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Abstract: Hydraulic fracturing has played a crucial role in enhancing the extraction of oil and gas
from deep underground sources. The two main objectives of hydraulic fracturing are to produce
fractures with a desired fracture geometry and to achieve the target proppant concentration inside
the fracture. Recently, some efforts have been made to accomplish these objectives by the model
predictive control (MPC) theory based on the assumption that the rock mechanical properties
such as the Young’s modulus are known and spatially homogenous. However, this approach
may not be optimal if there is an uncertainty in the rock mechanical properties. Furthermore,
the computational requirements associated with the MPC approach to calculate the control moves at
each sampling time can be significantly high when the underlying process dynamics is described by
a nonlinear large-scale system. To address these issues, the current work proposes an approximate
dynamic programming (ADP) based approach for the closed-loop control of hydraulic fracturing
to achieve the target proppant concentration at the end of pumping. ADP is a model-based control
technique which combines a high-fidelity simulation and function approximator to alleviate the
“curse-of-dimensionality” associated with the traditional dynamic programming (DP) approach.
A series of simulations results is provided to demonstrate the performance of the ADP-based
controller in achieving the target proppant concentration at the end of pumping at a fraction of
the computational cost required by MPC while handling the uncertainty in the Young’s modulus of
the rock formation.

Keywords: approximate dynamic programming (ADP); model predictive control (MPC); hydraulic
fracturing; model reduction; Kalman filter

1. Introduction

Petroleum and natural gas remain an important part of the global energy supply. Recently,
the extraction of underground resources such as shale gas and oil, which are trapped in low porosity
and ultra-low permeability formations, has become economically feasible due to the application of
well-stimulation techniques such as hydraulic fracturing [1] and directional drilling [2]. Since its
introduction in the 1940s, hydraulic fracturing has gradually developed as a standard practice and has
been applied to various types of reservoir formations, and thus it has made significant contributions to
the oil and gas industry [3].

In hydraulic fracturing, the ultimate goal is to enhance the productivity of a stimulated
(i.e., fractured) well. The process begins with a step referred to as “perforation”, in which small
explosives are set off at spaced intervals at the wellbore to create initial fracture paths. Next, a fluid
called pad is injected at a high pressure to initiate fractures of the rock at the perforated sites.
Subsequently, a fracturing fluid called dirty volume consisting of water, additives, and proppant
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is pumped into the wellbore at sufficiently high pressure and flow rate to further propagate the fracture
in the rock formation. Finally, the pumping is stopped, and the fractures are closed due to the natural
stress of the rock formation. During the closure process, the remaining fluid seeps into the reservoir
and the proppant is trapped inside the fracture. At the end of pumping, the concentration of the
proppant should be uniform along the fracture to achieve a highly conductive channel which will
result in effective extraction of oil and gas from the reservoir. The overall efficiency of the hydraulic
fracturing process depends on (1) the uniformity of proppant concentration across the fracture at the
end of pumping and (2) the final fracture geometry.

To produce a fracture with uniform proppant concentration across the fracture and the desired
fracture geometry, it is important to generate an optimal pumping schedule. Several efforts in this
direction were initially made by Nolte [4], Gu and Desroches [5] and Dontsov and Peirce [6]. Specifically,
Nolte [4] developed a power-law type pumping schedule based on the conservation of fluid volume;
Gu and Desroches [5] proposed a pumping schedule design technique using a detailed forward
numerical simulator; and Dontsov and Peirce [6] designed a pumping schedule by taking into account
proppant transport in their forward model.

The aforementioned techniques viewed hydraulic fracturing processes as an open-loop problem.
Motivated by some advances in real-time measurement techniques such as downhole pressure analysis
and microseismic monitoring, several attempts have recently been made to employ model predictive
control (MPC) theory to regulate the fracture geometry and proppant concentration. Specifically,
the limited availability of real-time measurements has been addressed by utilizing state estimators [7–9],
and several model order-reduction (MOR) techniques [10–12] have been developed to handle the
large computational requirements due to dynamic simulation of multiple highly-coupled partial
differential equations (PDEs) defined over moving boundaries to describe the hydraulic fracturing
process. However, there are two unresolved issues with the MPC approach. First, it is necessary to
handle a potentially exorbitant online computational requirement due to the simulation of a nonlinear
large-scale system at each sampling time (which is usually the case in hydraulic fracturing) and
the use of a long prediction/control horizon to ensure satisfactory performance [13–15]. Second,
the conventional MPC solves a deterministic open-loop optimal control problem at each sampling
time. Therefore, it ignores the uncertainty and the feedback at future sampling times [16,17].

The above-mentioned limitations of MPC formulation can be handled by the approximate
dynamic programming (ADP) approach [18], particularly circumventing the “curse-of-dimensionality”
of the traditional dynamic programming (DP) approach. ADP is a model-based control technique
and can be employed to derive an improved control policy, starting with some sub-optimal control
policies (or, alternatively, closed-loop identification data). In recent years, ADP has been successfully
applied to several applications such as a complex microbial cell reactor characterized by multiple
steady states [19], Van de Vusse reaction in an isothermal CSTR [20], integrated plants with a reactor
and a distillation column with a recycle [21], and systems described by hyperbolic PDEs [22–24].
Motivated by these earlier efforts, we present an ADP-based control framework for the closed-loop
operation of a hydraulic fracturing process to achieve uniform proppant concentration across the
fracture at the end of pumping.

The organization of this paper is as follows: first, a brief introduction of ADP is presented. Second,
a high-fidelity model of hydraulic fracturing is constructed based on first-principles. Finally, we discuss
the application of ADP to a hydraulic fracturing process and present a series of simulation results
that demonstrates the superiority of the ADP-based controller over the standard MPC system in
achieving uniform proppant concentration at the end of pumping, which is directly related to the
overall productivity of a fractured well.

2. Approximate Dynamic Programming

Consider an optimal control problem with the set of all possible states and inputs represented by
X ⊂ Rnx and U ⊂ Rnu , respectively, where nx and nu are the number of state and manipulated input
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variables, respectively. For a deterministic state space system, an optimal state feedback policy can be
determined by formulating an optimization problem as follows:

min
µ∈Π

∞

∑
k=0

Φ(x(tk), u(tk)) (1a)

s.t. u(tk) = µ(x(tk)) (1b)

g(x(tk), u(tk)) ≥ 0 k = 0, 1, · · · (1c)

x(tk+1) = f (x(tk), u(tk)) (1d)

where x(tk) ∈ X is the system state vector and u(tk) ∈ U is the manipulated input vector at t = tk
(i.e., kth sampling time), µ is the function mapping x(tk) to u(tk), Π is the set of all valid policies over
which optimal µ is to be found, f is the model describing the time evolution of the system states,
and Φ(x(tk), u(tk)) is the single-stage cost incurred at state x(tk) at t = tk while implementing the
control move u(tk).

