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Abstract: The Cohen and Grossberg neural networks model is studied in the case when the neurons
are subject to a certain impulsive state displacement at random exponentially-distributed moments.
These types of impulses significantly change the behavior of the solutions from a deterministic one
to a stochastic process. We examine the stability of the equilibrium of the model. Some sufficient
conditions for the mean-square exponential stability and mean exponential stability of the equilibrium
of general neural networks are obtained in the case of the time-varying potential (or voltage) of the
cells, with time-dependent amplification functions and behaved functions, as well as time-varying
strengths of connectivity between cells and variable external bias or input from outside the network to
the units. These sufficient conditions are explicitly expressed in terms of the parameters of the system,
and hence, they are easily verifiable. The theory relies on a modification of the direct Lyapunov
method. We illustrate our theory on a particular nonlinear neural network.
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1. Introduction

Artificial neural networks are important technical tools for solving a variety of problems in
various scientific disciplines. Cohen and Grossberg [1] introduced and studied in 1983 a new model
of neural networks. This model was extensively studied and applied in many different fields such
as associative memory, signal processing and optimization problems. Several authors generalized
this model [2] by including delays [3,4], impulses at fixed points [5,6] and discontinuous activation
functions [7]. Furthermore, a stochastic generalization of this model was studied in [8]. The included
impulses model the presence of the noise in artificial neural networks. Note that in some cases in the
artificial neural network, the chaos improves the noise (see, for example, [9]).

To the best of our knowledge, there is only one published paper studying neural networks
with impulses at random times [10]. However, in [10], random variables are incorrectly mixed with
deterministic variables; for example I[ξk ,ξk+1)

(t) for the random variables ξk, ξk+1 is not a deterministic
index function (it is a stochastic process), and it has an expected value labeled by E, which has to be
taken into account on page 13 of [10]; in addition, in [10], one has to be careful since the expected
value of a product of random variables is equal to the product of expected values only for independent
random variables. We define the generalization of Cohen and Grossberg neural network with impulses
at random times, briefly giving an explanation of the solutions being stochastic processes, and we
study stability properties. Note that a brief overview of randomness in neural networks and some
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methods for their investigations are given in [11] where the models are stochastic ones. Impulsive
perturbation is a common phenomenon in real-world systems, so it is also important to consider
impulsive systems. Note that the stability of deterministic models with impulses for neural networks
was studied in [12–18]. However, the occurrence of impulses at random times needs to be considered
in real-world systems. The stability problem for the differential equation with impulses at random
times was studied in [19–21]. In this paper, we study the general case of the time-varying potential
(or voltage) of the cells, with the time-dependent amplification functions and behaved functions, as
well as time-varying strengths of connectivity between cells and variable external bias or input from
outside the network to the units. The study is based on an application of the Lyapunov method. Using
Lyapunov functions, some stability sufficient criteria are provided and illustrated with examples.

2. System Description

We consider the model proposed by Cohen and Grossberg [1] in the case when the neurons are
subject to a certain impulsive state displacement at random moments.

Let T0 ≥ 0 be a fixed point and the probability space (Ω,F , P) be given. Let a sequence of
independent exponentially-distributed random variables {τk}∞

k=1 with the same parameter λ > 0
defined on the sample space Ω be given. Define the sequence of random variables {ξk}∞

k=0 by:

ξk = T0 +
k

∑
i=1

τi, k = 0, 1, 2, . . . . (1)

The random variable τk measures the waiting time of the k-th impulse after the (k− 1)-th impulse
occurs, and the random variable ξk denotes the length of time until k impulses occur for t ≥ T0.

Remark 1. The random variable Ξ = ∑k
i=1 τi is Erlang distributed, and it has a pdf fΞ(t) = λe−λt (λt)k−1

(k−1)! and

a cdf F(t) = P(Ξ < t) = 1− e−λt ∑k−1
j=0

(λt)j

j! .

