)norms, uninorms and nullnorms on the lattice (L2(I),≤comp can be obtained by
means of Proposition 5, as the following example shows (see [110], Theorem 5):

Example 3. Let T : I× I → I be a t-norm on the unit interval I. Then, for each α ∈ I \ {1}, the function
Tα : L2(I)× L2(I)→ L2(I) defined by

Tα((x1, x2), (y1, y2)) = (T((x1, x2)), max(T(α, T((y1, y2))), T((x1, y2)), T((y1, x2))))

is a t-norm on L2(I) which cannot be obtained applying Proposition 5.

The characterization of those connectives on L2(I),≤comp) is an interesting problem that has been
investigated in several papers (e.g., in [110–120]). Again, each of these results is automatically valid
for connectives on the isomorphic lattices (L∗,≤L∗), (I(I),≤I(I)), and (P∗,≤L∗).

The result of Proposition 5(i) can be carried over to the n-dimensional case in a straightforward way:

Corollary 1. Let A1, A2 : In → I be two n-ary aggregation functions such that A1 ≤ A2, i.e., for
each (x1, x2, . . . , xn) ∈ In we have A1((x1, x2, . . . , xn)) ≤ A2((x1, x2, . . . , xn)). Then also the function
A : (L2(I))n → L2(I) given by

A((x1, y1), (x2, y2), . . . , (xn, yn)) = (A1(x1, x2, . . . , xn), A2(y1, y2, . . . , yn))

is an n-ary aggregation function on L2(I).

4.2. The Case of “Intuitionistic” Fuzzy Sets

As already mentioned, L∗-fuzzy sets have been called “intuitionistic” fuzzy sets in [6,7,84] and in
a number of other papers (e.g., in [86,92,116,117,121–147]). In ([7], p. 87) K. T. Atanassov points out

[. . . ] the logical law of the excluded middle is not valid, similarly to the case in intuitionistic
mathematics. Herein emerges the name of that set. [. . . ]

Looking at Zadeh’s first paper on fuzzy sets [1] one readily sees that the elements of F (X) also
violate the law of the excluded middle if the unit interval I is equipped with the standard order
reversing involution and if the t-norm min and the t-conorm max are used to model intersection and
union of elements of F (X), respectively. In other words, the violation of the law of the excluded
middle is no specific feature of the L∗-fuzzy sets.

A short look at the history of mathematics and logic at the beginning of the 20th century
shows that the philosophy of intuitionism goes back to the work of the Dutch mathematician L. E. J.
Brouwer who suggested and discussed (for the first time 1912 in his inaugural address at the
University of Amsterdam [148]) a foundation of mathematics independent of the law of excluded
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middle (see also [149–157]), a proposal eventually leading to a major controversy with the German
mathematician D. Hilbert [158–160] (compare also [161]).

There are only a few papers (most remarkably, those by G. Takeuti and S. Titani [162,163]) where the
original concept of intuitionistic logic was properly extended to the fuzzy case (see also [164–168])—here
the use of the term “intuitionistic” fuzzy set is fully justified (see [169]).

As a consequence, the use of the name “intuitionistic” fuzzy sets in [6,7,84] and in a number
of other papers in the same spirit has been criticized (mainly in [169–172]—compare Atanassov’s
reply [173] where he defended his original naming) because of its lack of relationship with the original
concept of intuitionism and intuitionistic logic.