DP is an alternative approach for solving multi-stage optimal control problems [25]. In DP,
we define “cost-to-go” function, denoted by Jµ(x), of a starting state x as a sum of single-stage costs
incurred from the state x under the control policy µ over the infinite horizon:

Jµ(x) =
∞

∑
k=0

Φ(x(tk), u(tk)), x(t0) = x (2)

where it is assumed that Jµ(x) is well-defined over the entire X . The objective of DP is to obtain the
infinite horizon optimal cost-to-go function (Jopt) that satisfies the following Bellman equation:

Jopt(x(tk)) = min
u(tk)∈U

[Φ(x(tk), u(tk)) + Jopt(x(tk+1))], ∀x ∈ X (3)

Once the optimal cost-to-go function Jopt is obtained, it can be subsequently employed to find the
optimal input profile by solving the following point-wise single-stage optimization at every sampling
time tk:

µopt(x(tk)) = arg min
u(tk)∈U

[Φ(x(tk), u(tk)) + Jopt(x(tk+1))] (4)

There are very few problems such as linear quadratic (Gaussian) optimal control problem for
which the Bellman equation can be solved analytically. Alternatively, numerical approaches such
as “value iteration” or “policy iteration” can be employed. For systems with continuous state space,
these numerical approaches can be employed either by discretizing the state space, or by using
a finite dimensional parameterization. However, this can lead to potentially exorbitant computational
requirements as the state dimension increases, which is referred to as “curse-of-dimensionality”.
Therefore, DP has been considered largely impractical for almost all the problems of practical interest.

The curse-of-dimensionality problem of DP can be handled by the ADP approach [18]. In contrast
to the numerical approach to compute solutions for DP, which obtains the optimal cost-to-go function
for the entire continuous state space, the ADP approach limits the control law calculations to only the
relevant regions of the state space. These relevant regions are identified by performing closed-loop
simulations of the system under some known heuristics or sub-optimal control policies. From the
principle of optimality of DP, an improved control policy can be derived by solving the Bellman
equation in a recursive manner within the sampled domain of the state space (which is a discrete
set consisting of sampled states, and denoted by Xsample). For a system with continuous state space,
it is not feasible to restrict the Bellman iterations to a set of discrete sampled states only. Therefore,
a function approximator (denoted by J̃(x)) is used to interpolate cost-to-go values within the sampled
states to approximate cost-to-go values in the original continuous state space. In this work, we used
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K-nearest neighbors (KNN) as a function approximator. In KNN, the cost-to-go at any query point x0

is computed as a distance-weighted average of its K-nearest neighbors:

J̃(x0) =
K

∑
j=1

wj J̃(xj) (5)

where

wj =
1/dj

∑K
i=1 1/di

(6)

and d1 ≤ d2 ≤ · · · are the Euclidean distances of x1, x2, · · · from the query point. x1 is the closest point
from x0, followed by x2, and so on.

3. Application of Approximate Dynamic Programming to a Hydraulic Fracturing Process

3.1. Dynamic Modeling of Hydraulic Fracturing

In this work, a large-scale process model of hydraulic fracturing is developed by adopting the
following assumptions: (1) fracture propagation is described by Perkins, Kern, and Nordgren (PKN)
model as shown in Figure 1 [26]; (2) the layers above and below have sufficiently large stresses such
that the vertical fracture is confined within a single horizontal rock layer; (3) the fracture length is much
greater than fracture width; (4) the fluid pressure is constant in the vertical direction; and (5) the fracture
is surrounded by an isotropic homogenous elastic material.

Figure 1. The PKN fracture model.

The dynamic modeling of hydraulic fracturing involves two sub-processes: fracture propagation
and proppant transport. A brief description of the governing equations is presented below. The fluid



Mathematics 2018, 6, 132 5 of 19

flow rate in the horizontal direction is determined by the following equation for flow of a Newtonian
fluid in an elliptical section [2,27]:

dP
dx

= − 64µQ
πHW3 (7)

where P is the net pressure, x ∈ [0, L(t)] is the time-dependent spatial coordinate in the horizontal
direction, µ is the fluid viscosity, Q is the fluid flow rate in the horizontal direction, H is the predefined
fracture height, and W is the fracture width.

For a crack under constant normal pressure, the fracture shape is elliptical as shown in Figure 1.
The relationship between the maximum fracture width (i.e., the minor axis of the ellipse) and the net
pressure is given as follows [28,29]:

W =
2PH(1− ν2)

E
(8)

where ν is the Poisson ratio of the formation, and E is the Young’s modulus of the formation.
By taking into account the fracture volume changes and the fluid leak-off into the reservoir,

the continuity equation for an incompressible fluid flow inside the fracture is given by [27]:

∂A
∂t

+
∂Q
∂x

+ HU = 0 (9)

where A = πWH/4 is the cross-sectional area of the elliptic fracture, and U is the fluid leak-off per
unit height accounting for both fracture walls, which is determined by the following expression [2,30]:

U =
2Cleak√
t− τ(x)

(10)

where Cleak is the overall leak-off coefficient, t is the elapsed time since fracturing was initiated,
and τ(x) is the time at which the fracture propagation has arrived at x for the first time.

Plugging Equations (7) and (8) into Equation (9) results in the following nonlinear parabolic PDE:

πH
4

∂W
∂t
− πE

128µ(1− ν2)

[
3W2

(
∂W
∂x

)2

+ W3 ∂2W
∂x2

]
+ HU = 0 (11)

The initial condition for solving the above equations is that the fracture is closed, that is
W(x, 0) = 0. In addition, the two boundary conditions are considered as follows:

1. At the wellbore, the fluid flow rate is specified by Q(x, t) = Q0(t), where Q0(t) is the fluid
injection rate (i.e., the manipulated variable).

