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Abstract: The Baker–Campbell–Hausdorff (BCH) expansion is a general purpose tool of use in many
branches of mathematics and theoretical physics. Only in some special cases can the expansion be
evaluated in closed form. In an earlier article we demonstrated that whenever [X, Y] = uX + vY + cI,
BCH expansion reduces to the tractable closed-form expression

Z(X, Y) = ln(eXeY) = X + Y + f (u, v) [X, Y],

where f (u, v) = f (v, u) is explicitly given by the the function

f (u, v) =
(u− v)eu+v − (ueu − vev)

uv(eu − ev)
=

(u− v)− (ue−v − ve−u)

uv(e−v − e−u)
.

This result is much more general than those usually presented for either the Heisenberg commutator,
[P, Q] = −ih̄I, or the creation-destruction commutator, [a, a†] = I. In the current article, we provide
an explicit and pedagogical exposition and further generalize and extend this result, primarily by
relaxing the input assumptions. Under suitable conditions, to be discussed more fully in the text,
and taking LAB = [A, B] as usual, we obtain the explicit result

ln(eXeY) = X + Y +
I

e−LX − e+LY

(
I − e−LX

LX
+

I − e+LY

LY

)
[X, Y].

We then indicate some potential applications.

Keywords: Lie algebras; matrix exponentials; matrix logarithms; Baker–Campbell–Hausdorff (BCH)
formula; commutators; creation-destruction algebra; Heisenberg commutator

MSC: 16W25 (derivations, actions of Lie algebras); 16S20 (centralizing and normalizing extensions);
15A16 (matrix exponential and similar functions of matrices)

1. Introduction

The Baker–Campbell–Hausdorff (BCH) expansion for Z(X, Y) = ln(eXeY) when X and Y are
non-commutative quantities is a general multi-purpose result of considerable interest in not only
both pure and applied mathematics [1–14], but also within the fields of theoretical physics, physical
chemistry, the theory of numerical integration, and other disciplines [11–20]. Applications include
topics as apparently remote and unconnected as the embedding problem for stochastic matrices.
For our current purposes, the general BCH expansion can best be written as [11]

ln(eXeY) = X + Y +
∫ 1

0
dt

∞

∑
n=1

(I − eLX etLY )n−1

n(n + 1)
(eLX − I)

LX
[X, Y]. (1)
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Here, as usual, LAB = [A, B]. If one makes no further simplifying assumptions, then this
expression expands to an infinite series of nested commutators with the first few well-known terms
being [1,2]

ln(eXeY) = X + Y +
1
2
[X, Y] +

1
12

LX−Y[X, Y]− 1
24

LY LX [X, Y] + . . . (2)

Higher-order terms in the expansion quickly become very unwieldy (see, for instance, references [1–14].)
In contrast, by making specific simplifying assumptions about the commutator [X, Y], one can

sometimes obtain a terminating series, or develop other ways of simplifying the expansion. The most
common terminating series results are as follows:

• If [X, Y] = 0, then: ln(eXeY) = X + Y.
• If [X, Y] = cI, then: ln(eXeY) = X + Y + 1

2 cI.
• If [X, Y] = vY, then

ln(eXeY) = X +
vY

1− e−v = X + Y +
vev − ev + 1

v(ev − 1)
[X, Y]. (3)

Observe that [X, Y] = vY implies that X acts as a “shift operator”, a “ladder operator”, for Y,
thus allowing one to invoke the techniques of Sack [6]. This particular result can also be extracted
from Equation (7.9) of Wilcox [7]; but only after some nontrivial manipulations.
Considerably more subtle is our recent result [11]:

• If [X, Y] = uX + vY + cI, then

ln(eXeY) = X + Y + f (u, v) [X, Y], (4)

where, explicitly, we have

f (u, v) = f (u, v) =
(u− v)eu+v − (ueu − vev)

uv(eu − ev)
. (5)

It is often more useful to write this as

f (u, v) =
(u− v)− (ue−v − ve−u)

uv(e−v − e−u)
. (6)

Sometimes, the structure is more clearly brought out by writing this in the form

f (u, v) =
1

e−u − e−v

(
1− e−u

u
− 1− e−v

v

)
. (7)

In a series of recent articles, Matone [21–23] generalized this result in various ways. Matone and
Pasti also applied somewhat related ideas to the “covariantization” of differential operators [24],
while Bravetti et al. developed a variant for the contact Heisenberg algebra [25]. In the current article,
we also develop several generalizations but work towards a rather different goal by instead seeking to
weaken the conditions under which this simplified form of the BCH formula applies.

