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Abstract: Let X C P" be an integral and non-degenerate variety. We study when a finite set S C X
evinces the X-rank of the general point of the linear span of S. We give a criterion when X is the
order d Veronese embedding X,, ; of P" and |S| < ("Hj / ZJ). For the tensor rank, we describe the
cases with |S| < 3. For X, 4, we raise some questions of the maximum rank for d > 0 (for a fixed

n) and for n > 0 (for a fixed d).
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1. Introduction

Let X C P" be an integral and non-degenerate variety. For any g € P", the X-rank rx(q) of q is
the minimal cardinality of a finite set S C X such that g € (S), where ( ) denotes the linear span.
The definition of X-ranks captures the notion of tensor rank (take as X the Segre embedding of a
multiprojective space) of rank decomposition of a homogeneous polynomial (take as X a Veronese
embedding of a projective space) of partially symmetric tensor rank (take a complete linear system
of a multiprojective space) and small variations of it may be adapted to cover other applications.
See [1] for many applications and [2] for many algebraic insights. For the pioneering works on
the applied side, see, for instance, [3-7]. The paper [7] proved that X-rank is not continuous and
showed why this has practical importance. The dimensions of the secant varieties (i.e., the closure
of the set of all g € " with a prescribed rank) has a huge theoretical and practical importance.
The Alexander-Hirschowitz theorem computes in all cases the dimensions of the secant varieties
of the Veronese embeddings of a projective space ([8-14]). For the dimensions of secant varieties,
see [15-17] for tensors and [18-27] for partially symmetric tensors (i.e., Segre-Veronese embeddings
of multiprojective spaces). For the important problem of the uniqueness of the set evincing a rank
(in particular for the important case of tensors) after the classical [28], see [29-38]. See [39-47] for
other theoretical works.

Let S C X be a finite set and q € P". We say that S evinces the X-rank of q if ¢ € (S) and
|S| = rx(q). We say that S evinces an X-rank if there is g € P” such that S evinces the X-rank
of g. Obviously, S may evince an X-rank only if it is linearly independent, but this condition is
not a sufficient one, except in very trivial cases, like when rx(gq) < 2 for all g € P". Call rx max
the maximum of all integers rx (). An obvious necessary condition is that |S| < rx max and this
is in very special cases a sufficient condition (see Propositions 1 for the rational normal curve).
If S evinces the X-rank of g € P, then g € (S) and q ¢ (S’) for any S’ C S. For any finite set
S C P, set (S) :=(S) \ (Ugics(S')). Note that (S)’ = @ if and only if either S = @ or S is linearly
dependent (when |S| =1, (S)’ = S and S evinces itself). In some cases, it is possible to show that
some finite S C X evinces the X-rank of all points of (S)’. We say that S evinces generically the
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X-ranks if there is a non-empty Zariski open subset U of (S) such that S evinces the X-ranks of all
q € U. We say that S totally evinces the X-ranks if S evinces the X-ranks of all g € (S)’. We first need
an elementary and well-known bound to compare it with our results.

Let p(X) be the maximal integer such that each subset of X with cardinality p(X) is linearly
independent. See ([43] Lemma 2.6, Theorem 1.18) and ([42] Proposition 2.5) for some uses of the
integer p(X). Obviously, p(X) < r + 1 and it is easy to check and well known that equality holds if
and only if X is a Veronese embedding of P! (Remark 1). If [S| < | (o(X) +1)/2], then S totally
evinces the X-ranks (as in [43] Theorem 1.18) while, for each integer t > |(p(X) +1)/2] with
t < r+1, there is a linearly independent subset of X with cardinality t and not totally evincing
the X-ranks ( Lemma 3). Thus, to say something more, we need to make some assumptions on S
and these assumptions must be related to the geometry of X or the reasons for the interest of the
X-ranks. We do this in Section 3 for the Veronese embeddings and in Section 4 for the tensor rank.
For tensors, we only have results for |S| < 3 (Propositions 3 and 4).