2. At the fracture tip, x = L(t), the fracture is always closed, that is W(L(t), t) = 0.

The modeling of the injected proppant transport is based on the following assumptions:
(1) along the horizontal direction, the injected proppant will travel at the fracturing fluid’s velocity;
(2) the suspended proppant will settle towards the fracture bottom due to the gravitational force which
will lead to the formation of a proppant bank; (3) proppant particles are sufficiently large so that the
diffusive flux can be neglected when the convective flux is considered; and (4) because of low proppant
concentration, the interactions between the individual particles are neglected, while the drag and
gravitational forces acting on the proppant particles are still considered. Based on these assumptions,
the advection of the suspended proppant can be expressed by the following equation:

∂(WC)
∂t

+∇ · (WCVp) = 0 (12)

C(0, t) = C0(t) and C(x, 0) = 0 (13)



Mathematics 2018, 6, 132 6 of 19

where C is the suspended proppant concentration, ∇ is the vector differential operator, Vp is the
velocity with which the proppant particles are advected, and C0(t) is the inlet proppant concentration
at the wellbore (i.e., the manipulated variable).

The net velocity of the proppant particles, Vp, is dependent on the suspended proppant
concentration, C, the fluid velocity, V, and the gravitational settling velocity, Vs, which is given
by the following expression [31]:

Vp = V − (1− C)Vs (14)

The gravity-induced proppant settling velocity in the fracturing fluid, Vs, is computed as
follows [32]:

Vs =
(1− C)2

101.82C

(ρsd − ρ f )gd2

18µ
(15)

where ρsd is the proppant particle density, ρ f is the pure fluid density, g is the gravitational acceleration
constant, d is the proppant diameter, and µ is the fracture fluid viscosity where its relation with the
proppant concentration can be described by the following empirical model [33]:

µ(C) = µ0

(
1− C

Cmax

)−β

(16)

where µ0 is the pure fluid viscosity, β is an exponent in the range of 1.2 to 1.8, and Cmax is the theoretical
maximum proppant concentration determined by Cmax = (1− φ)ρsd where φ is the proppant bank
porosity. The particles settle out of the flow to the fracture bottom and form a proppant bank.
The evolution of proppant bank height, δ, via the proppant settling is given as follows [34,35]:

(1− φ)
d(δW)

dt
= CVsW (17)

where proppant bank is initially of vanishing thickness, so the initial condition is that δ(x, 0) = 0.
The above-mentioned PDE-ODE systems defined over time-dependent spatial domains will be

solved using an in-house simulator developed by Siddhamshetty et al. [8].

3.2. Obtaining Cost-to-Go Function Offline

3.2.1. Simulation of Sub-Optimal Control Policies for ADP

In this section, a nonlinear MPC formulation is presented to obtain sub-optimal control policies
for ADP. First, we employed unified fracture design (UFD) technique to obtain the optimal fracture
length (Lopt) and width (Wopt) for a specific amount of proppant, Mprop, to be injected into a reservoir
well [36]. Additionally, the target proppant concentration, Ctarget, at the end of hydraulic fracturing is
calculated as follows:

Ctarget =
Mprop

HLoptWopt
(18)

The high-fidelity process model described in Equations (7)–(17) demands high computational
requirements, and thus, it cannot be directly employed for the controller design. While there are
a variety of computationally efficient linear [11,37,38] and nonnlinear [10,39–42] MOR techniques
available, in this work, we developed a reduced-order model (ROM) based on multivariate output
error state space (MOESP) algorithm using the simulation results from the high-fidelity model as
described in [8]. The developed ROM is presented as follows:

x(tk+1) = Ax(tk) + Bu(tk) (19a)

y(tk) = Hx(tk) (19b)
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where x(tk) represents the vector of states in the state space model at time instant tk, A, B and H
represent the system matrices, y(tk) = [W0(tk), L(tk), C(x1, tk), C(x2, tk), C(x3, tk), C(x4, tk), C(x5, tk),
C(x6, tk)]

T represents the vector of output variables, W0(tk) is the fracture width at the wellbore,
L(tk) is the fracture length, C(x1, tk), · · · , C(x6, tk) are the proppant concentrations at six different
locations across the fracture, and u(tk) = [C0(tk), C0(tk − ζx1), C0(tk − ζx2), C0(tk − ζx3), C0(tk − ζx4),
C0(tk − ζx5), C0(tk − ζx6)]

T is the inlet proppant concentration at the wellbore (i.e., the manipulated
input variable), ζxi is the input time-delay due to the time required for the proppant to travel from the
wellbore to a particular location xi.

Remark 1. Please note the linear discrete-time state space model is good for the purpose of this study. To develop
the ROM, we varied the input profile so that we can cover the entire range of operating conditions that are
being considered in the oil reservoir field. Alternatively, a nonlinear ROM can be used to improve the controller
performance as the governing equation is indeed a nonlinear parabolic PDE with the moving boundary.

In hydraulic fracturing, the readily available real-time measurements are limited to the fracture
length and the fracture width at the wellbore, which are provided via the processed microseismic and
downhole pressure data, respectively [43]. To estimate the remaining important state variables such as
the proppant concentration across the fracture, we designed a Kalman filter by adding the process and
measurement noise to the ROM presented in Equation (19) as described in [8]:

x(tk+1) = Ax(tk) + Bu(tk − ζ) + v(tk) (20a)

y(tk) = Hx(tk) + w(tk) (20b)

where v denotes the process noise, and w denotes the measurement noise. The process noise is
assumed to be drawn from a zero mean multivariate normal distribution with covariance Q, and the
measurement noise is assumed to be zero mean Gaussian white noise with covariance R.

The state estimator algorithm works in a two-step process: prediction and measurement update.
Combining these two steps, the Kalman filter equations can be written as follows:

x̂(tk+1) = Ax̂(tk) + Bu(tk − ζ) + M(tk)(ym(tk)− ŷ(tk)) (21a)

M(tk) = P(tk)HT(R(tk) + HP(tk)HT)−1 (21b)

P(tk+1) = (I −M(tk)H)P(tk) (21c)

where the operator ˆ(·) is used to denote the estimated variables, M(tk) is the Kalman filter gain,
and P(tk) denotes the covariance of the state estimation error.