Consider the general model of the Cohen–Grossberg neural networks with impulses occurring at
random times (RINN):

x′i(t) = −ai(xi(t))
(

b(xi(t))−
n

∑
j=1

cij(t) f j(xj(t)) + Ii(t)
)

for t ≥ T0, ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . n,

xi(ξk + 0) = Φk,i(xi(ξk − 0)) for k = 1, 2, . . . ,

xi(T0) = x0
i ,

(2)

where n corresponds to the number of units in a neural network; xi(t) denotes the potential (or voltage)
of cell i at time t, x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn, f j(xj(t)) denotes the activation functions
of the neurons at time t and represents the response of the j-th neuron to its membrane potential
and f (x) = ( f1(x1), f2(x2), . . . , fn(xn)). Now, ai(.) > 0 represents an amplification function; bi(.)
represents an appropriately behaved function; the n× n connection matrix C(t) = (cij(t)) denotes the
strengths of connectivity between cells at time t; and if the output from neuron j excites (resp., inhibits)
neuron i, then cij(t) ≥ 0 (resp., cij(t) ≤ 0), and the functions Ii(t), I(t) = (I1(t), I2(t), . . . , In(t)) ∈ Rn

correspond to the external bias or input from outside the network to the unit i at time t.
We list some assumptions, which will be used in the main results:
(H1) For all i = 1, 2, . . . , n, the functions ai ∈ C(R, (0, ∞)), and there exist constants Ai, Bi > 0

such that 0 < Ai ≤ ai(u) ≤ Bi for u ∈ R.
(H2) There exist positive numbers Mi,j, i, j = 1, 2, . . . , n such that |ci,j(t)| ≤ Mi,j for t ≥ 0.
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Remark 2. In the case when the strengths of connectivity between cells are constants, then Assumption (H2) is
satisfied.

For the activation functions, we assume:
(H3) The neuron activation functions are Lipschitz, i.e., there exist positive numbers Li, i =

1, 2, . . . , n, such that | fi(u)− fi(v)| ≤ Li|u− v| for u, v ∈ R.

Remark 3. Note that the activation functions satisfying Condition (H3) are more general than the usual sigmoid
activation functions.

2.1. Description of the Solutions of Model (2)

Consider the sequence of points {tk}∞
k=1 where the point tk is an arbitrary value of the

corresponding random variable τk, k = 1, 2, . . . . Define the increasing sequence of points {Tk}∞
k=1 by:

Tk = T0 +
k

∑
i=1

tk. (3)

Note that Tk are values of the random variables ξk, k = 1, 2, . . . .
Consider the corresponding RINN (2) initial value problem for the system of differential equations

with fixed points of impulses {Tk}∞
k=1 (INN):

x′i(t) = −ai(xi(t))
(

b(xi(t))−
n

∑
j=1

cij(t) f j(xj(t)) + Ii(t)
)

for t ≥ T0, t 6= Tk, k = 0, 1, . . . , i = 1, 2, . . . n,

xi(Tk + 0) = Φk,i(xi(Tk − 0)) for k = 1, 2, . . . ,

xi(T0) = x0
i .

(4)

The solution of the differential equation with fixed moments of impulses (4) depends not only on
the initial point (T0, x0), but on the moments of impulses Tk, k = 1, 2, . . . , i.e., the solution depends on
the chosen arbitrary values tk of the random variables τk, k = 1, 2, . . . . We denote the solution of the
initial value problem (4) by x(t; T0, x0, {Tk}). We will assume that:

x(Tk; T0, x0, {Tk}) = lim
t→Tk−0

x(t; T0, x0, {Tk}) for any k = 1, 2, . . . . (5)

Remark 4. Note that the limit (5) is well defined since Tk, k = 1, 2 . . . , are points from R. This is different than
limt→ξk−0 x(t) because ξk is a random variable (see its incorrect use by the authors in [10]).

The set of all solutions x(t; T0, x0, {Tk}) of the initial value problem for the impulsive fractional
differential Equation (4) for any values tk of the random variables τk, k = 1, 2, . . . generates a stochastic
process with state space Rn. We denote it by x(t; T0, x0, {τk}), and we will say that it is a solution of
RINN (2).

Remark 5. Note that x(t; T0, x0, {Tk}) is a deterministic function, but x(t; T0, x0, {τk}) is a stochastic process.

Definition 1. For any given values tk of the random variables τk, k = 1, 2, 3, . . . , respectively, the solution
x(t; T0, x0, {Tk}) of the corresponding initial value problem (IVP) for the INN (4) is called a sample path
solution of the IVP for RINN (2).
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Definition 2. A stochastic process x(t; T0, x0, {τk}) with an uncountable state space Rn is said to be a solution
of the IVP for the system of RINN (2) if for any values tk of the random variables τk, k = 1, 2, . . . , the
corresponding function x(t; T0, x0, {Tk}) is a sample path solution of the IVP for RINN (2).