2. Strategy

In reference [11] our strategy was to use the commutator

[X, Y] = uX + vY + cI (8)

to first deduce
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LX [X, Y] = v[X, Y]; LY[X, Y] = −u[X, Y]. (9)

Once Equation (9) is established, then Equation (1) collapses to

ln(eXeY)→ X + Y +
∫ 1

0
dt

∞

∑
n=1

(1− eve−tu)n−1

n(n + 1)
(ev − 1)

v
[X, Y]. (10)

This implies

f (u, v) =
(ev − 1)

v

∫ 1

0
dt

∞

∑
n=1

(1− eve−tu)n−1

n(n + 1)
. (11)

Performing the sum and evaluating the integral is straightforward, (if a little tedious), with the
result given in Equations (5)–(7) (see reference [11] for details). However to obtain this final result,
the key step involves the two subsidiary commutators in Equation (9), not the original commutator in
Equation (8). This suggests it might be more useful to focus attention on Equation (9), since that is a
less restrictive result that does not require Equation (8). The question is whether there are situations
where we can get Equation (9) to hold with Equation (8) being violated.

3. Structure Constants

For pedagogical purposes, it is advantageous to consider finite-dimensional Lie algebras with
explicit conditions imposed on the structure constants; this pedagogical choice is often particularly
useful when communicating with the physics and engineering communities. This is not really a
restriction on the mathematics, since once one has found a result, it is easy to extend the discussion
to infinite dimensionality. Let us work in some Lie algebra with basis Ta, and define the structure
constants fab

c by taking [Ta, Tb] = fab
c Tc. Then, setting

X = xa Ta and Y = ya Ta (12)

implies
[X, Y] = (xa yb fab

c) Tc. (13)

We now systematically build up to deriving our most general result in several incremental stages.
This is, again, a pedagogical choice aimed at usefully communicating with as wide of a scientific
community as possible. We see that the art lies in choosing structure constants appropriately.

3.1. Case 1: Reproducing the Special Commutator

Let us first choose
fab

c = m[a δb]
c, (14)

then
[X, Y] =

1
2
{(xa ma)Y− (ya ma)X} . (15)

If we now define
X = X̂ + αI; Y = Ŷ + βI, (16)

then

[X̂, Ŷ] =
1
2
{
(xa ma)Ŷ− (ya ma)X̂

}
+

1
2
{(xa ma)β− (ya ma)α} I. (17)

This is our special commutator of Equation (8) under the identifications

u = − (ya ma)

2
; v =

(xa ma)

2
with c =

1
2
{(xa ma)β− (ya ma)α} . (18)
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Thus, this particular set of structure constants has not actually generalized our previous result.
Instead it has provided an explicit and quite natural way in which the specific commutator (8) will
automatically arise.

3.2. Case 2: Commutator Algebras of Dimension Unity

Let us now choose
fab

c = ωab nc. (19)

Note that the special commutator of Equation (8) can certainly be put into this form. Specifically,
by taking Ta = {X, Y, I} we have

ωab =

 0 +1 0
−1 0 0

0 0 0

 and nc = (u, v, c). (20)

However, we shall now work with completely arbitrary nc and ωab, thereby generalizing our
previous result. Let us define

u = −ya ωab nb; v = xa ωab nb (21)

and observe
[X, Y] = (ωab xa yb) (nc Tc). (22)

Now, we compute

LX [X, Y] = (ωab xa yb) LX(nc Tc)

= (ωab xa yb) (ωab xa nb) (nc Tc)

= (ωab xa nb) (ωab xa yb) (nc Tc)

= v[X, Y]. (23)

Similarly,

LY[X, Y] = (ωab xa yb) LY(nc Tc)

= (ωab xa yb) (ωab ya nb) (nc Tc)

= (ωab ya nb) (ωab xa yb) (nc Tc)

= −u[X, Y]. (24)

This establishes Equation (9) without requiring Equation (8). More formally, this condition can be
phrased as the statement that the commutator [X, Y] is a simultaneous eigenvector of the two adjoint
operators LX and LY. Consequently,

ln(eXeY) = X + Y + f (u, v)[X, Y] (25)

for the same function ( f (u, v)) as previously encountered. More explicitly, we now have

ln(eXeY) = X + Y + f
(

xa ωab nb,−ya ωab nb
) (

ωab xa yb
)