For all positive integers n,d let v, : P"* — P, r = (":d) — 1, denote the Veronese embedding
of P", i.e., the embedding of P" induced by the complete linear system |Opn(d)|. Set X, 4 :=
vy, (P"). At least over an algebraically closed base field of characteristic 0 (i.e., in the set-up of this
paper), for any g € IP", the integer rx_,(q) is the minimal number of d-powers of linear forms in
n + 1 variables whose sum is the hombgeneous polynomial associated to g.

We prove the following result, whose proof is elementary (see Section 3 for the proof). In its
statement, the assumption “h'(Z4(|d/2])) = 0” just means that the vector space of all degree
|d/2| homogeneous polynomials in 7 + 1 variables vanishing on A has dimension (" Lj 21y 4,

i.e., A imposes |A| independent conditions to the homogeneous polynomials of degree |d/2] in
n + 1 variables.

Theorem 1. Fix integers n > 2, d > k > 2 and a finite set A C P" such that h'(Z,(|d/2])) = 0.
Set S :=v;,(A). Then, S totally evinces the ranks for X, 4.
A general A C P" satisfies the assumption of Theorem 1 if and only if |A| < ("ﬂr‘f/ 2)y.,
For much smaller |A|, one can check the condition h'(Z4(|d/2])) = 0 if A satisfies some geometric
conditions (e.g., if A is in linearly general position, it is sufficient to assume |A| < n|d/2| +1).
We conclude the paper with some questions related to the maximum of the X-ranks when X
is a Veronese embedding of P"".

2. Preliminary Lemmas

Remark 1. Let X C P" be an integral and non-degenerate variety. Since any r + 2 points of P are linearly
dependent, we have p(X) < r + 1. If X is a rational normal curve, then p(X) = r + 1 because any r + 1
points of X spans P". Now, we check that, if p(X) = r + 1, then X is a rational normal curve. This is well
known, but usually stated in the set-up of Veronese embeddings or the X-ranks of curves. Set n := dim X
and d := deg(X). Assume p(X) = r + 1. Let H C IP" be a general hyperplane. If n > 1, then X N H has
dimension n — 1 > 0 and in particular it has infinitely many points. Any r + 1 points of X N H are linearly
dependent. Now, assume n = 1. Since X is non-degenerate, we have d > n. By Bertini’s theorem, X N H
contains d points of X. Since p(X) =r+1, dimH =r—1and HNX C H, we have d < r. Hence,
d =r,i.e., X is a rational normal curve.

The following example shows, that in many cases, there are are sets evincing X-ranks, but not
totally evincing X-ranks or even generically evincing X-ranks.

Example 1. Let X C P", r > 3, be a rational normal curve. Take q € P" with rx(q) = r, i.e., take
g € T(X) \ X, where T(X) is the tangential variety of X ([48]). Take S C X evincing the X-rank of q.
Thus, |S| = r and S spans a hyperplane (S). Since dim T(X) = 2 and T(X) spans P", (S) N 7(X) isa
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proper closed algebraic subset of (S). Thus, for a general p € (S), we have rx(p) < |S| and hence S does
not generically evinces X-ranks.

Lemma 1. If S C X is a finite set evincing the rank of some q € P", then each S’ C S, S’ # @, evinces the
X-rank of some q' € P".

Proof. We may assume S’ # S. Write S” := S\ S'. Since S evinces the rank of g, S is linearly
independent, but S U {¢} is not linearly independent. Since S’ # @ and S” # @, there are unique
g € (S') and q” € (S”) such thatg € ({¢/,4"}). Since S evinces the rank of g, S’ evinces the rank
ofg. O

Lemma 2. Every non-empty subset of a set evincing generically (resp. totally) X-ranks evinces generically
(resp. totally) the X-ranks.

Proof. Assume that S evinces generically the X-ranks and call U a non-empty open subset of (S)’
such that rx(q) = |S| for all g € U; if S evinces totally the X-ranks, take U := (S)’. Fix §' C S,
S" #0and set S := S\ S'. Let E be the set of all g € (S)’ such that ({g}US")NU # @.Ifq € E,
then rx(q) = |S'| because rx(q') = |S| for each ¢’ € ({g} US”")NU. Since ' NS’ = @ and
S"US"” = Sis linearly independent, E is a non-empty open subset of (S)’ (a general element of (S)
is contained in the linear span of a general element of (S’) and a general element of (S')). Now,
assume U = (S)’. Every element of (S)’ is in the linear span of an element of (S’)" and an element
of (§"). O

Lemma 3. Take a finite set S C X, S # @.