To determine sub-optimal control policies for ADP, we employed the following MPC scheme
designed by Siddhamshetty et al. [8]:

min
Cstage,k

(C(t f )− Ctarget1)
TQc(C(t f )− Ctarget1) (22a)

s.t. ROM, Equation (19) (22b)

Kalman filter, Equation (21) (22c)

Cmin1 ≤ C(tk + j∆) ≤ Cmax1, ∀j = 0, · · · , 10− k (22d)

Cstage,k−1+m ≤ Cstage,k+m ≤ Cstage,k−1+m + 4 (ppga), m = 1, · · · , 10− k (22e)

2Q0∆
(

∑
k

Cstage,k

)
= Mprop (22f)

L(t f ) = Lopt, W0(t f ) ≥Wopt (22g)

where t f denotes the total treatment time, Qc is a positive definite matrix used to compute
the weighted norm, tk is the current time, ∆ is the time interval between sampling times,
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C(tk) = [C1(tk), C2(tk), C3(tk), C4(tk), C5(tk), C6(tk)]
T is the proppant concentration inside the fracture

at six different locations at t = tk, 1 is a 6× 1 vector whose elements are all ones, W0(tk) and L(tk) are
the only readily available real-time measurements of the fracture width at the wellbore and the fracture
length at t = tk, respectively, and Cstage,k is the inlet proppant concentration (i.e., the manipulated
input) corresponding to the kth time interval i.e., t ∈ [tk, tk+1), which can be computed by solving
Equation (22) with a shrinking prediction horizon Np = t f − tk.

In the above optimization problem, the penalty function, Equation (22a), computes the squared
deviation of the proppant concentration from the set-point at 6 different locations across the fracture
at the end of pumping. At every sampling time tk, the Kalman filter of Equation (21) is initialized to
estimate the proppant concentration Ĉ by using the real-time measurements of the fracture width at the
wellbore and the fracture length. The constraint of Equation (22d) imposes limits on the concentration
profiles to avoid premature termination of the hydraulic fracturing process. The constraint of
Equation (22e) demands a monotonic increase in the input proppant concentration with an increment
less than 4 ppga/stage, where ppga is a concentration unit used in petroleum engineering that refers
to one pound of proppant added to a gallon of water. The constraint of Equation (22f) specifies the
total amount of proppant to be injected. The terminal constraint of Equation (22g) employs the optimal
fracture geometry, which is calculated by UFD scheme described in the preceding paragraph.

The dynamic model described in Section 3.1 was utilized to simulate the hydraulic fracturing
process using the parameters listed in Table 1. In hydraulic fracturing, the characterization of rock
mechanical properties is one of the key tasks that has to be performed prior to the model based
controller design. This requires the availability of field data. Currently, in the field, a small-scale
experiment called the mini-frac test is performed to collect preliminary data that can be used to
characterize the geological properties. However, in this work, the model parameters utilized to
simulate the hydraulic fracturing process are taken from literature [8,44]. Specifically, we considered
48,000 kg of proppant amount to be injected during the entire hydraulic fracturing process. For this
fixed amount of proppant, we employed UFD scheme to obtain the corresponding optimal fracture
length Lopt = 135 m and width Wopt = 5.4 mm, which were used as the optimal fracture geometry
constraint (Equation (22g)) in the MPC formulation that has to be satisfied at the end of pumping.
Then, the target proppant concentration at the end of pumping, Ctarget = 9.765 ppga, was calculated
using Equation (18). The positive definite matrix, Qc, was considered to be a diagonal matrix with
the diagonal entries equal to 100. The pad time, tp, was fixed to be 220 s and the constant flow rate of
Q0 = 0.03 m3/s was used after the pad time. The Kalman filter and feedback control systems were
initialized at the end of pad time (i.e., tk ≥ tp). In the closed-loop simulation, t f and ∆ were chosen
to be 1220 s and 100 s, respectively. The proppant pumping schedule was divided into 10 substages
and the duration of each substage was identical to ∆. At each sampling time, the controller was called
and the first input, Cstage,k, of the entire input profile (Cstage,k, Cstage,k+1, · · · ) obtained by solving the
optimization problem over a prediction horizon length of Np was applied to the dynamic model in
a sample-and-hold fashion, and this procedure was repeated at each sampling time until the end of
treatment. Please note that the controller performance can be improved by increasing the number of
proppant pumping substages while maintaining the number of spatial locations across the fracture,
at which we want to achieve the uniform proppant concentration [8]. However, it is not viable to
have a large number of substages, and hence, we selected 10 substages because we did not observe
significant improvement after that.

Remark 2. Please note that Kalman filter is applied before the MPC optimization. Specifically, at every sampling
time tk, the real-time measurements of the fracture width at the wellbore, W0(tk), and the fracture length, L(tk),
were obtained from the high-fidelity model, which is a virtual experiment. These measurements were then utilized
by Kalman filter of Equation (21) to estimate the (unmeasurable) proppant concentration inside the fracture
at t = tk. Finally, the inlet proppant concentration (i.e., the manipulated input), Cstage,k, was obtained by
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solving the optimization problem with the cost function of Equation (22a) under the constraints described by
Equations (22b) and (22d)–(22g).

Table 1. Model parameters used for the simulation.

Parameter Symbol Value

Leak-off coefficient Cleak 6.3 × 10−5 m/s1/2

Maximum concentration Cmax 0.64
Minimum concentration Cmin 0

Young’s modulus E 0.5 × 1010 Pa
Proppant permeability k f 60,000 mD
Formation permeability kr 1.5 mD
Vertical fracture height H 20 m

Proppant particle density ρsd 2648 kg/m3

Pure fluid density ρ f 1000 kg/m3

Fracture fluid viscosity µ 0.56 Pa·s
Poisson ratio of formation ν 0.2

The data covering the relevant regions in the continuous state space was obtained from the
closed-loop simulations under the above-mentioned MPC scheme by initializing the Kalman filter and
the feedback control systems with different fracture width at the wellbore and fracture length values at
t = tp, which were obtained by varying the flow rate Q0 during the pad time—i.e., t ∈ [0, tp). In this
work, the pad time tp was fixed, and therefore, the fracture width at the wellbore and the fracture
length at the end of pad time depended only on the flow rate Q0. Every different Q0 profile during the
pad time would result in a unique combination of the fracture width at the wellbore and the fracture
length at the end of pad time that allows the feedback system to compute a control input profile,
which is dissimilar to other profiles, if their Q0 during the pad time is different. In each closed-loop
simulation, the real-time measurements of the fracture width at the wellbore and the fracture length
were taken at 10 time instants (i.e., 10 substages). At each time instant, the real-time measurement was
utilized by the Kalman filter to estimate the (unmeasurable) proppant concentration inside the fracture.
Each measurement can be represented as y(tk) = [W0(tk), L(tk)]

T and the corresponding estimated
state can be represented as Ĉ(tk) = [Ĉ1(tk), Ĉ2(tk), Ĉ3(tk), Ĉ4(tk), Ĉ5(tk), Ĉ6(tk)]

T where Ĉi(tk) is the
proppant concentration inside the fracture at a specific location i at t = tk. Twenty-four closed-loop
simulations were performed by initializing the Kalman filter and the feedback control systems with
24 different initial conditions, resulting in 240 real-time measurements (denoted by Xmeasure) and the
corresponding set of 240 estimated states (denoted by Xest).

