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Abstract: Let X ⊂ Pr be an integral and non-degenerate variety. We study when a finite set S ⊂ X
evinces the X-rank of the general point of the linear span of S. We give a criterion when X is the
order d Veronese embedding Xn,d of Pn and |S| ≤ (n+bd/2c

n ). For the tensor rank, we describe the
cases with |S| ≤ 3. For Xn,d, we raise some questions of the maximum rank for d� 0 (for a fixed
n) and for n� 0 (for a fixed d).

Keywords: X-rank; symmetric tensor rank; tensor rank; veronese variety; segre variety

1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety. For any q ∈ Pr, the X-rank rX(q) of q is
the minimal cardinality of a finite set S ⊂ X such that q ∈ 〈S〉, where 〈 〉 denotes the linear span.
The definition of X-ranks captures the notion of tensor rank (take as X the Segre embedding of a
multiprojective space) of rank decomposition of a homogeneous polynomial (take as X a Veronese
embedding of a projective space) of partially symmetric tensor rank (take a complete linear system
of a multiprojective space) and small variations of it may be adapted to cover other applications.
See [1] for many applications and [2] for many algebraic insights. For the pioneering works on
the applied side, see, for instance, [3–7]. The paper [7] proved that X-rank is not continuous and
showed why this has practical importance. The dimensions of the secant varieties (i.e., the closure
of the set of all q ∈ Pr with a prescribed rank) has a huge theoretical and practical importance.
The Alexander–Hirschowitz theorem computes in all cases the dimensions of the secant varieties
of the Veronese embeddings of a projective space ([8–14]). For the dimensions of secant varieties,
see [15–17] for tensors and [18–27] for partially symmetric tensors (i.e., Segre–Veronese embeddings
of multiprojective spaces). For the important problem of the uniqueness of the set evincing a rank
(in particular for the important case of tensors) after the classical [28], see [29–38]. See [39–47] for
other theoretical works.

Let S ⊂ X be a finite set and q ∈ Pr. We say that S evinces the X-rank of q if q ∈ 〈S〉 and
|S| = rX(q). We say that S evinces an X-rank if there is q ∈ Pr such that S evinces the X-rank
of q. Obviously, S may evince an X-rank only if it is linearly independent, but this condition is
not a sufficient one, except in very trivial cases, like when rX(q) ≤ 2 for all q ∈ Pr. Call rX,max

the maximum of all integers rX(q). An obvious necessary condition is that |S| ≤ rX,max and this
is in very special cases a sufficient condition (see Propositions 1 for the rational normal curve).
If S evinces the X-rank of q ∈ Pr, then q ∈ 〈S〉 and q /∈ 〈S′〉 for any S′ ( S. For any finite set
S ⊂ Pr, set 〈S〉′ := 〈S〉 \ (∪S′(S〈S′〉). Note that 〈S〉′ = ∅ if and only if either S = ∅ or S is linearly
dependent (when |S| = 1, 〈S〉′ = S and S evinces itself). In some cases, it is possible to show that
some finite S ⊂ X evinces the X-rank of all points of 〈S〉′. We say that S evinces generically the
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X-ranks if there is a non-empty Zariski open subset U of 〈S〉 such that S evinces the X-ranks of all
q ∈ U. We say that S totally evinces the X-ranks if S evinces the X-ranks of all q ∈ 〈S〉′. We first need
an elementary and well-known bound to compare it with our results.

Let ρ(X) be the maximal integer such that each subset of X with cardinality ρ(X) is linearly
independent. See ([43] Lemma 2.6, Theorem 1.18) and ([42] Proposition 2.5) for some uses of the
integer ρ(X). Obviously, ρ(X) ≤ r + 1 and it is easy to check and well known that equality holds if
and only if X is a Veronese embedding of P1 (Remark 1). If |S| ≤ b(ρ(X) + 1)/2c, then S totally
evinces the X-ranks (as in [43] Theorem 1.18) while, for each integer t > b(ρ(X) + 1)/2c with
t ≤ r + 1, there is a linearly independent subset of X with cardinality t and not totally evincing
the X-ranks ( Lemma 3). Thus, to say something more, we need to make some assumptions on S
and these assumptions must be related to the geometry of X or the reasons for the interest of the
X-ranks. We do this in Section 3 for the Veronese embeddings and in Section 4 for the tensor rank.
For tensors, we only have results for |S| ≤ 3 (Propositions 3 and 4).

