

Article

Set Evincing the Ranks with Respect to an Embedded Variety (Symmetric Tensor Rank and Tensor Rank

Edoardo Ballico

Department of Mathematics, University of Trento, 38123 Povo, Italy; edoardo.ballico@unitn.it

Received: 11 July 2018; Accepted: 8 August 2018; Published: 14 August 2018

Abstract: Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety. We study when a finite set $S \subset X$ evinces the X-rank of the general point of the linear span of S. We give a criterion when X is the order d Veronese embedding $X_{n,d}$ of \mathbb{P}^n and $|S| \leq \binom{n+\lfloor d/2 \rfloor}{n}$. For the tensor rank, we describe the cases with $|S| \leq 3$. For $X_{n,d}$, we raise some questions of the maximum rank for $d \gg 0$ (for a fixed n) and for $n \gg 0$ (for a fixed d).

Keywords: X-rank; symmetric tensor rank; tensor rank; veronese variety; segre variety

1. Introduction

Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety. For any $q \in \mathbb{P}^r$, the X-rank $r_X(q)$ of q is the minimal cardinality of a finite set $S \subset X$ such that $q \in \langle S \rangle$, where $\langle \ \rangle$ denotes the linear span. The definition of X-ranks captures the notion of tensor rank (take as X the Segre embedding of a multiprojective space) of rank decomposition of a homogeneous polynomial (take as X a Veronese embedding of a projective space) of partially symmetric tensor rank (take a complete linear system of a multiprojective space) and small variations of it may be adapted to cover other applications. See [1] for many applications and [2] for many algebraic insights. For the pioneering works on the applied side, see, for instance, [3–7]. The paper [7] proved that X-rank is not continuous and showed why this has practical importance. The dimensions of the secant varieties (i.e., the closure of the set of all $q \in \mathbb{P}^r$ with a prescribed rank) has a huge theoretical and practical importance. The Alexander-Hirschowitz theorem computes in all cases the dimensions of the secant varieties of the Veronese embeddings of a projective space ([8–14]). For the dimensions of secant varieties, see [15–17] for tensors and [18–27] for partially symmetric tensors (i.e., Segre–Veronese embeddings of multiprojective spaces). For the important problem of the uniqueness of the set evincing a rank (in particular for the important case of tensors) after the classical [28], see [29–38]. See [39–47] for other theoretical works.

Let $S \subset X$ be a finite set and $q \in \mathbb{P}^r$. We say that S evinces the X-rank of q if $q \in \langle S \rangle$ and $|S| = r_X(q)$. We say that S evinces an X-rank if there is $q \in \mathbb{P}^r$ such that S evinces the X-rank of q. Obviously, S may evince an X-rank only if it is linearly independent, but this condition is not a sufficient one, except in very trivial cases, like when $r_X(q) \leq 2$ for all $q \in \mathbb{P}^r$. Call $r_{X,\max}$ the maximum of all integers $r_X(q)$. An obvious necessary condition is that $|S| \leq r_{X,\max}$ and this is in very special cases a sufficient condition (see Propositions 1 for the rational normal curve). If S evinces the X-rank of $q \in \mathbb{P}^r$, then $q \in \langle S \rangle$ and $q \notin \langle S' \rangle$ for any $S' \subsetneq S$. For any finite set $S \subset \mathbb{P}^r$, set $\langle S \rangle' := \langle S \rangle \setminus (\bigcup_{S' \subsetneq S} \langle S' \rangle)$. Note that $\langle S \rangle' = \emptyset$ if and only if either $S = \emptyset$ or S is linearly dependent (when |S| = 1, $\langle S \rangle' = S$ and S evinces itself). In some cases, it is possible to show that some finite $S \subset X$ evinces the X-rank of all points of $\langle S \rangle'$. We say that S evinces generically the

Mathematics 2018, 6, 140 2 of 9

X-ranks if there is a non-empty Zariski open subset U of $\langle S \rangle$ such that S evinces the X-ranks of all $q \in U$. We say that S totally evinces the X-ranks if S evinces the X-ranks of all $q \in \langle S \rangle'$. We first need an elementary and well-known bound to compare it with our results.

Let $\rho(X)$ be the maximal integer such that each subset of X with cardinality $\rho(X)$ is linearly independent. See ([43] Lemma 2.6, Theorem 1.18) and ([42] Proposition 2.5) for some uses of the integer $\rho(X)$. Obviously, $\rho(X) \le r+1$ and it is easy to check and well known that equality holds if and only if X is a Veronese embedding of \mathbb{P}^1 (Remark 1). If $|S| \le \lfloor (\rho(X)+1)/2 \rfloor$, then S totally evinces the X-ranks (as in [43] Theorem 1.18) while, for each integer $t > \lfloor (\rho(X)+1)/2 \rfloor$ with $t \le r+1$, there is a linearly independent subset of X with cardinality t and not totally evincing the X-ranks (Lemma 3). Thus, to say something more, we need to make some assumptions on S and these assumptions must be related to the geometry of X or the reasons for the interest of the X-ranks. We do this in Section 3 for the Veronese embeddings and in Section 4 for the tensor rank. For tensors, we only have results for $|S| \le 3$ (Propositions 3 and 4).

For all positive integers n,d let $v_{d,n}:\mathbb{P}^n\to\mathbb{P}^r$, $r=\binom{n+d}{n}-1$, denote the Veronese embedding of \mathbb{P}^n , i.e., the embedding of \mathbb{P}^n induced by the complete linear system $|\mathcal{O}_{\mathbb{P}^n}(d)|$. Set $X_{n,d}:=v_{d,n}(\mathbb{P}^n)$. At least over an algebraically closed base field of characteristic 0 (i.e., in the set-up of this paper), for any $q\in\mathbb{P}^r$, the integer $r_{X_{n,d}}(q)$ is the minimal number of d-powers of linear forms in n+1 variables whose sum is the homogeneous polynomial associated to q.