(@) If|S| < |(p(X)+1)/2], then S totally evinces the X-ranks.
(b)  Foreachinteger t > | (p(X) +1)/2], thereis A C X such that |A| = t and A does not totally evince
the X-ranks.

Proof. Take g € (S)’ and assume rx(q) < |S|. Take B C X evincing the X-rank of 4. Since |B| < |§],
we have B # S. Since g € (S) N (B), but no proper subset of either B or S spans g, S U B is linearly
dependent. Since |B| < |S| — 1, we have |[BU S| < p(X), contradicting the definition of p(X).

Now, we prove part (b). By Lemma 1, it is sufficient to do the case t = [(p(X) +1)/2| + 1.
By the definition of the integer p(X), there is a subset D C X with |D| = p(X) + 1 and D linearly
dependent. Write D = A U E with |A| = [(p(X)+1)/2| +1and |E| = p(X) + 1 — | A|. Note that
|A| > |E|. Since |A| < p(X) (remember that p(X) > 2), both A and E are linearly independent.
Since A UE is linearly dependent, there is ¢ € (A) N (E). Since |D| = p(X) + 1, every proper
subset of D is linearly independent. Hence, (A’) N (E) = @ for all A” C A. Thus, q € (A)'.
Since |E| < |A|, A does not evince the X-rank of 4. [J

Remark 2. Tuke X C IP" such that rx(q) < 2 forall g € P" (e.g., by [49], we may take most space curves).
Any set S C X with |S| = 2 evinces its X-ranks if and only if X contains no line.

3. The Veronese Embeddings of Projective Spaces

Letvg, : P* = P, r:= -1+ (”Id), denote the Veronese embedding of P". Set X, ; :=
Vdn (]Pm ) .
Proposition 1. Let X C ]P’d, d > 2, be the rational normal curve.

(a) A non-empty finite set S C X evinces some rank of P if and only if |S| < d.
(b) A non-empty finite set A C X totally evinces the X-ranks if and only if |A| < [(d +2)/2].
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Proof. By a theorem of Sylvester’s ([48]), every g € P? has X-rank at most d. Thus, the condition
|S| < d is a necessary condition for evincing some rank. By Lemma 1 to prove part (a), it is
sufficient to prove it when |S| = d. Take any connected zero-dimensional scheme Z C X with
deg(Z) =2and SNZ = @. Thus, deg(ZUS) = d + 2. Since X = P!, deg(Ox(1)) = d and X is
projectively normal, we have h!(Zs 7(1)) = 1 and h!(Zjy(1)) = 0 for each W' C SU Z. This is
equivalent to say that the line (Z) meets (S) at a unique point, g and q # Z..q. By Sylvester’s
theorem, rx(q) = d ([48]). Since g € (S) and |S| = d, S evinces the X-rank of g.

If A# @and |A| < |(d+2)/2], then A totally evinces the X-ranks by part (a) of Lemma 3
and the fact that p(X) = d + 1. Now, assume d > |A| > |[(d+2)/2]. Fixaset E C X\ A with
|E| =d+2— |A|. Adapt the proof of part (b) of Lemma 3. [

Proposition 2. Fixaset S C X, 4, n > 2, with |S| = d 4 1. The following conditions are equivalent:

1. thereisaline L C P" suchthat |SNL| > [(d+2)/2];
2. Sevinces no X, 4-rank;
3. thereis q € (S) such that S does not evince the X,, 4-rank of q.

Proof. Obviously, (2) implies (3). If X’ C X is a subvariety and g € (X'), we have rx/(q) > rx(q).
Thus, Sylvester’s theorem ([48]) and Lemma 2 show that (1) implies (2).