Here are the main arguments against using the term “intuitionistic” fuzzy sets in the context of
L∗-fuzzy sets, as given in [169]:

• the mere fact that the law of the excluded middle is violated in the case of L∗-fuzzy sets does not
justify to call them “intuitionistic” (also the fuzzy sets in the sense of [1] do not satisfy the law of
the excluded middle, in general); moreover (see [53,170,174,175]), the use of an order reversing
involution for L∗-fuzzy sets contradicts intuitionistic logic [176]:

[. . . ] the connectives of IFS theory violate properties of intuitionistic logic by validating
the double negation (involution) axiom [. . . ], which is not valid in intuitionistic logic.
(Recall that axioms of intuitionistic logic extended by the axiom of double negation
imply classical logic, and thus imply excluded middle [. . . ]

• intuitionistic logic has a close relationship to constructivism:

[. . . ] the philosophical ideas behind intuitionism in general, and intuitionistic
mathematics and intuitionistic logic in particular have a strong tendency toward
constructivist points of view. There are no relationship between these ideas and the
basic intuitive ideas of IFS theory [. . . ]

The redundancy of the names “intuitionistic” fuzzy sets, “L∗-fuzzy sets” and “interval-valued
fuzzy sets” is also mentioned by J. Gutiérrez García and S. E. Rodabaugh in the abstract of [172]:

. . . (1) the term “intuitionistic” in these contexts is historically inappropriate given the standard
mathematical usage of “intuitionistic”; and (2), at every level of existence—powerset level, topological
fibre level, categorical level—interval-valued sets, [. . . ], and “intuitionistic” fuzzy sets [. . . ] are
redundant . . .

Also in a more recent paper by H. Bustince et al. ([5], p. 189) one can find an extensive discussion
of the “terminological problem with the name intuitionistic”, and the correctness of the notion chosen
in [162,163] is explicitly acknowledged.

To summarize, the name “intuitionistic” in the context of L∗-fuzzy sets is not compatible with the
meaning of this term in the history of mathematics, and it would be better to avoid it.

Instead, because of the isomorphism between the lattice (L∗,≤L∗) and the lattice (I(I),≤I(I)) of
all closed subintervals of the unit interval I, it is only a matter of personal taste and of the meaning
given to the corresponding fuzzy sets to use one of the terms “L∗-fuzzy sets” or “interval-valued
fuzzy sets”.

4.3. The Case of “Pythagorean” Fuzzy Sets

From Propositions 1 and 2 we know that the lattice (P∗,≤L∗) given by (6) and (11) is isomorphic
to each of the lattices (L∗,≤L∗), (L2(I),≤comp), and (I(I),≤I(I)).

Recently, in [15,88,89] the term “Pythagorean” fuzzy set was coined and used, which turns out to
be a special case of an L-fuzzy set in the sense of [2], to be precise, an L-fuzzy set with P∗ as lattice of
truth values.



Mathematics 2018, 6, 146 17 of 24

No justification for the choice of the adjective “Pythagorean” in this context was offered. One may
only guess that the fact that, in the definition of the set P∗ in (11), a sum of two squares occurs,
indicating some similarity with the famous formula a2 + b2 = c2 for right triangles—usually attributed
to the Greek philosopher and mathematician Pythagoras who lived in the sixth century B.C.

The mutual isomorphism between the lattices (P∗,≤L∗), (L∗,≤L∗), (L2(I),≤comp),
and (I(I),≤I(I)) implies that the families of L-fuzzy sets based on these lattices of truth values as
well as the families of their corresponding membership functions are also isomorphic, i.e., have the
same mathematical structure, as pointed out in Proposition 3. The identity of “Pythagorean” and
“intuitionistic” fuzzy sets was also noted in ([5], Corollary 8.1).

Therefore, each mathematical result for L∗-fuzzy sets, interval-valued fuzzy sets, “intuitionistic”
fuzzy sets, etc., can be immediately translated into a result for “Pythagorean” fuzzy sets, and vice versa.

In other words, the term “Pythagorean” fuzzy sets is not only a fantasy name with no meaning
whatsoever, it is absolutely useless, superfluous and even misleading, because it gives the impression
to investigate something new, while isomorphic concepts have been studied already for many years.
Therefore, the name “Pythagorean” fuzzy sets should be completely avoided.