We prove the following result, whose proof is elementary (see Section 3 for the proof). In its statement, the assumption " $h^1(\mathcal{I}_A(\lfloor d/2 \rfloor)) = 0$ " just means that the vector space of all degree $\lfloor d/2 \rfloor$ homogeneous polynomials in n+1 variables vanishing on A has dimension $\binom{n+\lfloor d/2 \rfloor}{n} - |A|$, i.e., A imposes |A| independent conditions to the homogeneous polynomials of degree $\lfloor d/2 \rfloor$ in n+1 variables.

Theorem 1. Fix integers $n \ge 2$, d > k > 2 and a finite set $A \subset \mathbb{P}^n$ such that $h^1(\mathcal{I}_A(\lfloor d/2 \rfloor)) = 0$. Set $S := \nu_{d,n}(A)$. Then, S totally evinces the ranks for $X_{n,d}$.

A general $A \subset \mathbb{P}^n$ satisfies the assumption of Theorem 1 if and only if $|A| \leq \binom{n+\lfloor d/2\rfloor}{n}$. For much smaller |A|, one can check the condition $h^1(\mathcal{I}_A(\lfloor d/2\rfloor)) = 0$ if A satisfies some geometric conditions (e.g., if A is in linearly general position, it is sufficient to assume $|A| \leq n |d/2| + 1$).

We conclude the paper with some questions related to the maximum of the *X*-ranks when *X* is a Veronese embedding of \mathbb{P}^n .

2. Preliminary Lemmas

Remark 1. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety. Since any r+2 points of \mathbb{P}^r are linearly dependent, we have $\rho(X) \leq r+1$. If X is a rational normal curve, then $\rho(X) = r+1$ because any r+1 points of X spans \mathbb{P}^r . Now, we check that, if $\rho(X) = r+1$, then X is a rational normal curve. This is well known, but usually stated in the set-up of Veronese embeddings or the X-ranks of curves. Set $n := \dim X$ and $d := \deg(X)$. Assume $\rho(X) = r+1$. Let $H \subset \mathbb{P}^r$ be a general hyperplane. If n > 1, then $X \cap H$ has dimension n-1>0 and in particular it has infinitely many points. Any r+1 points of $X \cap H$ are linearly dependent. Now, assume n=1. Since X is non-degenerate, we have $d \geq n$. By Bertini's theorem, $X \cap H$ contains d points of X. Since $\rho(X) = r+1$, $\dim H = r-1$ and $H \cap X \subset H$, we have $d \leq r$. Hence, d = r, i.e., X is a rational normal curve.

The following example shows, that in many cases, there are sets evincing *X*-ranks, but not totally evincing *X*-ranks or even generically evincing *X*-ranks.

Example 1. Let $X \subset \mathbb{P}^r$, $r \geq 3$, be a rational normal curve. Take $q \in \mathbb{P}^r$ with $r_X(q) = r$, i.e., take $q \in \tau(X) \setminus X$, where $\tau(X)$ is the tangential variety of X ([48]). Take $S \subset X$ evincing the X-rank of q. Thus, |S| = r and S spans a hyperplane $\langle S \rangle$. Since dim $\tau(X) = 2$ and $\tau(X)$ spans \mathbb{P}^r , $\langle S \rangle \cap \tau(X)$ is a

Mathematics 2018, 6, 140 3 of 9

proper closed algebraic subset of $\langle S \rangle$. Thus, for a general $p \in \langle S \rangle$, we have $r_X(p) < |S|$ and hence S does not generically evinces X-ranks.

Lemma 1. If $S \subset X$ is a finite set evincing the rank of some $q \in \mathbb{P}^r$, then each $S' \subset S$, $S' \neq \emptyset$, evinces the X-rank of some $q' \in \mathbb{P}^r$.

Proof. We may assume $S' \neq S$. Write $S'' := S \setminus S'$. Since S evinces the rank of q, S is linearly independent, but $S \cup \{q\}$ is not linearly independent. Since $S' \neq \emptyset$ and $S'' \neq \emptyset$, there are unique $q' \in \langle S' \rangle$ and $q'' \in \langle S'' \rangle$ such that $q \in \langle \{q', q''\} \rangle$. Since S evinces the rank of q, S' evinces the rank of q'. \square

Lemma 2. Every non-empty subset of a set evincing generically (resp. totally) X-ranks evinces generically (resp. totally) the X-ranks.

Proof. Assume that S evinces generically the X-ranks and call U a non-empty open subset of $\langle S \rangle'$ such that $r_X(q) = |S|$ for all $q \in U$; if S evinces totally the X-ranks, take $U := \langle S \rangle'$. Fix $S' \subsetneq S$, $S' \neq 0$ and set $S'' := S \setminus S'$. Let E be the set of all $q \in \langle S \rangle'$ such that $\langle \{q\} \cup S'' \rangle \cap U \neq \emptyset$. If $q \in E$, then $r_X(q) = |S'|$ because $r_X(q') = |S|$ for each $q' \in \langle \{q\} \cup S'' \rangle \cap U$. Since $S' \cap S'' = \emptyset$ and $S' \cup S'' = S$ is linearly independent, E is a non-empty open subset of $\langle S \rangle'$ (a general element of $\langle S \rangle$ is contained in the linear span of a general element of $\langle S \rangle'$ and a general element of $\langle S' \rangle$. Now, assume $U = \langle S \rangle'$. Every element of $\langle S \rangle'$ is in the linear span of an element of $\langle S' \rangle'$ and an element of $\langle S'' \rangle'$. \square

Lemma 3. *Take a finite set* $S \subset X$, $S \neq \emptyset$.