Now, assume the existence of 4 € (S)’ such that S does not evince the X-rank of g, i.e.,
rx(q) < d. Take A C P" such that v(A) = S and take B C P" such that v;(B) evinces the X-rank of
g. Since g € (S)’, (Ref. [50] Lemma 1) gives h!(P",Z4 p(d)) > 0. Since |A U B| < 2d + 1, (Ref. [51]
Lemma 34) gives the existence of a line L C P" such that [LN(AUB)| > d+2. Let H C P"
be a general hyperplane containing L. Since H is general and A U B is a finite set, we have
HN(AUB) =LN(AUB).Since LN (AUB)| > d+2,wehave [ AUB\HN(AUB)| <d—1and
hence h! (P", Zaup\Hn(4aus)(d —1)) = 0. By ([52] Lemma 5.2), wehave A\ ANH = B\BNH. [

See [53,54] for some results on the geometry of sets S C X, ; with controlled Hilbert function
and that may be useful to extend Proposition 2.

Proof of Theorem 1: Set k := |d/2|. Note that h'(Z4(x)) = 0 for all x > k and in particular
h'(Za(d —k)) = 0. Fix g € (v4,(A))’ and assume rx, ,(7) < |A|. Fix B C P" such that v, (B)
evinces the X, s-rank of g. Since h!(Z4(k)) = 0 and |A| > |B|, we have h®(Zg(k)) > h%(Z(k)).
Thus, there is M € |Opn (k)| containing B, but with A ¢ M, ie, A\ANM # @, while B\ BNM =
@. Since h'(Z4(d —k)) = 0, we have h! (Za\anm(d —k)) = 0. Since W (Za(d)) =0, vg,(A) is
linearly independent. Since v ,(B) evinces a rank, it is linearly independent. Grassmann’s formula
gives dim(vyx(A)) N (vy(B)) = |[ANB| +h'(Zayp(d)) — 1. We have AUB = ((AUB) N M) U
(A\ AN M). Since A\ AN Bisa finite set, we have hz(IA\AmB(d —k)) = h*(Opn(d —k)) = 0. Since
(T aanm(d —k)) = 0, the residual exact sequence (also known as the Castelnuovo’s sequence)

0= Zp\ang(d —k) = Zaup(d) = Zyn(aus),m(d) =0

gives ! (Z4p(d)) = h' (M, Zyn(aup)(d)). Since M is projectively normal, (M, Tyvn(au)(d)) =
h(Zaup(d)). Thus, the Grassmann’s formula gives dim (v, ,(ANM)) N (vy,,(BNM)) = |[ANBN
M|+ 1" (Zaup(d)) — 1. Since B C M, we get (v4,,(ANM)) N (v, (BNM)) = (var(A)) N (vay(B)).
Since ANM D A, wegetq ¢ (v;,(A)), a contradiction. [

4. Tensors, i.e., the Segre Varieties

Fix an integer k > 2 and positive integers ny, ..., 1. Set Y := H;‘:l P"i (the Segre variety) and
N:= —1+]I,(n; +1). Letv: Y — PN denote the Segre embedding. Let 77; : Y — P" denote the
projection on the i-th factor. Forany i € {1,...,k}, set Y[i] := []j,; P"# and call 77; : Y — Y[i] the
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projection which forgets the i-th component. Let v[i] : Y[i] — PN, Nj := —1+ [T, 4;(1 + 1) denote
the Segre embedding of Y[i]. A key difficulty is that p(v(Y)) = 2 because v(Y) contains lines.

Lemma4. Let S C Y be any finite set such that there is i € {1,...k} with 15 not injective. Then, v(S)
evinces no rank.

Proof. By Lemma 1, we reduce to the case |S| = 2, say S = {a,b} witha = (ay,...,a;),
b= (by,...,bx) with a; = b; if and only if i > 1. Since all lines of Y are contained in one of
the factors of Y and all lines of v(Y) are images of lines of Y, we get S C v(Y). Thus, each element
of (v(S)) is contained in v(Y) and hence it has rank 1. Since |S| > 1, v(S) evinces no rank. [

Lemma 5. Let S C Y such that there are S' C Sandi € {1,...,k} with |S'| = 3, vj(n;(S)) linearly
dependent and 7t;(S") C P" linearly dependent. Then, v(S) evinces no rank.