Instead, because of the pairwise isomorphism between the lattices (P∗,≤L∗), (L∗,≤L∗) and the
lattice (I(I),≤I(I)) of all closed subintervals of the unit interval I, it is only a matter of personal taste
to use one of the synonymous terms “L∗-fuzzy sets” or “interval-valued fuzzy sets”—in any case,
this can be done without any problem.

5. Concluding Remarks

As already mentioned, in the case of isomorphic lattices, any result known for one lattice can be
rewritten in a straightforward way for each isomorphic lattice.

As a typical situation, recall that (L∗,≤L∗) and (L2(I),≤comp) are isomorphic lattices. Then, for
each aggregation function A : In → I, the function A(2) : (L2(I))n → L2(I) given by

A(2)((x1, y1), (x2, y2), . . . , (xn, yn)) = (A(x1, x2, . . . , xn), A(y1, y2, . . . , yn))

is an aggregation function on L2(I) (called representable in [85,110–120]), and any properties of A are
inherited by A(2). For example, if A is a t-norm or t-conorm, uninorm, nullnorm, so is A(2). If A is an
averaging (conjunctive, disjunctive) aggregation function [46] so is A(2), etc.

Due to the isomorphism between the lattices (L∗,≤L∗) and (L2(I),≤comp) (see Proposition 1),
one can easily, for each aggregation function A : In → I, define the corresponding aggregation function
A∗ : (L∗)n → L∗ by

A∗((x1, y1), . . . , (xn, yn)) = (A(x1, . . . , xn), 1−A(1− y1, . . . , 1− yn)).

In doing so, it is superfluous to give long and tedious proofs that, whenever A is a t-norm
(t-conorm, uninorm, nullnorm) on I, then A∗ is a t-norm (t-conorm, uninorm, nullnorm) on L∗.
Similarly, considering any averaging aggregation function A [46] (e.g., a weighted quasi-arithmetic
mean based on an additive generator of some continuous Archimedean t-norm, e.g., the Einstein
t-norm [177]), then evidently also A∗ is an averaging (thus idempotent) aggregation function on L∗.

In the same way, one can easily re-define aggregation functions on the “Pythagorean” lattice
(P∗,≤L∗), and again there is no need of proving their properties (automatically inherited from the
original aggregation function A acting on I), as it was done in, e.g., [178].

Finally, let us stress that we are not against reasonable generalizations of fuzzy sets in the sense
of [1], in particular if they proved to be useful in certain applications.

However, as one of the referees for this paper noted, “the crucial point is: not to introduce the
same under different name” and “not to re-prove the same [. . . ] facts”. Therefore we have underlined
that it is superfluous to (re-)prove “new” results for isomorphic lattices when the corresponding results
are already known for at least one of the (already existing) isomorphic lattices. Also, we will continue
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to argue against “new” fantasy names for known mathematical objects and against the (ab)use of
established (historical) mathematical notions in an improper context.
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105. Klement, E.P.; Mesiar, R.; Stupňanová, A. Picture fuzzy sets and 3-fuzzy sets. In Proceedings of the 2018 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 476–482.

106. Cuong, B.C. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420.
107. Cuong, B.C.; Hai, P.V. Some fuzzy logic operators for picture fuzzy sets. In Proceedings of the Seventh

International Conference on Knowledge and Systems Engineering (KSE 2015), Ho Chi Minh City, Vietnam,
8–10 October 2015; pp. 132–137.

108. Cuong, B.C.; Ngan, R.T.; Hai, B.D. An involutive picture fuzzy negation on picture fuzzy sets and some
De Morgan triples. In Proceedings of the Seventh International Conference on Knowledge and Systems
Engineering (KSE 2015), Ho Chi Minh City, Vietnam, 8–10 October 2015; pp. 126–131.