Remark 3. In hydraulic fracturing, the real-time measurement of the proppant concentration inside the fracture
is not available due to the remote subterranean location where the fracture propagates. To overcome this challenge,
we used the Kalman filter to estimate the proppant concentration based on the available real-time measurements
of the fracture width at the wellbore and the fracture length. Therefore, we use the term “estimated states” in
Section 3 instead of “sampled states” as described in Section 2.

3.2.2. Initial Cost-to-Go Approximation

For all of the estimated states during the closed-loop simulations, the initial cost-to-go values (Jµ0
)

were computed as follows:

Jµ0
(Ĉ(tk)) =

Nt

∑
j=k

Φ(Ĉ(tj), u(tj)) (23)
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where Nt = 10 is the number of time instants where the proppant concentrations are estimated by the
Kalman filter during each closed-loop simulation, and Φ(Ĉ(tj), u(tj)) is given by the following equation:

Φ(Ĉ(tj), u(tj)) = (Ĉ(tj+1)− Ctarget1)
TQc(Ĉ(tj+1)− Ctarget1) (24)

A function approximator, denoted as J̃µ0
(Ĉ), was constructed to obtain the mapping between

initial cost-to-go values and the estimated states (i.e., proppant concentration Ĉ) obtained during
the closed-loop simulations. We used KNN (with K = 5) as a function approximator. In hydraulic
fracturing, the real-time measurements readily available are limited to the fracture width at the
wellbore and the fracture length. Therefore, we used only these two available measurements to
determine the KNN. The function approximator works in the following way. Suppose there is a new
measurement y. First, we determine the KNN of y from the set Xmeasure, which consists of 240 real-time
measurements obtained during the closed-loop simulations. Let the KNN of y be y1, y2, · · · , yK with
the Euclidean distances d1, d2, · · · , dK, respectively, from y. Second, we select K proppant concentration
vectors Ĉ1, Ĉ2, · · · , ĈK from Xest which were estimated by the Kalman filter utilizing y1, y2, · · · , yK
during the closed-loop simulations, respectively. Then, the selected K proppant concentration vectors
Ĉ1, Ĉ2, · · · , ĈK are used in Equation (25) to determine the cost-to-go at a new state Ĉ estimated by the
Kalman filter utilizing the new measurement y.

J̃(Ĉ) =
K

∑
j=1

wj J̃(Ĉj) (25)

where

wj =
1/dj

∑K
i=1 1/di

(26)

The schematic diagram of the above procedure is shown in Figure 2.

Figure 2. Schematic flow diagram to determine the cost-to-go at a new state Ĉ estimated by the Kalman
filter using a new measurement y.
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3.2.3. Bellman Iteration

Value iteration is employed for offline cost-to-go improvement. In this approach, Bellman equation
(Equation (3)) is solved iteratively for every estimated state in Xest until convergence. At each iteration
step, we calculate Ji+1 for every estimated state Ĉ(tk) by solving:

Ji+1(Ĉ(tk)) = min
u(tk)∈U

[Φ(Ĉ(tk), u(tk)) + J̃i(Ĉ(tk+1))] (27)

where the superscript i denotes the iteration index, Ji+1 is the updated cost-to-go value for
Ĉ(tk), J̃i(Ĉ(tk+1)) is the estimate of cost-to-go value for the successor state Ĉ(tk+1) and J̃0 = J̃µ0

.
After updating the cost-to-go values for all of the estimated states in Xest, we fit another function
approximator to the resulting Ĉ vs. Ji+1(Ĉ) data.

In this work, the Bellman iterations converged after six iterations with the following
termination condition:

1
N

N

∑
k=1
|Ji+1(xk)− Ji(xk)| < 0.35 (28)

where N = 240 is the total number of estimated states during the closed-loop simulations. Figure 3
shows how the average absolute error, 1

N ∑N
k=1 |Ji+1(xk)− Ji(xk)|, changes in subsequent iterations.

In ADP, the time evolution of the system states is described by employing the ROM, developed for the
MPC scheme, because of the high computational effort required to solve the high-fidelity model.
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Figure 3. Profile of the average absolute error with iteration.

Remark 4. In the ADP approach, the data covering the relevant regions in the continuous state space can be
obtained by performing closed-loop simulations of the system under any known heuristics or sub-optimal control
policies. The initial cost-to-go estimates do not affect the quality of the converged cost-to-go function [45,46].
Therefore, the performance of the ADP-based controller does not heavily rely on the MPC design. In this work,
we employed the MPC scheme developed by Siddhamshetty et al. [8] because it provides a good input profile
compared to other available input profiles such as Nolte’s pumping schedule.
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3.3. Online Optimal Control

Once the cost-to-go iteration converges, we compute the control policy online by solving the
following optimization problem:

u(tk) = arg min
u(tk)∈U

[Φ(Ĉ(tk), u(tk)) + J̃Nc(Ĉ(tk+1))] (29)

where Nc = 6 represents the number of iterations required for convergence, and J̃Nc denotes the
converged cost-to-go function approximator.