Proof. Let Q C P? be a smooth quadric surface. Q is projectively equivalent to the Segre
embedding of P! x P! and each point of P? has at most Q-rank 2 by [47] (Proposition 5.1).
By Lemma 1, we may assume S’ = S. By Lemma 4, we may assume that 1i|s is injective. Thus,
131s| = 3. Since v;(#;(S)) is not linearly independent and it has cardinality 3, it is contained in a
line of v;(Y[i]). Thus, #;(S) is contained in a line of one of the factors of Y[i]. By assumption, 77;(S)
is contained in a line of P"i. Thus, S is contained in a subscheme of Y isomorphic to P! x PL. Since
each point of P? has Q-rank < 2 and |S| = 3, v(S) evinces no rank. [J

Remark 3. Fix a finite set A C Y such that S := v(A) is linearly independent. S evinces no tensor rank if
there is a multiprojective subspace Y' C Y such that A C Y’ and |S| is larger than the maximum tensor
rank of v(Y").

Note that Lemmas 4 and 5 may be restated as a way to check for very low |S]| if there is some
Y’ as in Lemma 3 exists.

Proposition 3. Take S C v(Y) with |S| = 2. Let Y' be the minimal multiprojective subspace of Y
containing S. The following conditions are equivalent:

1 S evinces no rank;

2. S does not generically evince ranks;
3. S does not totally evince ranks;

4. Y =P

Proof. Since any two distinct points of PV are linearly independent (i.e., (S) is a line) and v(Y)
is the set of all points with v(Y)-rank 1, S evinces no rank if and only if (S) C v(Y). Use the fact
that the lines of v(Y') are contained in one of the factors of v(Y). Since v(Y) is cut out by quadrics,
if (S) € v(Y), then [(S) Nv(Y)| < 2. Since S C (S) Nv(Y), we see that all points of (S) \ S have
rank2 [

Proposition 4. Take S C v(Y) with |S| = 3 and v(S) linearly independent. Write S = v(A) with
A C Y. Let Y' be the minimal multiprojective subspace of Y containing A. Write Y = P™ x ... P"s
withs > land mqy > - -+ > mg > 0. We have mq < 2.

If ;) 4 is injective for all i and either my = 2 0r s > 4 or my = 2and s = 3, then S totally evinces its
ranks. In all other cases for a general E € Y' with |E| = 3, v(E) does not generically evince its ranks.

Proof. If 17; 4 is not injective for some i, then S evinces no rank by Lemma 4. Thus, we may assume
that each 77; 4 is injective for all i. Each factor of Y’ is the linear span of 77;(A) in P"i. Hence, m; < 2.
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Omitting all factors which are points, we get the form of Y’ we use. If Y/ = P! (resp. P?, resp.
P! x P, then each point of (S) has rank 1 (resp. 1, resp. < 2). Thus, in these cases, S evinces no
rank. If either Y/ = P2 x P! or Y = (P')3, then op(P? x P!) = P® and o ((P*)3) = P7 ([23,26)).
Thus, the last assertion of the proposition is completed.

(a) Assume s > 2 and mp; = 2. Taking a projection onto the first two factors, we
reduce to the case s = 2 (this reduction step is used only to simplify the notation). Take a
H € |Oy(1,0)| containing B (this is possible because 1°(Op2(1)) = 3 > |BJ). Since Y’ is the
minimal multiprojective subspace of Y containing A, wehave A\ ANH # @. Since B\BNH =@,
(Ref. [52] Lemma 5.1) gives h! (Za\anu(0,1)) > 0. Thus, either there is A’ C A with |A"| = 2
and 7774 not injective (we excluded this possibility) or [A\ AN H| = 3 (i.e, ANH = @) and
71(A) C P? is contained in a line R. Set M := P?> x R. We get A C M and hence A is a contained
in a proper multiprojective subspace, contradicting the definition of Y.

(b) Assume s > 3 and m; = 2. By part (a), we may assume m, = 1. Taking a projection,
we reduce to the case s = 3,i.e., Y’ = P? x P! x Pl. Take H as in step (a). As in step (a), we get
ANH = @and 71(A) contained in a line R of the Segre embedding of P! x P!, contradicting the
definition of Y.