109. Thong, P.H.; Son, L.H. Picture fuzzy clustering: A new computational intelligence method. Soft Comput.
2016, 20, 3549–3562. [CrossRef]

110. Deschrijver, G.; Kerre, E.E. Classes of intuitionistic fuzzy t-norms satisfying the residuation principle. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 2003, 11, 691–709. [CrossRef]

111. Deschrijver, G. The Archimedean property for t-norms in interval-valued fuzzy set theory. Fuzzy Sets Syst.
2006, 157, 2311–2327. [CrossRef]

112. Deschrijver, G. Arithmetic operators in interval-valued fuzzy set theory. Inf. Sci. 2007, 177, 2906–2924.
[CrossRef]

113. Deschrijver, G. A representation of t-norms in interval-valued L-fuzzy set theory. Fuzzy Sets Syst. 2008, 159,
1597–1618. [CrossRef]

114. Deschrijver, G. Characterizations of (weakly) Archimedean t-norms in interval-valued fuzzy set theory.
Fuzzy Sets Syst. 2009, 160, 778–801. [CrossRef]

115. Deschrijver, G.; Cornelis, C. Representability in interval-valued fuzzy set theory. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 2007, 15, 345–361. [CrossRef]

116. Deschrijver, G.; Cornelis, C.; Kerre, E.E. On the representation of intuitionistic fuzzy t-norms and t-conorms.
IEEE Trans. Fuzzy Syst. 2004, 12, 45–61. [CrossRef]

arXiv.org/pdf/1707.08617v1
arXiv.org/pdf/1707.08617v1
http://dx.doi.org/10.1007/s10489-016-0856-1
http://dx.doi.org/10.3390/sym9110268
http://dx.doi.org/10.1007/s00500-015-1712-7
http://dx.doi.org/10.1142/S021848850300248X
http://dx.doi.org/10.1016/j.fss.2006.03.007
http://dx.doi.org/10.1016/j.ins.2007.02.003
http://dx.doi.org/10.1016/j.fss.2007.09.017
http://dx.doi.org/10.1016/j.fss.2008.08.004
http://dx.doi.org/10.1142/S0218488507004716
http://dx.doi.org/10.1109/TFUZZ.2003.822678


Mathematics 2018, 6, 146 22 of 24

117. Deschrijver, G.; Kerre, E.E. On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 2003, 136,
333–361. [CrossRef]

118. Deschrijver, G.; Kerre, E.E. Uninorms in L∗-fuzzy set theory. Fuzzy Sets Syst. 2004, 148, 243–262. [CrossRef]
119. Deschrijver, G.; Kerre, E.E. Implicators based on binary aggregation operators in interval-valued fuzzy set

theory. Fuzzy Sets Syst. 2005, 153, 229–248. [CrossRef]
120. Deschrijver, G.; Kerre, E.E. Triangular norms and related operators in L∗-fuzzy set theory. In Logical, Algebraic,

Analytic, and Probabilistic Aspects of Triangular Norms; Klement, E.P., Mesiar, R., Eds.; Elsevier: Amsterdam,
The Netherlands, 2005; Chapter 8, pp. 231–259.

121. Abbas, S.E. Intuitionistic supra fuzzy topological spaces. Chaos Solitons Fractals 2004, 21, 1205–1214.
[CrossRef]

122. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.
[CrossRef]

123. Atanassov, K.; Gargov, G. Elements of intuitionistic fuzzy logic. Part I. Fuzzy Sets Syst. 1998, 95, 39–52.
[CrossRef]

124. Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–45. [CrossRef]
125. Atanassov, K.T. Remarks on the intuitionistic fuzzy sets. Fuzzy Sets Syst. 1992, 51, 117–118. [CrossRef]
126. Atanassov, K.T. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994, 61, 137–142.

[CrossRef]
127. Atanassov, K.T. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994, 64, 159–174.