- (a) If $|S| \le |(\rho(X) + 1)/2|$, then S totally evinces the X-ranks.
- (b) For each integer $t > \lfloor (\rho(X) + 1)/2 \rfloor$, there is $A \subset X$ such that |A| = t and A does not totally evince the X-ranks.

Proof. Take $q \in \langle S \rangle'$ and assume $r_X(q) < |S|$. Take $B \subset X$ evincing the X-rank of q. Since |B| < |S|, we have $B \neq S$. Since $q \in \langle S \rangle \cap \langle B \rangle$, but no proper subset of either B or S spans q, $S \cup B$ is linearly dependent. Since $|B| \leq |S| - 1$, we have $|B \cup S| \leq \rho(X)$, contradicting the definition of $\rho(X)$.

Now, we prove part (b). By Lemma 1, it is sufficient to do the case $t = \lfloor (\rho(X)+1)/2 \rfloor + 1$. By the definition of the integer $\rho(X)$, there is a subset $D \subset X$ with $|D| = \rho(X) + 1$ and D linearly dependent. Write $D = A \sqcup E$ with $|A| = \lfloor (\rho(X)+1)/2 \rfloor + 1$ and $|E| = \rho(X) + 1 - |A|$. Note that |A| > |E|. Since $|A| \le \rho(X)$ (remember that $\rho(X) \ge 2$), both A and E are linearly independent. Since $A \cup E$ is linearly dependent, there is $q \in \langle A \rangle \cap \langle E \rangle$. Since $|D| = \rho(X) + 1$, every proper subset of D is linearly independent. Hence, $\langle A' \rangle \cap \langle E \rangle = \emptyset$ for all $A' \subsetneq A$. Thus, $q \in \langle A \rangle'$. Since |E| < |A|, A does not evince the X-rank of q. \square

Remark 2. Take $X \subset \mathbb{P}^r$ such that $r_X(q) \leq 2$ for all $q \in \mathbb{P}^r$ (e.g., by [49], we may take most space curves). Any set $S \subset X$ with |S| = 2 evinces its X-ranks if and only if X contains no line.

3. The Veronese Embeddings of Projective Spaces

Let $\nu_{d,n}: \mathbb{P}^n \to \mathbb{P}^r$, $r:=-1+\binom{n+d}{n}$, denote the Veronese embedding of \mathbb{P}^n . Set $X_{n,d}:=\nu_{d,n}(\mathbb{P}^n)$.

Proposition 1. Let $X \subset \mathbb{P}^d$, $d \geq 2$, be the rational normal curve.

- (a) A non-empty finite set $S \subset X$ evinces some rank of \mathbb{P}^d if and only if $|S| \leq d$.
- (b) A non-empty finite set $A \subset X$ totally evinces the X-ranks if and only if $|A| \le |(d+2)/2|$.

Mathematics 2018, 6, 140 4 of 9

Proof. By a theorem of Sylvester's ([48]), every $q \in \mathbb{P}^d$ has X-rank at most d. Thus, the condition $|S| \leq d$ is a necessary condition for evincing some rank. By Lemma 1 to prove part (a), it is sufficient to prove it when |S| = d. Take any connected zero-dimensional scheme $Z \subset X$ with $\deg(Z) = 2$ and $S \cap Z = \emptyset$. Thus, $\deg(Z \cup S) = d + 2$. Since $X \cong \mathbb{P}^1$, $\deg(\mathcal{O}_X(1)) = d$ and X is projectively normal, we have $h^1(\mathcal{I}_{S \cup Z}(1)) = 1$ and $h^1(\mathcal{I}_W(1)) = 0$ for each $W' \subsetneq S \cup Z$. This is equivalent to say that the line $\langle Z \rangle$ meets $\langle S \rangle$ at a unique point, q and $q \neq Z_{\text{red}}$. By Sylvester's theorem, $r_X(q) = d$ ([48]). Since $q \in \langle S \rangle$ and |S| = d, S evinces the X-rank of q.

If $A \neq \emptyset$ and $|A| \leq \lfloor (d+2)/2 \rfloor$, then A totally evinces the X-ranks by part (a) of Lemma 3 and the fact that $\rho(X) = d+1$. Now, assume $d \geq |A| > \lfloor (d+2)/2 \rfloor$. Fix a set $E \subset X \setminus A$ with |E| = d+2-|A|. Adapt the proof of part (b) of Lemma 3. \square

Proposition 2. Fix a set $S \subset X_{n,d}$, $n \ge 2$, with |S| = d + 1. The following conditions are equivalent:

- 1. there is a line $L \subset \mathbb{P}^n$ such that $|S \cap L| > |(d+2)/2|$;
- 2. S evinces no $X_{n,d}$ -rank;
- 3. there is $q \in \langle S \rangle'$ such that S does not evince the $X_{n,d}$ -rank of q.

Proof. Obviously, (2) implies (3). If $X' \subset X$ is a subvariety and $q \in \langle X' \rangle$, we have $r_{X'}(q) \ge r_X(q)$. Thus, Sylvester's theorem ([48]) and Lemma 2 show that (1) implies (2).

Now, assume the existence of $q \in \langle S \rangle'$ such that S does not evince the X-rank of q, i.e., $r_X(q) \leq d$. Take $A \subset \mathbb{P}^n$ such that v(A) = S and take $B \subset \mathbb{P}^n$ such that $v_d(B)$ evinces the X-rank of q. Since $q \in \langle S \rangle'$, (Ref. [50] Lemma 1) gives $h^1(\mathbb{P}^n, \mathcal{I}_{A \cup B}(d)) > 0$. Since $|A \cup B| \leq 2d+1$, (Ref. [51] Lemma 34) gives the existence of a line $L \subset \mathbb{P}^n$ such that $|L \cap (A \cup B)| \geq d+2$. Let $H \subset \mathbb{P}^n$ be a general hyperplane containing L. Since H is general and $A \cup B$ is a finite set, we have $H \cap (A \cup B) = L \cap (A \cup B)$. Since $|L \cap (A \cup B)| \geq d+2$, we have $|A \cup B \setminus H \cap (A \cup B)| \leq d-1$ and hence $h^1(\mathbb{P}^n, \mathcal{I}_{A \cup B \setminus H \cap (A \cup B)}) = 0$. By ([52] Lemma 5.2), we have $A \setminus A \cap H = B \setminus B \cap H$. \square

See [53,54] for some results on the geometry of sets $S \subset X_{n,d}$ with controlled Hilbert function and that may be useful to extend Proposition 2.