2.2. Equilibrium of Model (2)

We define an equilibrium of the model (2) assuming Condition (H1) is satisfied:

Definition 3. A vector x∗ ∈ Rn, x∗ = (x∗1 , x∗2 , . . . , x∗n) is an equilibrium point of RINN (2), if the equalities:

0 = b(x∗i )−
n

∑
j=1

cij(t) f j(x∗i ) + Ii(t) for i = 1, 2, . . . , n (6)

and
x∗i = Φk,i(x∗i ) for t ≥ 0, k = 1, 2, . . . , i = 1, 2, . . . , n (7)

hold.

We assume the following:
(H4) Let RINN (2) have an equilibrium vector x∗ ∈ Rn.

If Assumption (H4) is satisfied, then we can shift the equilibrium point x∗ of System (2) to the
origin. The transformation y(t) = x(t)− x∗ is used to put System (2) in the following form:

y′i(t) = −pi(yi(t))
(

q(yi(t))−
n

∑
j=1

cij(t)Fj(yj(t))
)

for t ≥ T0, ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . n,

yi(ξk + 0) = φk,i(y(ξk − 0)) for k = 1, 2, . . . ,

yi(T0) = y0
i ,

(8)

where pi(u) = ai(u + x∗i ),qi(u) = bi(u + x∗i )− bi(x∗i ), Fj(u) = f j(u + x∗j )− f j(x∗j ), j = 1, 2, . . . , n and
φk,i(u) = Φk,i(u + x∗i )−Φk,i(x∗i ), i = 1, 2, . . . , n, k = 1, 2, . . . , y0

i = x0
i − x∗i .

Remark 6. If Assumption (H3) is fulfilled, then the function F in RINN (8) satisfies |Fj(u)| ≤ Lj|u|, j =
1, 2, . . . , n, for u ∈ R.

Note that if the point x∗ ∈ Rn is an equilibrium of RINN (2), then the point y∗ = 0 is an
equilibrium of RINN (8). This allows us to study the stability properties of the zero equilibrium of
RINN (8).

3. Some Stability Results for Differential Equations with Impulses at Random Times

Consider the general type of initial value problem (IVP) for a system of nonlinear random
impulsive differential equations (RIDE):

x′(t) = g(t, x(t)) for t ≥ T0, ξk < t < ξk+1,

x(ξk + 0) = Ψk(x(ξk − 0)) for k = 1, 2, . . . ,

x(T0) = x0;

(9)

with x0 ∈ Rn, random variables ξk, k = 1, 2, . . . are defined by (1), g ∈ C([T0, ∞) × Rn,Rn) and
Ψk : Rn → Rn.
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Definition 4. Let p > 0. Then, the trivial solution (x0 = 0) of RIDE (9) is said to be p-moment
exponentially stable if for any initial point (T0, y0) ∈ R+ × Rn, there exist constants α, µ > 0 such that
E[||y(t; T0, y0, {τk)})||p] < α||y0||pe−µ(t−T0) for all t > T0, where y(t; T0, x0, {τk)} is the solution of the IVP
for RIDE (9).

Definition 5. Let p > 0. Then, the equilibrium x∗ of RINN (2) is said to be p-moment exponentially stable
if for any initial point (T0, x0) ∈ R+ ×Rn, there exist constants α, µ > 0 such that E[||x(t; T0, x0, {τk)})−
x∗||p] < α||x0 − x∗||pe−µ(t−T0) for all t > T0, where x(t; T0, x0, {τk)} is the solution of the IVP for RINN (2).

Remark 7. We note that the two-moment exponential stability for stochastic equations is known as the mean
square exponential stability, and in the case of p = 1, it is called mean exponential stability.

Note that the p-moment exponential stability of RIDE (9) was studied in [20] by an application of
Lyapunov functions from the class Λ(J, ∆), J ⊂ R+, ∆ ⊂ Rn, 0 ∈ ∆ with:

Λ(J, ∆) = {V(t, x) ∈ C(J × ∆,R+) : V(t, 0) ≡ 0,

V(t, x) is locally Lipschitzian with respect to x}.

We will use the Dini derivative of the Lyapunov function V(t, x) ∈ Λ(J, ∆) given by:

(9)D+V(t, x) = lim sup
h→0+

1
h

{
V(t, x)−V(t− h, x− hg(t, x))

}
for t ∈ J, x ∈ ∆.

(10)

Now, we will give a sufficient condition result:

Theorem 1 ([20]). Let the following conditions be satisfied:

1. For t ≥ 0 : g(t, 0) ≡ 0 and Ψk(0) = 0, k = 1, 2, . . . and for any initial values (T0, x0), the corresponding
IVP for the ordinary differential equation x′(t) = g(t, x(t)) has a unique solution.