The ADP-based controller is employed to achieve the uniform proppant concentration across the
fracture at the end of pumping. To compare the performance of the ADP-based controller with the MPC
system, we perform the closed-loop simulations under both of the control systems by initializing the
Kalman filter with the fracture width at the wellbore and the fracture length values outside the “training
set”. We want to note that the “training set” refers to the set of values of the fracture width at the
wellbore and the fracture length used to initialize the Kalman filter during the closed-loop simulations
under the MPC system as described in Section 3.2.1. The profiles of the injected proppant concentration
at the wellbore (i.e., the manipulated input) and proppant concentration across the fracture at the
end of pumping using ADP-based controller and the MPC system are shown in Figures 4 and 5.
The ADP-based controller shows an improvement over the MPC system in achieving the uniform
proppant concentration across the fracture at the end of pumping. The performance of the closed-loop
response can be understood based on the total cost-to-go values. Specifically, the cost-to-go values
for the ADP-based controller and the MPC system are 179.66× 103 and 181.58× 103, respectively.
Furthermore, the ADP-based controller takes less computational time than the MPC system to
run a closed-loop simulation as shown in Figure 6. This is because ADP-based controller solves
a single-stage optimization problem, Equation (29), whereas the MPC system solves a multi-stage
optimization problem, Equation (22), at each sampling time. In MPC, the computational time required
to solve the optimization problem keeps decreasing with time because the number of remaining
stages to be considered keeps decreasing. However, in ADP, the computational time required at each
sampling time is similar because ADP solves a single-stage optimization problem at every sampling
time. Please note that the calculations were performed on a Dell workstation, powered by Intel(R)
Core(TM) i74770 CPU@3.40 GHz, running the Windows 8 operating system. We would like to highlight
that the reduction in the computational time can be very beneficial to enhance the productivity of the
produced wells. Specifically, despite advances in measurement techniques, it still requires interruption
by experienced engineers to distinguish useful information from noise. For example, it takes about
1–3 min to post-process the microseismic data. Therefore, having a computationally efficient controller
such as ADP-based controllers would compensate for the time delay due to the interruption by
experienced engineers.

Remark 5. In the ADP-based controller, we did not include the constraints directly but used the data from 24
closed-loop simulations which satisfied the constraints. Specifically, for every sampling time tk, we stored 24
values of the manipulated input obtained from the 24 closed-loop simulations. Let CLB

k and CUB
k be the minimum

and the maximum value of the manipulated input at time instant tk among the 24 stored values, respectively.
Finally, at every sampling time tk, Equations (27) and (29) were solved with CLB

k and CUB
k as the lower and the

upper bound, respectively.
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Figure 4. Comparison of the pumping schedule generated using the ADP-based controller and the
MPC system.
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Figure 5. Comparison of spatial proppant concentration profiles obtained at the end of pumping using
the ADP-based controller and the MPC system.
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Figure 6. Comparison of the computation time to solve the optimization problem at each sampling
time using the ADP-based controller and the MPC system.

3.4. ADP-Based Control with Plant–Model Mismatch

We also studied the performance of the ADP-based controller when the rock mechanical properties
are not available a priori. Specifically, we considered a plant–model mismatch in Young’s modulus,
E, which significantly affects the controller performance with respect to achieving uniform proppant
concentration across the fracture at the end of pumping [44,47].

In this case, the data covering the relevant regions in the state space was obtained from the
closed-loop simulations under the MPC system described in Section 3.2.1 by considering the following
five different scenarios: (1) no variation in E; (2) 15% increase in E; (3) 5% increase in E; (4) 5% decrease
in E; and (5) 15% decrease in E. For each value of E, a total of five closed-loop simulations under the
MPC system of Equation (22) were performed by initializing the Kalman filter with different values
of the fracture width at the wellbore and the fracture length. As a result, a total of 250 estimated
states were obtained from the five scenarios. For all the estimated states, the initial cost-to-go values
(Jµ0

) were computed using Equation (23). Then, we employed KNN (with K = 5) as a function
approximator to obtain the mapping between initial cost-to-go values and the estimated states as
described in Section 3.2.2. This was followed by the value iteration step in which the Bellman iterations
converged after five iterations with the following termination condition:

1
N

N

∑
k=1
|Ji+1(xk)− Ji(xk)| < 0.35 (30)

where N = 250 is the total number of estimated states obtained from the five scenarios. Figure 7 shows
how the average absolute error, 1

N ∑N
k=1 |Ji+1(xk)− Ji(xk)|, changes in subsequent iterations. Please

note that the ROM used to run the closed-loop simulations under the MPC system for five different
scenarios is developed with a fixed E, which is 0.5× 1010 Pa (i.e., no variation in E). Therefore, it does
not capture the plant–model mismatch due to uncertainty in E. In this work, the same ROM with
a fixed E is used in the ADP-based controller to demonstrate its capability of handling a plant–model
mismatch in E.

To test the performance of the ADP-based controller, we performed the closed-loop simulation
with the converged cost-to-go function by considering 10% decrease in E and by initializing the Kalman
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filter with the fracture width at the wellbore and the fracture length values outside the “training set”.
Note that the “training set” refers to the set of values of the fracture width at the wellbore and the
fracture length used to initialize the Kalman filter during the closed-loop simulations under the
MPC system for five scenarios. The profiles of the injected proppant concentration at the wellbore
(i.e., the manipulated input) and proppant concentration across the fracture at the end of pumping
using the ADP-based controller are shown in Figures 8 and 9. It can be observed in Figure 9 that the
ADP-based controller is able to achieve uniform proppant concentration across the fracture at the
end of pumping. In other words, it effectively handled the plant–model mismatch in E. Please note
that, even with the same rock formation, the performance of hydraulic fracturing can be significantly
different [48,49]. This variability can, in part, be attributed to the spatially varying rock mechanical
properties such as the Young’s modulus, E. Therefore, having a controller such as the ADP-based
control framework that can handle the plant–model mismatch in E can play a crucial role in enhancing
the productivity of the produced well.
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Figure 7. Profile of the average absolute error with iteration.
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Figure 8. Pumping schedule generated using the ADP-based controller with plant–model mismatch.
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Figure 9. Spatial proppant concentration profile obtained at the end of pumping using the ADP-based
controller with plant–model mismatch.

Remark 6. Please note that in robust MPC-based methods [50–53], model parameter uncertainty has been
directly considered in designing MPC. However, in the proposed ADP-based controller, the uncertainty in the
model parameter (i.e., Young’s modulus, E) is handled by developing an accurate cost-to-go function during the
offline stage.