(c) Assume s > 4. By step (b), we may assume m; = 1. Taking a projection onto the first
four factors of Y/, we reduce to the case Y/ = (P')*. Fix any H € |0y/(1,1,0,0)| containing B.
Assume for the moment A ¢ H. By ([52] Lemma 5.1), we have hl(IA\AnH(O, 0,1,1)) > 0, ie.,
either there are a = (ay,a5,a3,a4) € A, b = (b, by, b3,by) € A witha # band (a3, ay) = (b3, by)
of AN H = @ and the projection of A onto the last 2 factors of Y’ is contained in a line. The last
possibility is excluded by the minimality of Y’. Thus, a,b € A exists. Set A := {a,b,c} and write
¢ = (c1,¢2,c3,c4). Permuting the factors of Y’, we see that, for each E C {1,2,3,4}, thereis Ap C A
with |Ag| = 2 and 7tg(Ag) is a singleton, where 7tg : Y/ — P! x P! denote the projection onto the
factors of Y’ corresponding to E. Since the cardinality of the set S of all subset of {1,2,3,4} with
cardinality 2 is larger than the cardinality of the set of all subsets of A with cardinality 3, there are
E,F € SsuchthatE # Fand Ap = Ap. f ENF # @, say ENF = {i}, then ;4 is not injective,
contradicting our assumption. If ENF = @, we have EUF = {1,2,3,4}. Since Ap = A, we get
|Ag| = 1, a contradiction. O

Remark 4. Take a finite S C v(Y) and fix g € (v(S))'. Let A C Y be the subset with v(A) = S. It is
easier to prove that S evinces the rank of q if we know that the minimal multiprojective subspace of Y
containin is the minimal multiprojective subspace Y of Y with q € (v . Note that this is always

ining A is the minimal multiprojecti bspace Y" of Y with q Y")). Note that this is alway.
true if Y =Y, i.e., if the tensor q is concise.

5. Questions on the Case of Veronese Varieties

Let rmax (1, d) denote the maximum of all X,, ;-ranks (in [55,56] it is denoted with rmax (1 +
1,d)). The integer rmax(1,d) depends on two variables, n and d. In this section, we ask some
question on the asymptotic behavior of rmax (1, d) when we fix one variable, while the other one
goes to +-o0.

Let rgen(n,d) denote the X, j-rank of a general g € P’. These integers do not depend on
the choice of the algebraically closed base field K with characteristic 0. The diagonalization
of quadratic forms gives rmax(1,2) = rgen(n,2) = n + 1. The integers rgen(n,d), d > 2, are
known by an important theorem of Alexander and Hirschowitz ([8-13]); with four exceptional
cases, we have rgen(n,d) = [(”:d)/ (n+1)]. An important theorem of Blekherman and
Teitler gives rmax(1,d) < 2rgen(n,d) (and even rmax(n,d) < 2rgen(n,d) — 1 with a few obvious
exceptions) ([57,58]). In particular, for a fixed 1, we have

< limi "< "< .
R e (]
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It is reasonable to ask if lim inf; ., , o "max (7, d) /d" exists and its value. Of course, it is tempting
also to ask a more precise information about rmax(1,d) for d > 0. In the case n = 2, De Paris
proved in [55,56] that rmax(2,d) > L(d2 +2d + 5) /4| ([56] Theorem 3), which equality holds if d
is even ([56] (Proposition 2.4)) and suggested that equality holds for all d. Since rmax(2,d +1) >
rmax (2, d) even for odd d, the integer rmax (2, d) grows like d? /4. Thus, there is an interesting interval
between the general upper bound of [57] (which, in this case, has order dz/ 3) and rmax (2, d). There
are very interesting upper bounds for the dimensions of the set of all points with rank bigger than
the generic one ([59]).

What are i p e p
lim sup (14 1)!rmax (11, 4) and lim inf (14 1)!max (1, ) ?

Nn——4o00 d}’l n——+o00 d?’l

Foralld > 3, study #max (1, d) — max(1,d — 1) and compare for d > 0 rmax (1, d) — rmax(n,d — 1)
with rmax(n — 1,d) and rgen(n —1,d). Of course, this is almost exactly known when n = 2 by
Sylvester’s theorem ([48]) and De Paris ([55,56]), but rmax(2,d) — rmax(2,d — 1) for d > 0 is both
Nrgen(l, d) and ~rmax(1,d)/2 and so we do not have any suggestion for the case n > 2.
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