2. The function V ∈ Λ([T0, ∞),Rn), and there exist positive constants a, b such that:

(i) a||x||p ≤ V(t, x) ≤ b||x||p for t ≥ T0, x ∈ Rn;
(ii) there exists a function m ∈ C(R+,R+) : inft≥0 m(t) = L ≥ 0, and the inequality:

(9)D+V(t, x) ≤ −m(t)V(t, x), for t ≥ 0, x ∈ Rn

holds;
(iii) for any k = 1, 2, . . . , there exist constants wk : 0 ≤ wk < 1 + L

λ for t ≥ 0 such that:

V(t, Ik(t, x)) ≤ wkV(t, x) for t ≥ 0, x ∈ Rn. (11)

Then, the trivial solution of RIDE (9) is p-moment exponentially stable.

4. Stability Analysis of Neural Networks with Random Impulses

We will introduce the following assumptions:
(H5) For i = 1, 2, . . . , n, the functions bi ∈ C(R,R), and there exist constants βi > 0 such that

u
(

bi(u + x∗i )− bi(x∗i )
)
≥ βiu2 for any u ∈ R where x∗ ∈ Rn, x∗ = (x∗1 , x∗2 , . . . , x∗n), is the equilibrium

from Condition (H4).

Remark 8. If Condition (H5) is satisfied, then the inequality uq(u) ≥ βiu2, u ∈ R holds for RINN (8).
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(H6) The inequality:

ν =2 min
i=1,n

Aiβi −max
i=1,n

Bi

(
max
i=1,n

n

∑
j=1

MijLj + (
n

∑
i=1

max
j=1,n

MijLj)
)
> 0 (12)

holds.
(H7) For any k = 1, 2, . . . , there exists positive number Kk < 1 + ν

λ such that the inequalities:

n

∑
i=1

(
Φk,i(xi)−Φk,i(x∗i )

)2
≤ Kk

n

∑
i=1

(xi − x∗i )
2, xi ∈ R, i = 1, 2, . . . , n,

hold where x∗ ∈ Rn, x∗ = (x∗1 , x∗2 , . . . , x∗n), is the equilibrium from Condition (H4).

Remark 9. If Assumption (H7) is fulfilled, then the impulsive functions φk, k = 1, 2, . . . in RINN (8) satisfy
the inequalities ∑n

i=1 φ2
k,i(ui) ≤ Kk ∑n

i=1 u2
i .

Theorem 2. Let Assumptions (H1)–(H7) be satisfied. Then, the equilibrium point x∗ of RINN (2) is mean
square exponentially stable.

Proof. Consider the quadratic Lyapunov function V(t, x) = xTx, x ∈ Rn. From Remarks 6, 8 and
inequality 2|uv| ≤ u2 + v2, we get:

(8)D+V(t, y) ≤ 2
n

∑
i=1

yi

(
− pi(yi)

(
q(yi)−

n

∑
j=1

cij(t)Fj(yj)
))

= −2
n

∑
i=1

yi pi(yi)q(yi) + 2
n

∑
i=1

yi pi(yi)
n

∑
j=1

cij(t)Fj(yj)

≤ −2
n

∑
i=1

Aiβiy2
i + 2

n

∑
i=1
|yi|Bi

n

∑
j=1

MijLj|yj|

≤ −2
n

∑
i=1

Aiβiy2
i +

n

∑
i=1

Bi

n

∑
j=1

MijLj(y2
i + y2

j )

≤ −2
n

∑
i=1

Aiβiy2
i +

n

∑
i=1

Biy2
i

n

∑
j=1

MijLj +
n

∑
i=1

Bi

n

∑
j=1

MijLjy2
j

≤ −2 min
i=1,n

Aiβi

n

∑
i=1

y2
i

+ max
i=1,n

Bi

(
max
i=1,n

n

∑
j=1

MijLj + (
n

∑
i=1

max
j=1,n

MijLj)
) n

∑
i=1

y2
i

= −ν
n

∑
i=1

y2
i .

(13)

where the positive constant ν is defined by (12). Therefore, Condition 2(ii) of Theorem 1 is satisfied.
Furthermore, from (H7), it follows that Condition 2(iii) of Theorem 1 is satisfied.