For all positive integers n, d let νd,n : Pn → Pr, r = (n+d
n )− 1, denote the Veronese embedding

of Pn, i.e., the embedding of Pn induced by the complete linear system |OPn(d)|. Set Xn,d :=
νd,n(Pn). At least over an algebraically closed base field of characteristic 0 (i.e., in the set-up of this
paper), for any q ∈ Pr, the integer rXn,d(q) is the minimal number of d-powers of linear forms in
n + 1 variables whose sum is the homogeneous polynomial associated to q.

We prove the following result, whose proof is elementary (see Section 3 for the proof). In its
statement, the assumption “h1(IA(bd/2c)) = 0” just means that the vector space of all degree
bd/2c homogeneous polynomials in n + 1 variables vanishing on A has dimension (n+bd/2c

n )− |A|,
i.e., A imposes |A| independent conditions to the homogeneous polynomials of degree bd/2c in
n + 1 variables.

Theorem 1. Fix integers n ≥ 2, d > k > 2 and a finite set A ⊂ Pn such that h1(IA(bd/2c)) = 0.
Set S := νd,n(A). Then, S totally evinces the ranks for Xn,d.

A general A ⊂ Pn satisfies the assumption of Theorem 1 if and only if |A| ≤ (n+bd/2c
n ).

For much smaller |A|, one can check the condition h1(IA(bd/2c)) = 0 if A satisfies some geometric
conditions (e.g., if A is in linearly general position, it is sufficient to assume |A| ≤ nbd/2c+ 1).

We conclude the paper with some questions related to the maximum of the X-ranks when X
is a Veronese embedding of Pn.

2. Preliminary Lemmas

Remark 1. Let X ⊂ Pr be an integral and non-degenerate variety. Since any r + 2 points of Pr are linearly
dependent, we have ρ(X) ≤ r + 1. If X is a rational normal curve, then ρ(X) = r + 1 because any r + 1
points of X spans Pr. Now, we check that, if ρ(X) = r + 1, then X is a rational normal curve. This is well
known, but usually stated in the set-up of Veronese embeddings or the X-ranks of curves. Set n := dim X
and d := deg(X). Assume ρ(X) = r + 1. Let H ⊂ Pr be a general hyperplane. If n > 1, then X ∩ H has
dimension n− 1 > 0 and in particular it has infinitely many points. Any r + 1 points of X ∩ H are linearly
dependent. Now, assume n = 1. Since X is non-degenerate, we have d ≥ n. By Bertini’s theorem, X ∩ H
contains d points of X. Since ρ(X) = r + 1, dim H = r − 1 and H ∩ X ⊂ H, we have d ≤ r. Hence,
d = r, i.e., X is a rational normal curve.

The following example shows, that in many cases, there are are sets evincing X-ranks, but not
totally evincing X-ranks or even generically evincing X-ranks.

Example 1. Let X ⊂ Pr, r ≥ 3, be a rational normal curve. Take q ∈ Pr with rX(q) = r, i.e., take
q ∈ τ(X) \ X, where τ(X) is the tangential variety of X ([48]). Take S ⊂ X evincing the X-rank of q.
Thus, |S| = r and S spans a hyperplane 〈S〉. Since dim τ(X) = 2 and τ(X) spans Pr, 〈S〉 ∩ τ(X) is a
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proper closed algebraic subset of 〈S〉. Thus, for a general p ∈ 〈S〉, we have rX(p) < |S| and hence S does
not generically evinces X-ranks.

Lemma 1. If S ⊂ X is a finite set evincing the rank of some q ∈ Pr, then each S′ ⊂ S, S′ 6= ∅, evinces the
X-rank of some q′ ∈ Pr.

Proof. We may assume S′ 6= S. Write S′′ := S \ S′. Since S evinces the rank of q, S is linearly
independent, but S ∪ {q} is not linearly independent. Since S′ 6= ∅ and S′′ 6= ∅, there are unique
q′ ∈ 〈S′〉 and q′′ ∈ 〈S′′〉 such that q ∈ 〈{q′, q′′}〉. Since S evinces the rank of q, S′ evinces the rank
of q′.