(nc Tc) . (26)

We can also write this as

ln(eXeY) =
{

xc + yc + f
(

xa ωab nb,−ya ωab nb
) (

ωab xa yb
)

nc
}

Tc. (27)
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That is, at least in this particular class of Lie algebras, the BCH formula can be viewed
as a generalized notion of “addition”. By defining the generalized “addition” operator
⊕ via (x⊕ y)c Tc = ln(eXeY), we explicitly have

(x⊕ y)c = xc + yc + f
(

xaωabnb,−ya ωab nb
) (

ωab xa yb
)

nc. (28)

Now, fab
c = ωab nc can be rephrased as the statement that the commutator sub-algebra [g, g],

(the sub-algebra formed from the commutators of the ambient Lie algebra g), is of dimension unity.
We typically take g to be some arbitrary but fixed ambient Lie algebra, with both X ∈ g and

Y ∈ g. Alternatively, we might initially take g to be the minimal free Lie algebra generated by X
and Y, but then might add some constraints (e.g., nilpotency, solvability, etc.) to modify that free
algebra. Note that the object [g, g] is also called the first derived sub-algebra, or the first lower central
sub-algebra, (i.e., the first descending central sub-algebra), though these two series of sub-algebras
will differ once one goes to higher levels.

We observe the following:

• If the commutator sub-algebra [g, g] is of dimension zero, then the Lie algebra is Abelian, and the
BCH result is trivial: ln(eXeY) = X + Y.

• If the commutator sub-algebra [g, g] is of dimension one, then [Ta, Tb] ∝ N for some fixed N.
Now, we write N = nc Tc, then [Ta, Tb] ∝ (nc Tc), thereby implying [Ta, Tb] = ωab nc Tc.

• We can naturally split this into two sub-cases:

ωab nb = 0 and ωab nb 6= 0. (29)

• If ωab nb = 0, then both

u = ya ωab nb = 0; and v = −xa ωab nb = 0. (30)

Therefore, LX [X, Y] = 0 = LY[X, Y], and so

[g, [g, g]] = 0. (31)

That is, the second lower central sub-algebra is trivial, and, in particular, the original Lie algebra
is nilpotent. (For example, the Heisenberg algebra [P, Q] = −ih̄I and the creation-destruction
algebra [a, a†] = I are very commonly occurring Lie algebras of this type.)

• If ωab nb 6= 0 then u and v are nontrivial, and f (u, v) is also nontrivial. The Lie algebra is now not
nilpotent but satisfies the more subtle condition that

[g, [g, g]] = [g, g]. (32)

That is, the second lower central sub-algebra, (and so all the higher-order lower central
sub-algebras), equals the first lower central sub-algebra. This can also be phrased as the demand
that the commutator sub-algebra be an ideal of the underlying Lie algebra.

In short, the explicit BCH Formula (26) holds whenever the commutator sub-algebra [g, g] is of
dimension unity.

3.3. Case 3: Nilpotent Lie Algebras

Now we consider the higher terms in the lower central series, defined iteratively by

g0 = g; g1 = [g, g]; gn = [g, gn−1]. (33)
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If, for some n, we have gn = 0, then the Lie algebra g is said to be “nilpotent”. In this case,
all nth-order and higher commutators vanish and the BCH series truncates, but this result has
previously been (implicitly) used when developing the Reinsch algorithm [9], and our own simplified
variant thereof [14]. That algorithm works by utilizing a faithful representation for the first n nested
commutators of a free Lie algebra in terms of strictly upper triangular (n + 1)× (n + 1) matrices with
entires only on the first super-diagonal. That is, working with a level-n nilpotent Lie algebra “merely”
reproduces the first n terms in the BCH formula, and gives zeros thereafter. So, while certainly being
useful, this is not really new [9,14]. In terms of the structure constants, nilpotency is achieved if at
some stage

fab
i fic

j f jd
k fke

m · · · = 0. (34)

3.4. Case 4: Abelian Commutator Algebras

Can the discussion above be generalized even further? Note that, in all generality,

[[Ta, Tb], [Tc, Td]] = fab
m fcd

n fmn
e Te. (35)

So, whenever fab
c = ωab nc, we have

[[Ta, Tb], [Tc, Td]] = 0, (36)

or more abstractly,
[[g, g], [g, g]] = 0. (37)

That is, the commutator sub-algebra is Abelian. This is a specific special case of a “solvable” Lie
algebra. Can anything be done for more general solvable Lie algebras?