From Theorem 1, the zero solution of the system (9) is mean square exponentially stable,
and therefore, the equilibrium point x∗ of RINN (2) is mean square exponentially stable.
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Example 1. Let n = 3, t0 = 0.1, and the random variables τk, k = 1, 2, . . . are exponentially distributed with
λ = 1. Consider the following special case of RINN (2):

x′i(t) = −ai(xi(t))
(

2xi(t) +
3

∑
j=1

cij(t) f j(xj(t))− π
)

for t ≥ 0 ξk < t < ξk+1, i = 1, 2, 3,

xi(ξk + 0) = Φk,i(xi(ξk − 0)) for k = 1, 2, . . . ,

xi(0.1) = x0
i ,

(14)

with ai(u) = 2 + |u|
1 + |u| ∈ [2, 3), i = 1, 2, 3, fi(u) = αi cos(u), α1 = 0.1, α2 = 0.01, α2 = 2, Φk,i(u) =

u sin k + (1− sin k)0.5π, and C = cij(t) is given by:

C(t) =

−0.1 sin t 0.4 0.3
− t2

5t2+1 0.3 t
5t+1

t
10t+1 −0.2 cos t −0.1 sin t

 . (15)

The point x∗ = (0.5π, 0.5π, 0.5π) is the equilibrium point of RINN (14), i.e., Condition (H4) is
satisfied. Now, Assumption (H1) is satisfied with Ai = 2, Bi = 3, i = 1, 2, 3. In addition, Assumption
(H5) is satisfied with βi = 2, i = 1, 2, 3.

Furthermore, |cij| ≤ Mij, i, j = 1, 2, 3, t ≥ 0 where M = {Mij}, is given by:

M =

0.1 0.4 0.3
0.2 0.3 0.2
0.1 0.2 0.1

 . (16)

Therefore, Assumption (H2) is satisfied. Note that Assumption (H3) is satisfied with Lipschitz
constants L1 = 0.1, L2 = 0.01, L3 = 2.

Then, the constant ν defined by (12) is ν = 8− 3(1.814) = 2.558 > 0. Next, Assumption (H7) is
fulfilled with Kk = 1 because:

3

∑
i=1

(
Φk,i(xi)−Φk,i(x∗i )

)2
=

3

∑
i=1

(
xi sin k + (1− sin k)0.5π − 0.5π

)2

=
3

∑
i=1

(
(xi − 0.5π) sin k

)2
≤

3

∑
i=1

(
xi − 0.5π

)2
, k = 1, 2, . . . .

(17)

Therefore, according to Theorem 1, the equilibrium of RINN (14) is mean square exponentially stable.
Consider the system (14) without any kind of impulses. The equilibrium x∗ = (0.5π, 0.5π, 0.5π)

is asymptotically stable (see Figures 1 and 2). Therefore, an appropriate perturbation of the neural
networks by impulses at random times can keep the stability properties of the equilibrium.
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2 4 6 8

t

1.2

1.4

1.6

1.8

2.0

t x

x1HtL
x2HtL
x3HtL

Figure 1. Example 1. Graph of the solution of the system ODE corresponding to (14) with x0
1 = 1, x0

2 =

2, x0
3 = 1.4.

1 2 3 4

t

0.5

1.0

1.5

t x

x1HtL
x2HtL
x3HtL

Figure 2. Example 1. Graph of the solution of the system ODE corresponding to (14) with x0
1 =

−0.1, x0
2 = 0.2, x0

3 = −0.4.

Remark 10. Note that Condition (H7) is weaker than Condition (3.6) in Theorem 3.2 [16], and as a special
case of Theorem 2, we obtain weaker conditions for exponential stability of the Cohen and Grossberg model
without any type of impulses. For example, if we consider (14) according to Condition (3.6) [16], the inequality
δ = 2||M||2 3

4 = 1.0374 < 1 is not satisfied, and Theorem 3.2 [16] does not give us any result about stability
(compare with Example 1).

Now, consider the following assumption:
(H8) The inequality:

ν = min
i=1,n

γi −
n

∑
i=1

max
j=1,n

Mij > 0 (18)
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holds.

Theorem 3. Let Assumptions (H1)–(H5), (H7) and (H8) be satisfied. Then, the equilibrium point x∗ of RINN
(2) is mean exponentially stable.