Lemma 2. Every non-empty subset of a set evincing generically (resp. totally) X-ranks evinces generically
(resp. totally) the X-ranks.

Proof. Assume that S evinces generically the X-ranks and call U a non-empty open subset of 〈S〉′
such that rX(q) = |S| for all q ∈ U; if S evinces totally the X-ranks, take U := 〈S〉′. Fix S′ ( S,
S′ 6= 0 and set S′′ := S \ S′. Let E be the set of all q ∈ 〈S〉′ such that 〈{q} ∪ S′′〉 ∩U 6= ∅. If q ∈ E,
then rX(q) = |S′| because rX(q′) = |S| for each q′ ∈ 〈{q} ∪ S′′〉 ∩ U. Since S′ ∩ S′′ = ∅ and
S′ ∪ S′′ = S is linearly independent, E is a non-empty open subset of 〈S〉′ (a general element of 〈S〉
is contained in the linear span of a general element of 〈S′〉 and a general element of 〈S′〉). Now,
assume U = 〈S〉′. Every element of 〈S〉′ is in the linear span of an element of 〈S′〉′ and an element
of 〈S′′〉′.

Lemma 3. Take a finite set S ⊂ X, S 6= ∅.

(a) If |S| ≤ b(ρ(X) + 1)/2c, then S totally evinces the X-ranks.
(b) For each integer t > b(ρ(X) + 1)/2c, there is A ⊂ X such that |A| = t and A does not totally evince

the X-ranks.

Proof. Take q ∈ 〈S〉′ and assume rX(q) < |S|. Take B ⊂ X evincing the X-rank of q. Since |B| < |S|,
we have B 6= S. Since q ∈ 〈S〉 ∩ 〈B〉, but no proper subset of either B or S spans q, S ∪ B is linearly
dependent. Since |B| ≤ |S| − 1, we have |B ∪ S| ≤ ρ(X), contradicting the definition of ρ(X).

Now, we prove part (b). By Lemma 1, it is sufficient to do the case t = b(ρ(X) + 1)/2c+ 1.
By the definition of the integer ρ(X), there is a subset D ⊂ X with |D| = ρ(X) + 1 and D linearly
dependent. Write D = A t E with |A| = b(ρ(X) + 1)/2c+ 1 and |E| = ρ(X) + 1− |A|. Note that
|A| > |E|. Since |A| ≤ ρ(X) (remember that ρ(X) ≥ 2), both A and E are linearly independent.
Since A ∪ E is linearly dependent, there is q ∈ 〈A〉 ∩ 〈E〉. Since |D| = ρ(X) + 1, every proper
subset of D is linearly independent. Hence, 〈A′〉 ∩ 〈E〉 = ∅ for all A′ ( A. Thus, q ∈ 〈A〉′.
Since |E| < |A|, A does not evince the X-rank of q.

Remark 2. Take X ⊂ Pr such that rX(q) ≤ 2 for all q ∈ Pr (e.g., by [49], we may take most space curves).
Any set S ⊂ X with |S| = 2 evinces its X-ranks if and only if X contains no line.

3. The Veronese Embeddings of Projective Spaces

Let νd,n : Pn → Pr, r := −1 + (n+d
n ), denote the Veronese embedding of Pn. Set Xn,d :=

νd,n(Pn).

Proposition 1. Let X ⊂ Pd, d ≥ 2, be the rational normal curve.

(a) A non-empty finite set S ⊂ X evinces some rank of Pd if and only if |S| ≤ d.
(b) A non-empty finite set A ⊂ X totally evinces the X-ranks if and only if |A| ≤ b(d + 2)/2c.
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Proof. By a theorem of Sylvester’s ([48]), every q ∈ Pd has X-rank at most d. Thus, the condition
|S| ≤ d is a necessary condition for evincing some rank. By Lemma 1 to prove part (a), it is
sufficient to prove it when |S| = d. Take any connected zero-dimensional scheme Z ⊂ X with
deg(Z) = 2 and S ∩ Z = ∅. Thus, deg(Z ∪ S) = d + 2. Since X ∼= P1, deg(OX(1)) = d and X is
projectively normal, we have h1(IS∪Z(1)) = 1 and h1(IW(1)) = 0 for each W ′ ( S ∪ Z. This is
equivalent to say that the line 〈Z〉 meets 〈S〉 at a unique point, q and q 6= Zred. By Sylvester’s
theorem, rX(q) = d ([48]). Since q ∈ 〈S〉 and |S| = d, S evinces the X-rank of q.