Proof of Theorem 1: Set $k := \lfloor d/2 \rfloor$. Note that $h^1(\mathcal{I}_A(x)) = 0$ for all $x \ge k$ and in particular $h^1(\mathcal{I}_A(d-k)) = 0$. Fix $q \in \langle \nu_{d,n}(A) \rangle'$ and assume $r_{X_{n,d}}(q) < |A|$. Fix $B \subset \mathbb{P}^n$ such that $\nu_{d,n}(B)$ evinces the $X_{n,d}$ -rank of q. Since $h^1(\mathcal{I}_A(k)) = 0$ and |A| > |B|, we have $h^0(\mathcal{I}_B(k)) > h^0(\mathcal{I}_A(k))$. Thus, there is $M \in |\mathcal{O}_{\mathbb{P}^n}(k)|$ containing B, but with $A \nsubseteq M$, i.e., $A \setminus A \cap M \ne \emptyset$, while $B \setminus B \cap M = \emptyset$. Since $h^1(\mathcal{I}_A(d-k)) = 0$, we have $h^1(\mathcal{I}_{A\setminus A\cap M}(d-k)) = 0$. Since $h^1(\mathcal{I}_A(d)) = 0$, $\nu_{d,n}(A)$ is linearly independent. Since $\nu_{d,n}(B)$ evinces a rank, it is linearly independent. Grassmann's formula gives $\dim(\nu_{d,k}(A)) \cap \langle \nu_{d,b}(B) \rangle = |A \cap B| + h^1(\mathcal{I}_{A\cup B}(d)) - 1$. We have $A \cup B = ((A \cup B) \cap M) \cup (A \setminus A \cap M)$. Since $A \setminus A \cap B$ is a finite set, we have $h^2(\mathcal{I}_{A\setminus A\cap B}(d-k)) = h^2(\mathcal{O}_{\mathbb{P}^n}(d-k)) = 0$. Since $h^1(\mathcal{I}_{A\setminus A\cap M}(d-k)) = 0$, the residual exact sequence (also known as the Castelnuovo's sequence)

$$0 \to \mathcal{I}_{A \setminus A \cap B}(d-k) \to \mathcal{I}_{A \cup B}(d) \to \mathcal{I}_{M \cap (A \cup B),M}(d) \to 0$$

gives $h^1(\mathcal{I}_{A\cup B}(d))=h^1(M,\mathcal{I}_{M\cap(A\cup B)}(d))$. Since M is projectively normal, $h^1(M,\mathcal{I}_{M\cap(A\cup B)}(d))=h^1(\mathcal{I}_{A\cup B}(d))$. Thus, the Grassmann's formula gives $\dim\langle \nu_{d,n}(A\cap M)\rangle\cap\langle \nu_{d,n}(B\cap M)\rangle=|A\cap B\cap M|+h^1(\mathcal{I}_{A\cup B}(d))-1$. Since $B\subset M$, we get $\langle \nu_{d,n}(A\cap M)\rangle\cap\langle \nu_{d,n}(B\cap M)\rangle=\langle \nu_{d,k}(A)\rangle\cap\langle \nu_{d,b}(B)\rangle$. Since $A\cap M\supsetneq A$, we get $q\notin\langle \nu_{d,n}(A)\rangle'$, a contradiction. \square

4. Tensors, i.e., the Segre Varieties

Fix an integer $k \geq 2$ and positive integers n_1, \ldots, n_k . Set $Y := \prod_{i=1}^k \mathbb{P}^{n_i}$ (the Segre variety) and $N := -1 + \prod_{i=1}^k (n_i + 1)$. Let $\nu : Y \to \mathbb{P}^N$ denote the Segre embedding. Let $\pi_i : Y \to \mathbb{P}^{n_i}$ denote the projection on the i-th factor. For any $i \in \{1, \ldots, k\}$, set $Y[i] := \prod_{h \neq i} \mathbb{P}^{n_h}$ and call $\eta_i : Y \to Y[i]$ the

Mathematics 2018, 6, 140 5 of 9

projection which forgets the *i*-th component. Let $\nu[i]: Y[i] \to \mathbb{P}^{N_i}$, $N_i := -1 + \prod_{h \neq i} (n_h + 1)$ denote the Segre embedding of Y[i]. A key difficulty is that $\rho(\nu(Y)) = 2$ because $\nu(Y)$ contains lines.

Lemma 4. Let $S \subset Y$ be any finite set such that there is $i \in \{1, ... k\}$ with $\eta_{i|S}$ not injective. Then, $\nu(S)$ evinces no rank.

Proof. By Lemma 1, we reduce to the case |S| = 2, say $S = \{a, b\}$ with $a = (a_1, ..., a_k)$, $b = (b_1, ..., b_k)$ with $a_i = b_i$ if and only if i > 1. Since all lines of Y are contained in one of the factors of Y and all lines of v(Y) are images of lines of Y, we get $S \subset v(Y)$. Thus, each element of $\langle v(S) \rangle$ is contained in v(Y) and hence it has rank 1. Since |S| > 1, v(S) evinces no rank. \square

Lemma 5. Let $S \subset Y$ such that there are $S' \subseteq S$ and $i \in \{1, ..., k\}$ with |S'| = 3, $v_i(\eta_i(S'))$ linearly dependent and $\pi_i(S') \subset \mathbb{P}^{n_i}$ linearly dependent. Then, v(S) evinces no rank.