Proof. For any u ∈ Rn, we define V(u) = ∑n
i=1
∫ ui

0
sign(s)

ai(s)
ds. Then:

V(u) ≤
n

∑
i=1

∫ ui

0

sign(s)
Ai

ds =
n

∑
i=1

1
Ai
|ui| ≤ A||u||

and:

V(u) ≥
n

∑
i=1

∫ ui

0

sign(s)
Bi

ds =
n

∑
i=1

1
Bi
|ui| ≥ B||u||

where A = maxi=1,n
1
Ai

, B = mini=1,n
1
Bi

.
Then, for t ≥ 0 and y ∈ Rn according to Remarks 6 and 8, we obtain:

(8)D+V(y) ≤
n

∑
i=1
−sgn(yi)

(
q(yi)−

n

∑
j=1

cij(t)Fj(yj)
)

≤
n

∑
i=1

(
− βi |yi|+

n

∑
j=1

Mij|Fj(yj)|
)
≤

n

∑
i=1

(
− βi |yi|+

n

∑
j=1

Mij |yj|
)

= −
n

∑
i=1

βi |yi|+
n

∑
i=1

n

∑
j=1

Mij|yj| ≤ −min
i=1,n

βi

n

∑
i=1
|yi|+

( n

∑
i=1

max
j=1,n

Mij
) n

∑
j=1
|yj|

≤ −ν
n

∑
i=1
|yi| ≤ −

ν

B
V(u).

(19)

Furthermore, from (H7) and Remark 9, it follows that Condition 2(iii) of Theorem 1 is satisfied.
From Theorem 1, we have that Theorem 3 is true.

Example 2. Let n = 3, t0 = 0.1, and the random variables τk, k = 1, 2, . . . are exponentially distributed with
λ = 1. Consider the following special case of RINN (2):

x′i(t) = −ai(xi(t))
(

2xi(t) +
3

∑
j=1

cij(t) f j(xj(t))− 1
)

for t ≥ 0 ξk < t < ξk+1, i = 1, 2, 3

xi(ξk + 0) = Φk,i(xi(ξk − 0)) for k = 1, 2, . . .

xi(0.1) = x0
i ,

(20)

with ai(u) = 2 + |u|
1 + |u| ∈ [2, 3), i = 1, 2, 3, fi(u) = log( u

1 − u ), Φk,i(u) = u sin k + (1 − sin k)0.5,
and C = cij(t) is given by (15).

The point x∗ = (0.5, 0.5, 0.5) is the equilibrium point of RINN (20), i.e., Condition (H4) is satisfied.
Now, Assumption (H5) is satisfied with βi = 2, i = 1, 2, 3.

Furthermore, |cij| ≤ Mij, i, j = 1, 2, 3, t ≥ 0 where M = {Mij}, is given by (16). Therefore,
Assumption (H2) is satisfied. Then, the inequality mini=1,n βi = 2 > ∑3

i=1 maxj=1,3 Mij = 0.4 + 0.3 +

0.2 = 0.9 holds.
According to Theorem 3, the equilibrium of (20) is mean exponentially stable.
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Consider the system (20) without any kind of impulses. The equilibrium x∗ = (0.5, 0.5, 0.5)
is asymptotically stable (see Figures 3 and 4). Therefore, an appropriate perturbation of the neural
networks by impulses at random times can keep the stability properties of the equilibrium.

1 2 3 4 5

t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t x

x1HtL
x2HtL
x3HtL

Figure 3. Example 2. Graph of the solution of the system ODE corresponding to (20) with x0
1 =

0.55, x0
2 = 0.8, x0

3 = 0.1.

1 2 3 4 5

t

0.2

0.3

0.4

0.5

0.6

t x

x1HtL
x2HtL
x3HtL

Figure 4. Example 2. Graph of the solution of the system ODE corresponding to (20) with x0
1 =

0.4, x0
2 = 0.3, x0

3 = 0.1.

5. Conclusions

In this paper, we study stability properties of the equilibrium point of a generalization of the
Cohen–Grossberg model of neural networks in the case when:

- the potential (or voltage) of any cell is perturbed instantaneously at random moments, i.e.,
the neural network is modeled by a deterministic differential equation with impulses at random
times. This presence of randomness in the differential equation totally changes the behavior of
the solutions (they are not deterministic functions, but stochastic processes).
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- the random moments of the impulsive state displacements of neurons are exponentially distributed.
- the connection matrix C = (cij) is not a constant matrix which is usually the case in the literature

(it is a matrix depending on time since the strengths of connectivity between cells could be
changed in time).

- the external bias or input from outside the network to any unit is not a constant (it is variable
in time).

- sufficient conditions for mean-square exponential stability and for mean exponential stability of
the equilibrium are obtained.
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