If A 6= ∅ and |A| ≤ b(d + 2)/2c, then A totally evinces the X-ranks by part (a) of Lemma 3
and the fact that ρ(X) = d + 1. Now, assume d ≥ |A| > b(d + 2)/2c. Fix a set E ⊂ X \ A with
|E| = d + 2− |A|. Adapt the proof of part (b) of Lemma 3.

Proposition 2. Fix a set S ⊂ Xn,d, n ≥ 2, with |S| = d + 1. The following conditions are equivalent:

1. there is a line L ⊂ Pn such that |S ∩ L| > b(d + 2)/2c;
2. S evinces no Xn,d-rank;
3. there is q ∈ 〈S〉′ such that S does not evince the Xn,d-rank of q.

Proof. Obviously, (2) implies (3). If X′ ⊂ X is a subvariety and q ∈ 〈X′〉, we have rX′(q) ≥ rX(q).
Thus, Sylvester’s theorem ([48]) and Lemma 2 show that (1) implies (2).

Now, assume the existence of q ∈ 〈S〉′ such that S does not evince the X-rank of q, i.e.,
rX(q) ≤ d. Take A ⊂ Pn such that ν(A) = S and take B ⊂ Pn such that νd(B) evinces the X-rank of
q. Since q ∈ 〈S〉′, (Ref. [50] Lemma 1) gives h1(Pn, IA∪B(d)) > 0. Since |A ∪ B| ≤ 2d + 1, (Ref. [51]
Lemma 34) gives the existence of a line L ⊂ Pn such that |L ∩ (A ∪ B)| ≥ d + 2. Let H ⊂ Pn

be a general hyperplane containing L. Since H is general and A ∪ B is a finite set, we have
H ∩ (A∪ B) = L∩ (A∪ B). Since |L∩ (A∪ B)| ≥ d+ 2, we have |A∪ B \H ∩ (A∪ B)| ≤ d− 1 and
hence h1(Pn, IA∪B\H∩(A∪B)(d− 1)) = 0. By ([52] Lemma 5.2), we have A \ A∩H = B \ B∩H.

See [53,54] for some results on the geometry of sets S ⊂ Xn,d with controlled Hilbert function
and that may be useful to extend Proposition 2.

Proof of Theorem 1: Set k := bd/2c. Note that h1(IA(x)) = 0 for all x ≥ k and in particular
h1(IA(d− k)) = 0. Fix q ∈ 〈νd,n(A)〉′ and assume rXn,d(q) < |A|. Fix B ⊂ Pn such that νd,n(B)
evinces the Xn,d-rank of q. Since h1(IA(k)) = 0 and |A| > |B|, we have h0(IB(k)) > h0(IA(k)).
Thus, there is M ∈ |OPn(k)| containing B, but with A * M, i.e., A \ A∩M 6= ∅, while B \ B∩M =

∅. Since h1(IA(d− k)) = 0, we have h1(IA\A∩M(d− k)) = 0. Since h1(IA(d)) = 0, νd,n(A) is
linearly independent. Since νd,n(B) evinces a rank, it is linearly independent. Grassmann’s formula
gives dim〈νd,k(A)〉 ∩ 〈νd,b(B)〉 = |A ∩ B|+ h1(IA∪B(d))− 1. We have A ∪ B = ((A ∪ B) ∩M) ∪
(A \ A∩M). Since A \ A∩ B is a finite set, we have h2(IA\A∩B(d− k)) = h2(OPn(d− k)) = 0. Since
h1(IA\A∩M(d− k)) = 0, the residual exact sequence (also known as the Castelnuovo’s sequence)

0→ IA\A∩B(d− k)→ IA∪B(d)→ IM∩(A∪B),M(d)→ 0

gives h1(IA∪B(d)) = h1(M, IM∩(A∪B)(d)). Since M is projectively normal, h1(M, IM∩(A∪B)(d)) =
h1(IA∪B(d)). Thus, the Grassmann’s formula gives dim〈νd,n(A ∩M)〉 ∩ 〈νd,n(B ∩M)〉 = |A ∩ B ∩
M|+ h1(IA∪B(d))− 1. Since B ⊂ M, we get 〈νd,n(A∩M)〉 ∩ 〈νd,n(B∩M)〉 = 〈νd,k(A)〉 ∩ 〈νd,b(B)〉.
Since A ∩M ) A, we get q /∈ 〈νd,n(A)〉′, a contradiction.