Proof. Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface. Q is projectively equivalent to the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ and each point of \mathbb{P}^3 has at most Q-rank 2 by [47] (Proposition 5.1). By Lemma 1, we may assume S' = S. By Lemma 4, we may assume that $\eta_{i|S}$ is injective. Thus, $|\eta_{i|S}| = 3$. Since $\nu_i(\eta_i(S))$ is not linearly independent and it has cardinality 3, it is contained in a line of $\nu_i(Y[i])$. Thus, $\eta_i(S)$ is contained in a line of one of the factors of Y[i]. By assumption, $\pi_i(S)$ is contained in a line of \mathbb{P}^{n_i} . Thus, S is contained in a subscheme of Y isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. Since each point of \mathbb{P}^3 has Q-rank ≤ 2 and |S| = 3, $\nu(S)$ evinces no rank. \square

Remark 3. Fix a finite set $A \subset Y$ such that $S := \nu(A)$ is linearly independent. S evinces no tensor rank if there is a multiprojective subspace $Y' \subset Y$ such that $A \subset Y'$ and |S| is larger than the maximum tensor rank of $\nu(Y')$.

Note that Lemmas 4 and 5 may be restated as a way to check for very low |S| if there is some Y' as in Lemma 3 exists.

Proposition 3. Take $S \subset v(Y)$ with |S| = 2. Let Y' be the minimal multiprojective subspace of Y containing S. The following conditions are equivalent:

- 1. S evinces no rank;
- 2. *S does not generically evince ranks;*
- 3. *S does not totally evince ranks;*
- 4. $Y' \cong \mathbb{P}^1$.

Proof. Since any two distinct points of \mathbb{P}^N are linearly independent (i.e., $\langle S \rangle$ is a line) and $\nu(Y)$ is the set of all points with $\nu(Y)$ -rank 1, S evinces no rank if and only if $\langle S \rangle \subset \nu(Y)$. Use the fact that the lines of $\nu(Y)$ are contained in one of the factors of $\nu(Y)$. Since $\nu(Y)$ is cut out by quadrics, if $\langle S \rangle \nsubseteq \nu(Y)$, then $|\langle S \rangle \cap \nu(Y)| \leq 2$. Since $S \subset \langle S \rangle \cap \nu(Y)$, we see that all points of $\langle S \rangle \setminus S$ have rank 2 \square

Proposition 4. Take $S \subset \nu(Y)$ with |S| = 3 and $\nu(S)$ linearly independent. Write $S = \nu(A)$ with $A \subset Y'$. Let Y' be the minimal multiprojective subspace of Y containing A. Write $Y' = \mathbb{P}^{m_1} \times \cdots \mathbb{P}^{m_s}$ with $s \geq 1$ and $m_1 \geq \cdots \geq m_s > 0$. We have $m_1 \leq 2$.

If $\eta_{i|A}$ is injective for all i and either $m_2 = 2$ or $s \ge 4$ or $m_1 = 2$ and s = 3, then S totally evinces its ranks. In all other cases for a general $E \in Y'$ with |E| = 3, v(E) does not generically evince its ranks.

Proof. If $\eta_{i|A}$ is not injective for some i, then S evinces no rank by Lemma 4. Thus, we may assume that each $\eta_{i|A}$ is injective for all i. Each factor of Y' is the linear span of $\pi_i(A)$ in \mathbb{P}^{n_i} . Hence, $m_1 \leq 2$.

Mathematics 2018, 6, 140 6 of 9

Omitting all factors which are points, we get the form of Y' we use. If $Y' = \mathbb{P}^1$ (resp. \mathbb{P}^2 , resp. $\mathbb{P}^1 \times \mathbb{P}^1$), then each point of $\langle S \rangle$ has rank 1 (resp. 1, resp. \leq 2). Thus, in these cases, S evinces no rank. If either $Y' = \mathbb{P}^2 \times \mathbb{P}^1$ or $Y' = (\mathbb{P}^1)^3$, then $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^1) = \mathbb{P}^5$ and $\sigma_2((\mathbb{P}^1)^3) = \mathbb{P}^7$ ([23,26]). Thus, the last assertion of the proposition is completed.