Let us now consider the situation where the the commutator sub-algebra is Abelian, but we do
not demand that the commutator algebra is one dimensional. The Jacobi identity leads to

LX LYW = [X, [Y, W]] (38)

= −[Y, [W, X]]− [W, [X, Y]] (39)

= [Y, [X, W]] + [[X, Y], W] (40)

= LY LXW + L[X,Y]W. (41)

That is,
[LX , LY]W = L[X,Y]W. (42)

However, if W is itself a commutator W = [U, V], and if the commutator algebra is Abelain,
[[g, g], [g, g]] = 0, then we have

[LX , LY][U, V] = 0. (43)

That is, in this situation, and when acting on commutators, LX and LY commute. However,
this is exactly the situation in theBCH expansion of Equation (1)—LX and LY are always acting on
commutators. So, as long as the commutator sub-algebra is itself Abelian we can rearrange Equation (1)
to write

ln(eXeY) = X + Y +
(eLX − I)

LX

∫ 1

0
dt

∞

∑
n=1

(I − eLX etLY )n−1

n(n + 1)
[X, Y] (44)

and treat the LX and LY as though they commute with each other. However, then, summing and
integrating as previously, we have

ln(eXeY) = X + Y + f (LX ,−LY)[X, Y] (45)
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for exactly the same function ( f (u, v)) as before, but now subject only to the condition ([[g, g], [g, g]] = 0)
that the commutator algebra be Abelian. Note that this last formula is still an operator equation,
which still contains an infinite set of nested commutators—albeit in a relatively explicit manner.
Indeed, under the stated conditions from Equation (7), we see

ln(eXeY) = X + Y +
I

e−LX − e+LY

(
I − e−LX

LX
+

I − e+LY

LY

)
[X, Y]. (46)

With some hindsight, this operator expression can be seen to be closely related to the meta-Abelian
analysis of Kurlin [26]. Note that in terms of the structure constants, the condition [[g, g], [g, g]] = 0 is
equivalent to the explicit constraint,

fab
m fcd

n fmn
e = 0. (47)

Furthermore, we note the series expansion

f (u, v) =
1
2
+

u + v
12

+
uv
24
− (u + v)(u2 − 5uv + v2)

720
− uv(u2 − 4uv + v2)

1440
+ . . . (48)

This verifies (as it should) that the operator f (LX ,−LY) contains only non-negative powers of LX
and LY.

3.5. Case 5: [X, Y] is in the Centre of the Commutator Algebra

Let us now relax the conditions for the validity of this result even further. The key step is to
realize that

[LX , LY][U, V] = L[X,Y][U, V], (49)

so that LX (effectively) commutes with LY as long as [[X, Y], [U, V]] = 0. As previously noted,
this certainly holds as long as the commutator algebra is Abelian, [[g, g], [g, g]] = 0, but it is quite
sufficient to demand the weaker condition that the specific commutator [X, Y] is an element of the centre
(Z[g,g]) of the commutator algebra [g, g]. Note this is already a weaker condition than the meta-Abelian
condition considered by Kurlin [26]. That is,

[[X, Y], [g, g]] = 0. (50)

In terms of the structure constants, this is equivalent to the weakened constraint:

xa yb fab
m fcd

n fmn
e = 0. (51)

Under this milder condition, we still have (effective) commutativity of LX with LY,
thereby allowing us to treat the LX and LY appearing in the BCH Formula (1) as though they commute.
By integrating and summing the series, we again see

ln(eXeY) = X + Y + f (LX ,−LY)[X, Y] (52)

again for exactly the same function ( f (u, v)), now subject only to the weaker condition that
[[X, Y], [g, g]] = 0. Under the stated conditions that the specific commutator [X, Y] be an element
of the centre of the commutator algebra ([g, g]), we again find

ln(eXeY) = X + Y +
I

e−LX − e+LY

(
I − e−LX

LX
+

I − e+LY

LY

)
[X, Y]. (53)
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3.6. Case 6: [X, Y] is in the Centralizer of {Lm
X Ln

Y[X, Y]}

As our final weakening of the input assumptions, (while still keeping the same strength
conclusions), an arbitrary but fixed ambient Lie algebra g is taken and the following set is considered:

S = {Lm
X Ln

Y[X, Y]; m ≥ 0, n ≥ 0}. (54)

The construction of this set is inspired by considering the form of the terms which appear in the
BCH expansion of Equation (1). If, in contrast, we were to take g as the minimal free algebra generated
by X and Y, then this would not be a weakening of case 5; it would merely be a restatement of case 5.