4. Tensors, i.e., the Segre Varieties

Fix an integer k ≥ 2 and positive integers n1, . . . , nk. Set Y := ∏k
i=1 Pni (the Segre variety) and

N := −1+ ∏k
i=1(ni + 1). Let ν : Y → PN denote the Segre embedding. Let πi : Y → Pni denote the

projection on the i-th factor. For any i ∈ {1, . . . , k}, set Y[i] := ∏h 6=i Pnh and call ηi : Y → Y[i] the
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projection which forgets the i-th component. Let ν[i] : Y[i]→ PNi , Ni := −1+ ∏h 6=i(nh + 1) denote
the Segre embedding of Y[i]. A key difficulty is that ρ(ν(Y)) = 2 because ν(Y) contains lines.

Lemma 4. Let S ⊂ Y be any finite set such that there is i ∈ {1, . . . k} with ηi|S not injective. Then, ν(S)
evinces no rank.

Proof. By Lemma 1, we reduce to the case |S| = 2, say S = {a, b} with a = (a1, . . . , ak),
b = (b1, . . . , bk) with ai = bi if and only if i > 1. Since all lines of Y are contained in one of
the factors of Y and all lines of ν(Y) are images of lines of Y, we get S ⊂ ν(Y). Thus, each element
of 〈ν(S)〉 is contained in ν(Y) and hence it has rank 1. Since |S| > 1, ν(S) evinces no rank.

Lemma 5. Let S ⊂ Y such that there are S′ ⊆ S and i ∈ {1, . . . , k} with |S′| = 3, νi(ηi(S′)) linearly
dependent and πi(S′) ⊂ Pni linearly dependent. Then, ν(S) evinces no rank.

Proof. Let Q ⊂ P3 be a smooth quadric surface. Q is projectively equivalent to the Segre
embedding of P1 × P1 and each point of P3 has at most Q-rank 2 by [47] (Proposition 5.1).
By Lemma 1, we may assume S′ = S. By Lemma 4, we may assume that ηi|S is injective. Thus,
|ηi|S| = 3. Since νi(ηi(S)) is not linearly independent and it has cardinality 3, it is contained in a
line of νi(Y[i]). Thus, ηi(S) is contained in a line of one of the factors of Y[i]. By assumption, πi(S)
is contained in a line of Pni . Thus, S is contained in a subscheme of Y isomorphic to P1 × P1. Since
each point of P3 has Q-rank ≤ 2 and |S| = 3, ν(S) evinces no rank.

Remark 3. Fix a finite set A ⊂ Y such that S := ν(A) is linearly independent. S evinces no tensor rank if
there is a multiprojective subspace Y′ ⊂ Y such that A ⊂ Y′ and |S| is larger than the maximum tensor
rank of ν(Y′).

Note that Lemmas 4 and 5 may be restated as a way to check for very low |S| if there is some
Y′ as in Lemma 3 exists.

Proposition 3. Take S ⊂ ν(Y) with |S| = 2. Let Y′ be the minimal multiprojective subspace of Y
containing S. The following conditions are equivalent:

1. S evinces no rank;
2. S does not generically evince ranks;
3. S does not totally evince ranks;
4. Y′ ∼= P1.

Proof. Since any two distinct points of PN are linearly independent (i.e., 〈S〉 is a line) and ν(Y)
is the set of all points with ν(Y)-rank 1, S evinces no rank if and only if 〈S〉 ⊂ ν(Y). Use the fact
that the lines of ν(Y) are contained in one of the factors of ν(Y). Since ν(Y) is cut out by quadrics,
if 〈S〉 * ν(Y), then |〈S〉 ∩ ν(Y)| ≤ 2. Since S ⊂ 〈S〉 ∩ ν(Y), we see that all points of 〈S〉 \ S have
rank 2

Proposition 4. Take S ⊂ ν(Y) with |S| = 3 and ν(S) linearly independent. Write S = ν(A) with
A ⊂ Y′. Let Y′ be the minimal multiprojective subspace of Y containing A. Write Y′ = Pm1 × · · ·Pms

with s ≥ 1 and m1 ≥ · · · ≥ ms > 0. We have m1 ≤ 2.
If ηi|A is injective for all i and either m2 = 2 or s ≥ 4 or m1 = 2 and s = 3, then S totally evinces its

ranks. In all other cases for a general E ∈ Y′ with |E| = 3, ν(E) does not generically evince its ranks.