- (a) Assume $s \geq 2$ and $m_2 = 2$. Taking a projection onto the first two factors, we reduce to the case s = 2 (this reduction step is used only to simplify the notation). Take a $H \in |\mathcal{O}_{Y'}(1,0)|$ containing B (this is possible because $h^0(\mathcal{O}_{\mathbb{P}^2}(1)) = 3 > |B|$). Since Y' is the minimal multiprojective subspace of Y containing A, we have $A \setminus A \cap H \neq \emptyset$. Since $B \setminus B \cap H = \emptyset$, (Ref. [52] Lemma 5.1) gives $h^1(\mathcal{I}_{A \setminus A \cap H}(0,1)) > 0$. Thus, either there is $A' \subset A$ with |A'| = 2 and $\eta_{1|A'}$ not injective (we excluded this possibility) or $|A \setminus A \cap H| = 3$ (i.e., $A \cap H = \emptyset$) and $\eta_1(A) \subset \mathbb{P}^2$ is contained in a line R. Set $M := \mathbb{P}^2 \times R$. We get $A \subset M$ and hence A is a contained in a proper multiprojective subspace, contradicting the definition of Y'.
- (b) Assume $s \ge 3$ and $m_1 = 2$. By part (a), we may assume $m_2 = 1$. Taking a projection, we reduce to the case s = 3, i.e., $Y' = \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1$. Take H as in step (a). As in step (a), we get $A \cap H = \emptyset$ and $\eta_1(A)$ contained in a line R of the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$, contradicting the definition of Y'.
- (c) Assume $s \geq 4$. By step (b), we may assume $m_1 = 1$. Taking a projection onto the first four factors of Y', we reduce to the case $Y' = (\mathbb{P}^1)^4$. Fix any $H \in |\mathcal{O}_{Y'}(1,1,0,0)|$ containing B. Assume for the moment $A \nsubseteq H$. By ([52] Lemma 5.1), we have $h^1(\mathcal{I}_{A\setminus A\cap H}(0,0,1,1)) > 0$, i.e., either there are $a = (a_1,a_2,a_3,a_4) \in A$, $b = (b_1,b_2,b_3,b_4) \in A$ with $a \neq b$ and $(a_3,a_4) = (b_3,b_4)$ of $A\cap H = \emptyset$ and the projection of A onto the last 2 factors of Y' is contained in a line. The last possibility is excluded by the minimality of Y'. Thus, $a,b \in A$ exists. Set $A := \{a,b,c\}$ and write $c = (c_1,c_2,c_3,c_4)$. Permuting the factors of Y', we see that, for each $E \subset \{1,2,3,4\}$, there is $A_E \subset A$ with $|A_E| = 2$ and $\pi_E(A_E)$ is a singleton, where $\pi_E : Y' \to \mathbb{P}^1 \times \mathbb{P}^1$ denote the projection onto the factors of Y' corresponding to E. Since the cardinality of the set S of all subset of $\{1,2,3,4\}$ with cardinality 2 is larger than the cardinality of the set of all subsets of A with cardinality 3, there are $E, F \in S$ such that $E \neq F$ and $A_E = A_F$. If $E \cap F \neq \emptyset$, say $E \cap F = \{i\}$, then $\eta_{i|A}$ is not injective, contradicting our assumption. If $E \cap F = \emptyset$, we have $E \cup F = \{1,2,3,4\}$. Since $A_E = A_F$, we get $|A_E| = 1$, a contradiction. \square

Remark 4. Take a finite $S \subset \nu(Y)$ and fix $q \in \langle \nu(S) \rangle'$. Let $A \subset Y$ be the subset with $\nu(A) = S$. It is easier to prove that S evinces the rank of q if we know that the minimal multiprojective subspace of Y containing A is the minimal multiprojective subspace Y'' of Y with $q \in \langle \nu(Y'') \rangle$. Note that this is always true if Y'' = Y, i.e., if the tensor q is concise.

5. Questions on the Case of Veronese Varieties

Let $r_{\max}(n,d)$ denote the maximum of all $X_{n,d}$ -ranks (in [55,56] it is denoted with $r_{\max}(n+1,d)$). The integer $r_{\max}(n,d)$ depends on two variables, n and d. In this section, we ask some question on the asymptotic behavior of $r_{\max}(n,d)$ when we fix one variable, while the other one goes to $+\infty$.

Let $r_{\rm gen}(n,d)$ denote the $X_{n,d}$ -rank of a general $q \in \mathbb{P}^r$. These integers do not depend on the choice of the algebraically closed base field \mathbb{K} with characteristic 0. The diagonalization of quadratic forms gives $r_{\rm max}(n,2) = r_{\rm gen}(n,2) = n+1$. The integers $r_{\rm gen}(n,d)$, d>2, are known by an important theorem of Alexander and Hirschowitz ([8–13]); with four exceptional cases, we have $r_{\rm gen}(n,d) = \lceil \binom{n+d}{n}/(n+1) \rceil$. An important theorem of Blekherman and Teitler gives $r_{\rm max}(n,d) \leq 2r_{\rm gen}(n,d)$ (and even $r_{\rm max}(n,d) \leq 2r_{\rm gen}(n,d)-1$ with a few obvious exceptions) ([57,58]). In particular, for a fixed n, we have

$$\frac{1}{(n+1)!} \leq \liminf_{d \to +\infty} r_{\max}(n,d)/d^n \leq \limsup_{d \to +\infty} r_{\max}(n,d)/d^n \leq \frac{2}{(n+1)!}.$$

Mathematics 2018, 6, 140 7 of 9

It is reasonable to ask if $\liminf_{d\to +\infty} r_{\max}(n,d)/d^n$ exists and its value. Of course, it is tempting also to ask a more precise information about $r_{\max}(n,d)$ for $d\gg 0$. In the case n=2, De Paris proved in [55,56] that $r_{\max}(2,d)\geq \lfloor (d^2+2d+5)/4\rfloor$ ([56] Theorem 3), which equality holds if d is even ([56] (Proposition 2.4)) and suggested that equality holds for all d. Since $r_{\max}(2,d+1)\geq r_{\max}(2,d)$ even for odd d, the integer $r_{\max}(2,d)$ grows like $d^2/4$. Thus, there is an interesting interval between the general upper bound of [57] (which, in this case, has order $d^2/3$) and $r_{\max}(2,d)$. There are very interesting upper bounds for the dimensions of the set of all points with rank bigger than the generic one ([59]).

What are

$$\limsup_{n \to +\infty} \frac{(n+1)! r_{\max}(n,d)}{d^n} \text{ and } \liminf_{n \to +\infty} \frac{(n+1)! r_{\max}(n,d)}{d^n} ?$$

For all $d \ge 3$, study $r_{\max}(n,d) - r_{\max}(n,d-1)$ and compare for $d \gg 0$ $r_{\max}(n,d) - r_{\max}(n,d-1)$ with $r_{\max}(n-1,d)$ and $r_{\text{gen}}(n-1,d)$. Of course, this is almost exactly known when n=2 by Sylvester's theorem ([48]) and De Paris ([55,56]), but $r_{\max}(2,d) - r_{\max}(2,d-1)$ for $d \gg 0$ is both $\sim r_{\text{gen}}(1,d)$ and $\sim r_{\max}(1,d)/2$ and so we do not have any suggestion for the case n>2.