[CrossRef]
128. Atanassov, K.T. Remarks on the intuitionistic fuzzy sets—III. Fuzzy Sets Syst. 1995, 75, 401–402. [CrossRef]
129. Atanassov, K.T. An equality between intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 79, 257–258. [CrossRef]
130. Atanassov, K.T. Remark on the intuitionistic fuzzy logics. Fuzzy Sets Syst. 1998, 95, 127–129. [CrossRef]
131. Atanassov, K.T. Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 110, 267–269. [CrossRef]
132. Atanassova, L.C. Remark on the cardinality of the intuitionistic fuzzy sets. Fuzzy Sets Syst. 1995, 75, 399–400.

[CrossRef]
133. Ban, A.I.; Gal, S.G. Decomposable measures and information measures for intuitionistic fuzzy sets.

Fuzzy Sets Syst. 2001, 123, 103–117. [CrossRef]
134. Burillo, P.; Bustince, H. Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 84, 271–281.

[CrossRef]
135. Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst.

1996, 78, 305–316. [CrossRef]
136. Bustince, H. Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst.

2000, 109, 379–403. [CrossRef]
137. Bustince, H.; Burillo, P. Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 1996, 78, 293–300.

[CrossRef]
138. Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89.

[CrossRef]
139. Çoker, D.; Demirci, M. An introduction to intuitionistic fuzzy topological spaces in šostak’s sense. Busefal

1996, 67, 67–76.
140. De, S.K.; Biswas, R.; Roy, A.R. Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114,

477–484. [CrossRef]
141. De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst.

2001, 117, 209–213. [CrossRef]
142. Demirci, M. Axiomatic theory of intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 110, 253–266. [CrossRef]
143. Lee, S.J.; Lee, E.P. The category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 2000, 37,

63–76.
144. Mondal, T.K.; Samanta, S.K. On intuitionistic gradation of openness. Fuzzy Sets Syst. 2002, 131, 323–336.

[CrossRef]
145. Samanta, S.K.; Mondal, T.K. Intuitionistic gradation of openness: Intuitionistic fuzzy topology. Busefal 1997,

73, 8–17.
146. Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518.

[CrossRef]

http://dx.doi.org/10.1016/S0165-0114(02)00269-5
http://dx.doi.org/10.1016/j.fss.2003.12.006
http://dx.doi.org/10.1016/j.fss.2005.02.002
http://dx.doi.org/10.1016/j.chaos.2003.12.070
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1016/S0165-0114(96)00326-0
http://dx.doi.org/10.1016/0165-0114(89)90215-7
http://dx.doi.org/10.1016/0165-0114(92)90083-G
http://dx.doi.org/10.1016/0165-0114(94)90229-1
http://dx.doi.org/10.1016/0165-0114(94)90331-X
http://dx.doi.org/10.1016/0165-0114(95)00004-5
http://dx.doi.org/10.1016/0165-0114(95)00173-5
http://dx.doi.org/10.1016/S0165-0114(96)00343-0
http://dx.doi.org/10.1016/S0165-0114(99)00112-8
http://dx.doi.org/10.1016/0165-0114(94)00286-G
http://dx.doi.org/10.1016/S0165-0114(00)00106-8
http://dx.doi.org/10.1016/0165-0114(95)00313-4
http://dx.doi.org/10.1016/0165-0114(96)84611-2
http://dx.doi.org/10.1016/S0165-0114(97)00381-3
http://dx.doi.org/10.1016/0165-0114(96)84610-0
http://dx.doi.org/10.1016/S0165-0114(96)00076-0
http://dx.doi.org/10.1016/S0165-0114(98)00191-2
http://dx.doi.org/10.1016/S0165-0114(98)00235-8
http://dx.doi.org/10.1016/S0165-0114(98)00010-4
http://dx.doi.org/10.1016/S0165-0114(01)00235-4
http://dx.doi.org/10.1016/S0165-0114(98)00244-9


Mathematics 2018, 6, 146 23 of 24

147. Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [CrossRef]
148. Brouwer, L.E.J. Intuitionism and formalism. Bull. Am. Math. Soc. 1913, 20, 81–96. [CrossRef]
149. Brouwer, L.E.J. Intuitionistische verzamelingsleer. Amst. Ak. Versl. 1921, 29, 797–802. (In Dutch)
150. Brouwer, L.E.J. Intuitionistische splitsing van mathematische grondbegrippen. Amst. Ak. Versl. 1923, 32,