Proof. If ηi|A is not injective for some i, then S evinces no rank by Lemma 4. Thus, we may assume
that each ηi|A is injective for all i. Each factor of Y′ is the linear span of πi(A) in Pni . Hence, m1 ≤ 2.
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Omitting all factors which are points, we get the form of Y′ we use. If Y′ = P1 (resp. P2, resp.
P1 × P1), then each point of 〈S〉 has rank 1 (resp. 1, resp. ≤ 2). Thus, in these cases, S evinces no
rank. If either Y′ = P2 × P1 or Y′ = (P1)3, then σ2(P2 × P1) = P5 and σ2((P1)3) = P7 ([23,26]).
Thus, the last assertion of the proposition is completed.

(a) Assume s ≥ 2 and m2 = 2. Taking a projection onto the first two factors, we
reduce to the case s = 2 (this reduction step is used only to simplify the notation). Take a
H ∈ |OY′(1, 0)| containing B (this is possible because h0(OP2(1)) = 3 > |B|). Since Y′ is the
minimal multiprojective subspace of Y containing A, we have A \ A∩H 6= ∅. Since B \ B∩H = ∅,
(Ref. [52] Lemma 5.1) gives h1(IA\A∩H(0, 1)) > 0. Thus, either there is A′ ⊂ A with |A′| = 2
and η1|A′ not injective (we excluded this possibility) or |A \ A ∩ H| = 3 (i.e., A ∩ H = ∅) and
η1(A) ⊂ P2 is contained in a line R. Set M := P2 × R. We get A ⊂ M and hence A is a contained
in a proper multiprojective subspace, contradicting the definition of Y′.

(b) Assume s ≥ 3 and m1 = 2. By part (a), we may assume m2 = 1. Taking a projection,
we reduce to the case s = 3, i.e., Y′ = P2 × P1 × P1. Take H as in step (a). As in step (a), we get
A ∩ H = ∅ and η1(A) contained in a line R of the Segre embedding of P1 × P1, contradicting the
definition of Y′.

(c) Assume s ≥ 4. By step (b), we may assume m1 = 1. Taking a projection onto the first
four factors of Y′, we reduce to the case Y′ = (P1)4. Fix any H ∈ |OY′(1, 1, 0, 0)| containing B.
Assume for the moment A * H. By ([52] Lemma 5.1), we have h1(IA\A∩H(0, 0, 1, 1)) > 0, i.e.,
either there are a = (a1, a2, a3, a4) ∈ A, b = (b1, b2, b3, b4) ∈ A with a 6= b and (a3, a4) = (b3, b4)

of A ∩ H = ∅ and the projection of A onto the last 2 factors of Y′ is contained in a line. The last
possibility is excluded by the minimality of Y′. Thus, a, b ∈ A exists. Set A := {a, b, c} and write
c = (c1, c2, c3, c4). Permuting the factors of Y′, we see that, for each E ⊂ {1, 2, 3, 4}, there is AE ⊂ A
with |AE| = 2 and πE(AE) is a singleton, where πE : Y′ → P1 × P1 denote the projection onto the
factors of Y′ corresponding to E. Since the cardinality of the set S of all subset of {1, 2, 3, 4} with
cardinality 2 is larger than the cardinality of the set of all subsets of A with cardinality 3, there are
E, F ∈ S such that E 6= F and AE = AF. If E ∩ F 6= ∅, say E ∩ F = {i}, then ηi|A is not injective,
contradicting our assumption. If E ∩ F = ∅, we have E ∪ F = {1, 2, 3, 4}. Since AE = AF, we get
|AE| = 1, a contradiction.

Remark 4. Take a finite S ⊂ ν(Y) and fix q ∈ 〈ν(S)〉′. Let A ⊂ Y be the subset with ν(A) = S. It is
easier to prove that S evinces the rank of q if we know that the minimal multiprojective subspace of Y
containing A is the minimal multiprojective subspace Y′′ of Y with q ∈ 〈ν(Y′′)〉. Note that this is always
true if Y′′ = Y, i.e., if the tensor q is concise.