4. Conclusions

In this work, we developed an ADP-based strategy to regulate the proppant concentration across
the fracture at the end of pumping in hydraulic fracturing. First, we performed the closed-loop
simulations under the standard MPC to obtain measurable outputs, which were then used to estimate
unmeasurable states by the Kalman filter, and to initialize the cost-to-go function approximation
in ADP. Second, we employed the value iteration for the cost-to-go improvement by performing
iterations of the Bellman equation for all the estimated states during the closed-loop simulations
under the standard MPC. Lastly, the ADP-based controller with the converged cost-to-go function
approximator was employed for the design of a feedback control system to achieve uniform proppant
concentration across the fracture at the end of pumping. The generated pumping schedule using the
proposed ADP-based control framework was able to produce a uniform proppant concentration that
was closer to the target concentration than the pumping schedule generated by the standard MPC.
The ADP-based controller was able to generate an online pumping schedule at a fraction of the time
required for the standard MPC as we only had to solve the single-stage optimization problem at each
sampling time. Furthermore, the ADP-based controller was able to handle the plant–model mismatch
in the Young’s modulus of a rock formation. Therefore, this method holds promise to control the
hydraulic fracturing process by handling uncertainties in the important geological properties.

Author Contributions: H.S.S. and J.S.K. conceived and designed the study; P.S. developed the mathematical
model of hydraulic fracturing process and developed the MPC system; and H.S.S. and J.S.K. developed the
ADP-based controller and wrote the paper.

Funding: This research received no external funding.

Acknowledgments: Financial support from the Artie McFerrin Department of Chemical Engineering and the
Texas A&M Energy Institute is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Mathematics 2018, 6, 132 17 of 19

References

1. Economides, M.J.; Watters, L.T.; Dunn-Normall, S. Petroleum Well Construction; Wiley: New York, NY, USA, 1998.
2. Economides, M.J.; Nolte, K.G. Reservoir Stimulation; John Wiley & Sons: New York, NY, USA, 2000.
3. Economides, M.J.; Martin, T. Modern Fracturing: Enhancing Natural Gas Production; ET Publishing:

Houston, TX, USA, 2007.
4. Nolte, K.G. Determination of proppant and fluid schedules from fracturing-pressure decline. SPE Prod. Eng.

1986, 1, 255–265. [CrossRef]
5. Gu, H.; Desroches, J. New pump schedule generator for hydraulic fracturing treatment design.

In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference,
Port-of-Spain, Trinidad and Tobago, 27–30 April 2003.

6. Dontsov, E.V.; Peirce, A.P. A new technique for proppant schedule design. Hydraul. Fract. J. 2014, 1, 1–8.
7. Gu, Q.; Hoo, K.A. Model-based closed-loop control of the hydraulic fracturing Process. Ind. Eng. Chem. Res.

2015, 54, 1585–1594. [CrossRef]
8. Siddhamshetty, P.; Yang, S.; Kwon, J.S. Modeling of hydraulic fracturing and designing of online pumping

schedules to achieve uniform proppant concentration in conventional oil reservoirs. Comput. Chem. Eng.
2018, 114, 306–317. [CrossRef]

9. Siddhamshetty, P.; Kwon, J.S.; Liu, S.; Valkó, P.P. Feedback control of proppant bank heights during hydraulic
fracturing for enhanced productivity in shale formations. AIChE J. 2018, 64, 1638–1650. [CrossRef]

10. Narasingam, A.; Siddhamshetty, P.; Kwon, J.S. Temporal clustering for order reduction of nonlinear parabolic
PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process. AIChE J.
2017, 63, 3818–3831. [CrossRef]

11. Narasingam, A.; Kwon, J.S. Development of local dynamic mode decomposition with control: Application
to model predictive control of hydraulic fracturing. Comput. Chem. Eng. 2017, 106, 501–511. [CrossRef]

12. Sidhu, H.S.; Narasingam, A.; Siddhamshetty, P.; Kwon, J.S. Model order reduction of nonlinear parabolic
PDE systems with moving boundaries using sparse proper orthogonal decomposition: Application to
hydraulic fracturing. Comput. Chem. Eng. 2018, 112, 92–100. [CrossRef]

13. Morari, M.; Lee, J.H. Model predictive control: Past, present and future. Comput. Chem. Eng. 1999, 23, 667–682.
[CrossRef]

14. Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O. Constrained model predictive control: Stability and
optimality. Automatica 2000, 36, 789–814. [CrossRef]

15. Bemporad, A.; Morari, M. Control of systems integrating logic, dynamics and constraints. Automatica 1999,
35, 407–427. [CrossRef]

16. Lee, J.H.; Cooley, B. Recent advances in model predictive control and other related areas. In AIChE Symposium
Series; 1971-c2002; American Institute of Chemical Engineers: New York, NY, USA, 1997; Volume 93,
pp. 201–216.

17. Chikkula, Y.; Lee, J.H. Robust adaptive predictive control of nonlinear processes using nonlinear moving
average system models. Ind. Eng. Chem. Res. 2000, 39, 2010–2023. [CrossRef]

18. Lee, J.H.; Lee, J.M. Approximate dynamic programming based approach to process control and scheduling.
Comput. Chem. Eng. 2006, 30, 1603–1618. [CrossRef]

19. Kaisare, N.S.; Lee, J.M.; Lee, J.H. Simulation based strategy for nonlinear optimal control: Application to
a microbial cell reactor. Int. J. Robust Nonlinear Control 2003, 13, 347–363. [CrossRef]

20. Lee, J.M.; Kaisare, N.S.; Lee, J.H. Choice of approximator and design of penalty function for an approximate
dynamic programming based control approach. J. Process Control 2006, 16, 135–156. [CrossRef]

21. Tosukhowong, T.; Lee, J.H. Approximate dynamic programming based optimal control applied to
an integrated plant with a reactor and a distillation column with recycle. AIChE J. 2009, 55, 919–930.
[CrossRef]

22. Padhi, R.; Balakrishnan, S.N. Proper orthogonal decomposition based optimal neurocontrol synthesis of
a chemical reactor process using approximate dynamic programming. Neural Netw. 2003, 16, 719–728.
[CrossRef]

23. Joy, M.; Kaisare, N.S. Approximate dynamic programming-based control of distributed parameter systems.
Asia-Pac. J. Chem. Eng. 2011, 6, 452–459. [CrossRef]

http://dx.doi.org/10.2118/13278-PA
http://dx.doi.org/10.1021/ie5024782
http://dx.doi.org/10.1016/j.compchemeng.2017.10.032
http://dx.doi.org/10.1002/aic.16031
http://dx.doi.org/10.1002/aic.15733
http://dx.doi.org/10.1016/j.compchemeng.2017.07.002
http://dx.doi.org/10.1016/j.compchemeng.2018.02.004
http://dx.doi.org/10.1016/S0098-1354(98)00301-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(98)00178-2
http://dx.doi.org/10.1021/ie990393e
http://dx.doi.org/10.1016/j.compchemeng.2006.05.043
http://dx.doi.org/10.1002/rnc.822
http://dx.doi.org/10.1016/j.jprocont.2005.04.010
http://dx.doi.org/10.1002/aic.11805
http://dx.doi.org/10.1016/S0893-6080(03)00131-X
http://dx.doi.org/10.1002/apj.568