Funding: The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Landsberg, J.M. *Tensors: Geometry and Applications Graduate Studies in Mathematics*; American Mathematical Society: Kingston, ON, Canada; New York, NY, USA, 2012; Volume 128.
- 2. Iarrobino, A.; Kanev, V. Lecture Notes in Mathematics. In *Power Sums, Gorenstein Algebras, and Determinantal Loci;* Springer-Verlag: Berlin, Germany; New York, NY, USA, 1999; Volume 1721.
- 3. Comon, P. Tensor decompositions: state of the art and applications, Mathematics. In *Signal Processing*, *V* (*Coventry*, 2000); McWhirter, J.G., Proudler, I.K., Eds.; Clarendon Press: Oxford, UK, 2002; Volume 71, pp. 1–24.
- 4. Kolda, T.G.; Bader, B.W. Tensor decomposition and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
- 5. Lickteig, T. Typical tensorial rank. *Linear Algebra Appl.* **1985**, 69, 95–120. [CrossRef]
- 6. Lim, L.H.; Comon, P. Multiarray signal processing: Tensor decomposition meets compressed sensing. *C. R. Mecanique* **2010**, *338*, 311–320. [CrossRef]
- 7. Lim, L.H.; de Silva, V. Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM J. Matrix Anal. Appl.* **2008**, *30*, 1084–1127.
- 8. Alexander, J. Singularités imposables en position générale aux hypersurfaces de \mathbb{P}^n . *Composi. Math.* **1988**, 68, 305–354.
- 9. Alexander, J.; Hirschowitz, A. Un lemme d'Horace différentiel: application aux singularité hyperquartiques de \mathbb{P}^5 . *J. Algebr. Geom.* **1992**, *1*, 411–426.
- 10. Alexander, J.; Hirschowitz, A. La méthode d'Horace éclaté: application à l'interpolation en degré quatre. *Invent. Math.* **1992**, *107*, 585–602. [CrossRef]
- 11. Alexander, J.; Hirschowitz, A. Polynomial interpolation in several variables. *J. Algebr. Geom.* **1995**, *4*, 201–222.
- 12. Brambilla, M.C.; Ottaviani, G. On the Alexander–Hirschowitz Theorem. *J. Pure Appl. Algebra* **2008**, 212, 1229–1251. [CrossRef]
- 13. Chandler, K. A brief proof of a maximal rank theorem for generic double points in projective space. *Trans. Am. Math. Soc.* **2000**, *353*, 1907–1920. [CrossRef]
- 14. Postinghel, E. A new proof of the Alexander–Hirschowitz interpolation theorem. *Ann. Mat. Pura Appl.* **2012**, *191*, 77–94. [CrossRef]
- 15. Abo, H.; Ottaviani, G.; Peterson, C. Induction for secant varieties of Segre varieties. *Trans. Am. Math. Soc.* **2009**, *361*, 67–792. [CrossRef]

Mathematics **2018**, 6, 140 8 of 9

16. Aladpoosh, T.; Haghighi, H. On the dimension of higher secant varieties of Segre varieties $\mathbb{P}^n \times \cdots \times \mathbb{P}^n$. *J. Pure Appl. Algebra* **2011**, *215*, 1040–1052. [CrossRef]

- 17. Catalisano, M.V.; Geramita, A.V.; Gimigliano, A. Secant varieties of $\mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (*n*-times) are NOT defective for $n \geq 5$. *J. Algebr. Geom.* **2011**, *20*, 295–327. [CrossRef]
- 18. Abo, H. On non-defectivity of certain Segre-Veronese varieties. *J. Symb. Comput.* **2010**, 45, 1254–1269. [CrossRef]
- 19. Abo, H.; Brambilla, M.C. Secant varieties of Segre-Veronese varieties $\mathbb{P}^m \times \mathbb{P}^n$ embedded by $\mathcal{O}(1,2)$. *Exp. Math.* **2009**, *18*, 369–384. [CrossRef]
- 20. Ab, H.; Brambilla, M.C. New examples of defective secant varieties of Segre-Veronese varieties. *Collect. Math.* **2012**, *63*, 287–297. [CrossRef]
- 21. Abo, H.; Brambilla, M.C. On the dimensions of secant varieties of Segre-Veronese varieties. *Ann. Mat. Pura Appl.* **2013**, *192*, 61–92. [CrossRef]
- 22. Baur, K.; Draisma, J.; de Graaf, W. Secant dimensions of minimal orbits: computations and conjectures. *Exp. Math.* **2007**, *16*, 239–250. [CrossRef]
- 23. Baur, K.; Draisma, J. Secant dimensions of low-dimensional homogeneous varieties. *Adv. Geom.* **2010**, *10*, 1–29. [CrossRef]
- 24. Catalisano, M.V.; Geramita, A.V.; Gimigliano, A. On the rank of tensors, via secant varieties and fat points. In *Zero-Dimensional Schemes and Applications (Naples, 2000)*; Landsberg, J.M., Ed.; American Mathematical Society: Kingston, ON, Canada; New York, NY, USA, 2002; Volume 123, pp. 133–147.
- 25. Catalisano, M.V.; Geramita, A.V.; Gimigliano, A. Ranks of tensors, secant varieties of Segre varieties and fat points. *Linear Algebra Appl.* **2002**, *355*, 263–285. [CrossRef]
- 26. Catalisano, M.V.; Geramita, A.V.; Gimigliano, A. Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and their secant varieties. *Collect. Math.* **2007**, *58*, 1–24.
- 27. Laface, A.; Postinghel, E. Secant varieties of Segre-Veronese embeddings of $(\mathbb{P}^1)^r$. *Math. Ann.* **2013**, *356*, 1455–1470. [CrossRef]
- 28. Kruskal, J.B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. *Linear Algebra Appl.* **1977**, *18*, 95–138. [CrossRef]
- 29. Bocci, C.; Chiantini, L.; Ottaviani, G. Refined methods for the identifiability of tensors. *Ann. Mat. Pura Appl.* **2014**, *193*, 1691–1702. [CrossRef]
- 30. Chiantini, L.; Ottaviani, G. On generic identifiability of 3-tensors of small rank. *SIAM J. Matrix Anal. Appl.* **2012**, *33*, 1018–1037. [CrossRef]
- 31. Chiantini, L.; Ottaviani, G.; Vanniuwenhoven, N. An algorithm for generic and low-rank specific identifiability of complex tensors. *SIAM J. Matrix Anal. Appl.* **2014**, *35*, 1265–1287. [CrossRef]
- 32. Chiantini, L.; Ottaviani, G.; Vanniuwenhoven, N. On identifiability of symmetric tensors of subgeneric rank. *Trans. Amer. Math. Soc.* **2017**, *369*, 4021–4042. [CrossRef]
- 33. Chiantini, L.; Ottaviani, G.; Vanniuwenhoven, N. Effective criteria for specific identifiability of tensors and forms. *SIAM J. Matrix Anal. Appl.* **2017**, *38*, 656–681. [CrossRef]
- 34. Domanov, I.; De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors—part I: Basic results and unique- ness of one factor matrix. *SIAM J. Matrix Anal. Appl.* **2013**, *34*, 855–875. [CrossRef]
- 35. Domanov, I.; De Lathauwer, L. On the uniqueness of the canonical polyadic decomposition of third-order tensors—Part II: Uniqueness of the overall decomposition. *SIAM J. Matrix Anal. Appl.* **2013**, *34*, 876–903. [CrossRef]
- 36. Domanov, I.; De Lathauwer, L. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL. *SIAM J. Matrix Anal. Appl.* **2015**, *36*, 1567–1589. [CrossRef]
- 37. Massarenti, A.; Mella, M.; Staglian'o, G. Effective identifiability criteria for tensors and polynomials. *J. Symbolic Comput.* **2018**, *87*, 227–237. [CrossRef]
- 38. Sidiropoulos, N.D.; Bro, R. On the uniqueness of multilinear decomposition of N-way arrays. *J. Chemom.* **2000**, *14*, 229–239. [CrossRef]
- 39. Abo, H.; Ottaviani, G.; Peterson, C. Non-defectivity of Grassmannians of planes. *J. Algebr. Geom.* **2012**, 21, 1–20. [CrossRef]