5. Questions on the Case of Veronese Varieties

Let rmax(n, d) denote the maximum of all Xn,d-ranks (in [55,56] it is denoted with rmax(n +

1, d)). The integer rmax(n, d) depends on two variables, n and d. In this section, we ask some
question on the asymptotic behavior of rmax(n, d) when we fix one variable, while the other one
goes to +∞.

Let rgen(n, d) denote the Xn,d-rank of a general q ∈ Pr. These integers do not depend on
the choice of the algebraically closed base field K with characteristic 0. The diagonalization
of quadratic forms gives rmax(n, 2) = rgen(n, 2) = n + 1. The integers rgen(n, d), d > 2, are
known by an important theorem of Alexander and Hirschowitz ([8–13]); with four exceptional
cases, we have rgen(n, d) = d(n+d

n )/(n + 1)e. An important theorem of Blekherman and
Teitler gives rmax(n, d) ≤ 2rgen(n, d) (and even rmax(n, d) ≤ 2rgen(n, d)− 1 with a few obvious
exceptions) ([57,58]). In particular, for a fixed n, we have

1
(n + 1)!

≤ lim inf
d→+∞

rmax(n, d)/dn ≤ lim sup
d→+∞

rmax(n, d)/dn ≤ 2
(n + 1)!

.



Mathematics 2018, 6, 140 7 of 9

It is reasonable to ask if lim infd→+∞ rmax(n, d)/dn exists and its value. Of course, it is tempting
also to ask a more precise information about rmax(n, d) for d � 0. In the case n = 2, De Paris
proved in [55,56] that rmax(2, d) ≥ b(d2 + 2d + 5)/4c ([56] Theorem 3), which equality holds if d
is even ([56] (Proposition 2.4)) and suggested that equality holds for all d. Since rmax(2, d + 1) ≥
rmax(2, d) even for odd d, the integer rmax(2, d) grows like d2/4. Thus, there is an interesting interval
between the general upper bound of [57] (which, in this case, has order d2/3) and rmax(2, d). There
are very interesting upper bounds for the dimensions of the set of all points with rank bigger than
the generic one ([59]).

What are

lim sup
n→+∞

(n + 1)!rmax(n, d)
dn and lim inf

n→+∞

(n + 1)!rmax(n, d)
dn ?

For all d ≥ 3, study rmax(n, d)− rmax(n, d− 1) and compare for d� 0 rmax(n, d)− rmax(n, d− 1)
with rmax(n − 1, d) and rgen(n − 1, d). Of course, this is almost exactly known when n = 2 by
Sylvester’s theorem ([48]) and De Paris ([55,56]), but rmax(2, d)− rmax(2, d− 1) for d � 0 is both
∼rgen(1, d) and ∼rmax(1, d)/2 and so we do not have any suggestion for the case n > 2.
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59. Buczyński, J.; Han, K.; Mella, M.; Teitler, Z. On the locus of points of high rank. Eur. J. Math. 2018, 4,

113–136. [CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S1056-3911-2013-00595-0
http://dx.doi.org/10.1112/jlms/jds073
http://dx.doi.org/10.1016/j.laa.2012.05.001
http://dx.doi.org/10.4171/JEMS/229
http://dx.doi.org/10.1016/j.jpaa.2007.05.022
http://dx.doi.org/10.1007/s10208-009-9055-3
http://dx.doi.org/10.1007/s10208-010-9077-x
http://dx.doi.org/10.1007/BF01450947
http://dx.doi.org/10.1007/s00209-011-0907-6
http://dx.doi.org/10.1016/j.jsc.2010.08.001
http://dx.doi.org/10.1515/apam-2013-0015
http://dx.doi.org/10.1007/s13366-012-0104-8
http://dx.doi.org/10.1016/j.laa.2016.03.012
http://dx.doi.org/10.1007/s00013-017-1105-5
http://dx.doi.org/10.1007/s00208-014-1150-3
http://dx.doi.org/10.1007/s40879-017-0172-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary Lemmas
	The Veronese Embeddings of Projective Spaces
	Tensors, i.e., the Segre Varieties
	Questions on the Case of Veronese Varieties
	References