877–880. (In Dutch)
151. Brouwer, L.E.J. Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik,

insbesondere in der Funktionentheorie. J. Reine Angew. Math. 1925, 154, 1–7. (In German)
152. Brouwer, L.E.J. Zur Begründung der intuitionistischen Mathematik. I. Math. Ann. 1925, 93, 244–257. (In German)

[CrossRef]
153. Brouwer, L.E.J. Zur Begründung der intuitionistischen Mathematik. II. Math. Ann. 1926, 95, 453–472. (In German)

[CrossRef]
154. Brouwer, L.E.J. Zur Begründung der intuitionistischen Mathematik. III. Math. Ann. 1927, 96, 451–488. (In German)

[CrossRef]
155. Brouwer, L.E.J. Intuitionistische Betrachtungen über den Formalismus. Sitz. Preuß. Akad. Wiss. Phys.

Math. Kl. 1928, 48–52. (In German)
156. Brouwer, L.E.J. On the significance of the principle of excluded middle in mathematics, especially in function

theory. With two Addenda and corrigenda. In From Frege to Gödel. A Source Book in Mathematical Logic,
1879–1931; van Heijenoort, J., Ed.; Harvard University Press: Cambridge, MA, USA, 1967; pp. 334–345.

157. Van Heijenoort, J. From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931; Harvard University
Press: Cambridge, MA, USA, 1967.

158. Hilbert, D. Die Grundlagen der Mathematik. Vortrag, gehalten auf Einladung des Mathematischen Seminars
im Juli 1927 in Hamburg. Abh. Math. Semin. Univ. Hamb. 1928, 6, 65–85. (In German) [CrossRef]

159. Hilbert, D.; Bernays, P. Grundlagen der Mathematik. I; Springer: Berlin/Heidelberg, Germany, 1934. (In German)
160. Hilbert, D. The foundations of mathematics. In From Frege to Gödel. A Source Book in Mathematical Logic,

1879–1931; van Heijenoort, J., Ed.; Harvard University Press: Cambridge, MA, USA, 1967; pp. 464–480.
161. Kolmogorov, A.N. On the principle of excluded middle. In From Frege to Gödel. A Source Book in Mathematical

Logic, 1879–1931; van Heijenoort, J., Ed.; Harvard University Press: Cambridge, MA, USA, 1967; pp. 414–437.
162. Takeuti, G.; Titani, S. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Log. 1984, 49,

851–866. [CrossRef]
163. Takeuti, G.; Titani, S. Globalization of intuitionistic set theory. Ann. Pure Appl. Log. 1987, 33, 195–211.

[CrossRef]
164. Baaz, M.; Fermüller, C.G. Intuitionistic counterparts of finitely-valued logics. In Proceedings of the 26th

International Symposium on Multiple-Valued Logic, Santiago de Compostela, Spain, 19–31 January 1996;
pp. 136–141.

165. Ciabattoni, A. A proof-theoretical investigation of global intuitionistic (fuzzy) logic. Arch. Math. Log. 2005,
44, 435–457. [CrossRef]

166. Gottwald, S. Universes of fuzzy sets and axiomatizations of fuzzy set theory. I. Model-based and axiomatic
approaches. Stud. Log. 2006, 82, 211–244. [CrossRef]

167. Gottwald, S. Universes of fuzzy sets and axiomatizations of fuzzy set theory. II. Category theoretic
approaches. Stud. Log. 2006, 84, 23–50. [CrossRef]

168. Hájek, P.; Cintula, P. On theories and models in fuzzy predicate logics. J. Symb. Log. 2006, 71, 863–880.
[CrossRef]

169. Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J.; Prade, H. Terminological difficulties in fuzzy set theory—The
case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets Syst. 2005, 156, 485–491. [CrossRef]

170. Cattaneo, G.; Ciucci, D. Generalized negations and intuitionistic fuzzy sets—A criticism to a widely used
terminology. In Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology,
Zittau, Germany, 10–12 September 2003; pp. 147–152.