Mathematics 2018, 6, 140 9 of 9

 Araujo, C.; Massarenti, A.; Rischter, R. On nonsecant defectivity of Segre-Veronese varieties. arXiv 2016, arXiv:1611.01674

- 41. Boralevi, A. A note on secants of Grassmannians. Rend. Istit. Mat. Univ. Trieste 2013, 45, 67–72.
- 42. Buczyńska, W.; Buczyński, J. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. *J. Algebr. Geom.* **2014**, *23*, 63–90. [CrossRef]
- 43. Buczyński, J.; Ginensky, A.; Landsberg, J.M. Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture. *J. Lond. Math. Soc.* **2013**, *88*, 1–24. [CrossRef]
- 44. Buczyński, J.; Landsberg, J.M. Ranks of tensors and a generalization of secant varieties. *Linear Algebra Appl.* **2013**, 438, 668–689. [CrossRef]
- 45. Chiantini, L.; Ciliberto, C. On the dimension of secant varieties. *J. Europ. Math. Soc.* **2006**, *73*, 436–454. [CrossRef]
- 46. Draisma, J. A tropical approach to secant dimension. J. Pure Appl. Algebra 2008, 212, 349-363. [CrossRef]
- 47. Landsberg, J.M.; Teitler, Z. On the ranks and border ranks of symmetric tensors. *Found. Comput. Math.* **2010**, *10*, 339–366. [CrossRef]
- 48. Comas, G.; Seiguer, M. On the rank of a binary form. Found. Comp. Math. 2011, 11, 65–78. [CrossRef]
- 49. Piene, R. Cuspidal projections of space curves. Math. Ann. 1981, 256, 95–119. [CrossRef]
- 50. Ballico, E.; Bernardi, A. Decomposition of homogeneous polynomials with low rank. *Math. Z.* **2012**, 271, 1141–1149. [CrossRef]
- 51. Bernardi, A.; Gimigliano, A.; Idà, M. Computing symmetric rank for symmetric tensors. *J. Symb. Comput.* **2011**, *46*, 34–53. [CrossRef]
- 52. Ballico, E.; Bernardi, A. Stratification of the fourth secant variety of Veronese variety via the symmetric rank. *Adv. Pure Appl. Math.* **2013**, *4*, 215–250. [CrossRef]
- 53. Ballico, E. Finite subsets of projective spaces with bad postulation in a fixed degree. *Beitrage zur Algebra und Geometrie* **2013**, *54*, 81–103 [CrossRef]
- 54. Ballico, E. Finite defective subsets of projective spaces. Riv. Mat. Univ. Parma 2013, 4, 113-122.
- 55. De Paris, A. The asymptotic leading term for maximum rank for ternary forms of a given degree. *Linear Algebra Appl.* **2016**, *500*, 15–29. [CrossRef]
- 56. De Paris, A. High-rank ternary forms of even degree. Arch. Math. 2017, 109, 505-510. [CrossRef]
- 57. Blekherman, G.; Teitler, Z. On maximum, typical and generic ranks. *Math. Ann.* **2015**, *362*, 1021–1031. [CrossRef]
- 58. Blekherman, G.; Teitler, Z. Some examples of forms of high rank. Collect. Math. 2016, 67, 431-441.
- 59. Buczyński, J.; Han, K.; Mella, M.; Teitler, Z. On the locus of points of high rank. *Eur. J. Math.* **2018**, *4*, 113–136. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).