If we now demand merely that [X, Y] commute with all the elements of S (that is, [[X, Y],S ] = 0
or equivalently L[X,Y]S = 0, so that [X, Y] is in the so-called centralizer of the set S), then the Jacobi
identity (in the form (42)), implies

[LX , LY]Lm
X Ln

Y[X, Y] = 0, (55)

which we could also write as
[LX , LY]S = 0. (56)

Note this is again a weaker condition than the meta-Abelian condition considered by Kurlin [26].
Then, in particular,

LY Lm
X Ln

Y[X, Y] = LX LY Lm−1
X Ln

Y[X, Y]
= L2

X LY Lm−2
X Ln

Y[X, Y]
= . . .
= Lm

X Ln+1
Y [X, Y].

(57)

That is, under these conditions, LX and LY can still be treated as though they commute in the BCH
expansion. Under these conditions, all of the terms appearing in the BCH expansion of Equation (1)
can now be reduced to elements of the set S . By integrating and summing the series, we again see

ln(eXeY) = X + Y + f (LX ,−LY)[X, Y] (58)

again for exactly the same function ( f (u, v)), but now subject only to the even weaker condition
([[X, Y],S ] = 0) that the specific commutator [X, Y] be an element of the centralizer of S . To be explicit
about this, under the stated conditions

ln(eXeY) = X + Y +
I

e−LX − e+LY

(
I − e−LX

LX
+

I − e+LY

LY

)
[X, Y]. (59)

Careful inspection of the above quickly verifies that the only terms present when one expands the
above are of the form Lm

X Ln
Y[X, Y], (the elements of the set S), and that our simplifying assumption has

eliminated all terms, such as L[X,Y]Lm
X Ln

Y[X, Y] and variants thereof. By summing over the integers m
and n, the centralizer condition can also be restated as

[[X, Y], esLX etLY [X, Y]] = 0; ∀s, t. (60)

This is as far as we have currently been able to weaken the input assumptions that we originally
started with while still keeping a reasonably close analogue of our initial result involving the
function f (u, v).

4. Discussion

The BCH formula is a general purpose tool that has found many applications both in pure and
applied mathematics [1–11,14], and generally in the physical sciences [11,14–20]. Via the study of the
embeddability problem for stochastic matrices (Markov processes), there are even potential applications in
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the social sciences and financial sector. Explicit closed-form results are relatively rare (see the Introduction
for examples). In this present article, we significantly extended our previous results reported in
reference [11] by systematically weakening the input assumptions. In a number of increasingly general
situations, we showed that the BCH expansion can be written in closed form as

ln(eXeY) = X + Y + f (u, v)[X, Y], (61)

where f (u, v) is the symmetric function

f (u, v) = f (v, u) =
(u− v)eu+v − (ueu − vev)

uv(eu − ev)
. (62)

This was first demonstrated in reference [11] for the very explicit commutator [X, Y] = uX + vY + cI.
Herein, (with suitable expressions for u and v), a structurally identical result was established for Lie
algebras with a one-dimensional commutator sub-algebra. More generally, whenever the commutator
sub-algebra is Abelian, one has

ln(eXeY) = X +Y + f (LX,−LY)[X, Y]. (63)

More specifically,

ln(eXeY) = X +Y +
I

e−LX − e+LY

(
I − e−LX

LX
+

I − e+LY

LY

)
[X, Y]. (64)

This result furthermore extends to the weaker input condition [X, Y] ∈ Z[g,g], that is, [X, Y] is an
element of the centre of the commutator algebra. Even more generally, this result extends to [X, Y]
which is an element of the centralizer of those Lie brackets that appear in the BCH expansion. Overall,
we find it quite remarkable just how far we have been able to push this result. There are of course many
other directions that one might also wish to explore—we have concentrated our efforts on directions in
which it seems that relatively concrete and explicit results might be readily extractable.
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