171. Grzegorzewski, P.; Mrówka, E. Some notes on (Atanassov’s) intuitionistic fuzzy sets. Fuzzy Sets Syst. 2005,
156, 492–495. [CrossRef]

172. Gutiérrez García, J.; Rodabaugh, S.E. Order-theoretic, topological, categorical redundancies of
interval-valued sets, grey sets, vague sets, interval-valued “intuitionistic” sets, “intuitionistic” fuzzy sets
and topologies. Fuzzy Sets Syst. 2005, 156, 445–484. [CrossRef]

http://dx.doi.org/10.1016/S0165-0114(98)00402-3
http://dx.doi.org/10.1090/S0002-9904-1913-02440-6
http://dx.doi.org/10.1007/BF01449963
http://dx.doi.org/10.1007/BF01206621
http://dx.doi.org/10.1007/BF01209181
http://dx.doi.org/10.1007/BF02940602
http://dx.doi.org/10.2307/2274139
http://dx.doi.org/10.1016/0168-0072(87)90081-9
http://dx.doi.org/10.1007/s00153-004-0265-8
http://dx.doi.org/10.1007/s11225-006-7197-8
http://dx.doi.org/10.1007/s11225-006-9001-1
http://dx.doi.org/10.2178/jsl/1154698581
http://dx.doi.org/10.1016/j.fss.2005.06.001
http://dx.doi.org/10.1016/j.fss.2005.06.002
http://dx.doi.org/10.1016/j.fss.2005.05.023


Mathematics 2018, 6, 146 24 of 24

173. Atanassov, K. Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper “Terminological
difficulties in fuzzy set theory—The case of “Intuitionistic Fuzzy Sets””. Fuzzy Sets Syst. 2005, 156, 496–499.
[CrossRef]

174. Butnariu, D.; Klement, E.P.; Mesiar, R.; Navara, M. Sufficient triangular norms in many-valued logics with
standard negation. Arch. Math. Log. 2005, 44, 829–849. [CrossRef]

175. Cintula, P.; Klement, E.P.; Mesiar, R.; Navara, M. Residuated logics based on strict triangular norms with an
involutive negation. Math. Log. Quart. 2006, 52, 269–282. [CrossRef]

176. Kleene, S.C. Introduction to Metamathematics; North-Holland: Amsterdam, The Netherlands, 1952.
177. Xia, M.; Xu, Z.; Zhu, B. Some issues on intuitionistic fuzzy aggregation operators based on Archimedean

t-conorm and t-norm. Knowl.-Based Syst. 2012, 31, 78–88. [CrossRef]
178. Rahman, K.; Abdullah, S.; Ahmed, R.; Ullah, M. Pythagorean fuzzy Einstein weighted geometric aggregation

operator and their application to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2017, 33,
635–647. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fss.2005.06.003
http://dx.doi.org/10.1007/s00153-004-0267-6
http://dx.doi.org/10.1002/malq.200510032
http://dx.doi.org/10.1016/j.knosys.2012.02.004
http://dx.doi.org/10.3233/JIFS-16797
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Truth Values and Bounded Lattices
	Isomorphic Lattices: Some General Consequences

	Some Generalizations of Truth Values and Fuzzy Sets
	The Classical Cases: Crisp and Fuzzy Sets
	Generalizations: The Two-Dimensional Case
	Generalizations to Higher Dimensions

	Discussion: Isomorphisms and Questionable Notations
	Isomorphic Lattices: More Consequences
	The Case of ``Intuitionistic'' Fuzzy Sets
	The Case of ``Pythagorean'' Fuzzy Sets

	Concluding Remarks
	References