Mathematics 2018, 6, 132 18 of 19

24. Munusamy, S.; Narasimhan, S.; Kaisare, N.S. Approximate dynamic programming based control of
hyperbolic PDE systems using reduced-order models from method of characteristics. Comput. Chem. Eng.
2013, 57, 122–132. [CrossRef]

25. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
26. Perkins, T.K.; Kern, L.R. Widths of Hydraulic Fractures. J. Pet. Technol. 1961, 13, 937–949. [CrossRef]
27. Nordgren, R. Propagation of a vertical hydraulic fracture. Soc. Pet. Eng. J. 1972, 12, 306–314. [CrossRef]
28. Sneddon, L.; Elliot, H. The opening of a Griffith crack under internal pressure. Q. Appl. Math. 1946,

4, 262–267. [CrossRef]
29. Gudmundsson, A. Stress estimate from the length/width ratios of fractures. J. Struct. Geol. 1983, 5, 623–626.

[CrossRef]
30. Howard, G.C.; Fast, C.R. Optimum fluid characteristics for fracture extension. Dril. Product. Pract. 1957,

24, 261–270.
31. Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J. Computer simulation of hydraulic fractures. Int. J. Rock Mech.

Min. Sci. 2007, 44, 739–757. [CrossRef]
32. Daneshy, A. Numerical solution of sand transport in hydraulic fracturing. J. Pet. Technol. 1978, 30, 132–140.

[CrossRef]
33. Barree, R.; Conway, M. Experimental and numerical modeling of convective proppant transport.

J. Pet. Technol. 1995, 47, 216–222. [CrossRef]
34. Gu, Q.; Hoo, K.A. Evaluating the performance of a fracturing treatment design. Ind. Eng. Chem. Res. 2014,

53, 10491–10503. [CrossRef]
35. Novotny, E.J. Proppant transport. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition

(SPE 6813), Denver, CO, USA, 9–12 October 1977.
36. Daal, J.A.; Economides, M.J. Optimization of hydraulic fracture well in irregularly shape drainage areas.

In Proceedings of the SPE 98047 SPE International Symposium and Exhibition of Formation Flamage Control,
Lafayette, LA, USA, 15–17 February 2006; pp. 15–17.

37. Corbett, B.; Mhaskar, P. Subspace identification for data-driven modeling and quality control of batch
processes. AIChE J. 2016, 62, 1581–1601. [CrossRef]

38. Meidanshahi, V.; Corbett, B.; Adams, T.A., II; Mhaskar, P. Subspace model identification and model predictive
control based cost analysis of a semicontinuous distillation process. Comput. Chem. Eng. 2017, 103, 39–57.
[CrossRef]

39. Pourkargar, D.B.; Armaou, A. Modification to adaptive model reduction for regulation of distributed
parameter systems with fast transients. AIChE J. 2013, 59, 4595–4611. [CrossRef]

40. Pourkargar, D.B.; Armaou, A. APOD-based control of linear distributed parameter systems under
sensor/controller communication bandwidth limitations. AIChE J. 2015, 61, 434–447. [CrossRef]

41. Sahraei, M.H.; Duchesne, M.A.; Yandon, R.; Majeski, A.; Hughes, R.W.; Ricardez-Sandoval, L.A.
Reduced order modeling of a short-residence time gasifier. Fuel 2015, 161, 222–232. [CrossRef]

42. Sahraei, M.H.; Duchesne, M.A.; Hughes, R.W.; Ricardez-Sandoval, L.A. Dynamic reduced order modeling
of an entrained-flow slagging gasifier using a new recirculation ratio correlation. Fuel 2017, 196, 520–531.
[CrossRef]

43. Quirein, J.A.; Grable, J.; Cornish, B.; Stamm, R.; Perkins, T. Microseismic fracture monitoring. In Proceedings
of the SPWLA 47th Annual Logging Symposium, Veracruz, Mexico, 4–7 June 2006.

44. Narasingam, A.; Siddhamshetty, P.; Kwon, J.S. Handling Spatial Heterogeneity in Reservoir Parameters
Using Proper Orthogonal Decomposition Based Ensemble Kalman Filter for Model-Based Feedback Control
of Hydraulic Fracturing. Ind. Eng. Chem. Res. 2018, 57, 3977–3989. [CrossRef]

45. Bertsekas, D. Dynamic Programming and Optimal Control; Athena Scientific: Belmont, MA, USA, 2005;
Volume 1.

46. Lee, J.M.; Lee, J.H. An approximate dynamic programming based approach to dual adaptive control.
J. Process Control 2009, 19, 859–864. [CrossRef]

47. Jafarpour, B. Sparsity-promoting solution of subsurface flow model calibration inverse problems.
Adv. Hydrogeol. 2013, 73–94. [CrossRef]

http://dx.doi.org/10.1016/j.compchemeng.2013.01.017
http://dx.doi.org/10.2118/89-PA
http://dx.doi.org/10.2118/3009-PA
http://dx.doi.org/10.1090/qam/17161
http://dx.doi.org/10.1016/0191-8141(83)90075-5
http://dx.doi.org/10.1016/j.ijrmms.2006.11.006
http://dx.doi.org/10.2118/5636-PA
http://dx.doi.org/10.2118/28564-PA
http://dx.doi.org/10.1021/ie404134n
http://dx.doi.org/10.1002/aic.15155
http://dx.doi.org/10.1016/j.compchemeng.2017.03.011
http://dx.doi.org/10.1002/aic.14207
http://dx.doi.org/10.1002/aic.14640
http://dx.doi.org/10.1016/j.fuel.2015.07.096
http://dx.doi.org/10.1016/j.fuel.2017.01.079
http://dx.doi.org/10.1021/acs.iecr.7b04927
http://dx.doi.org/10.1016/j.jprocont.2008.11.009
http://dx.doi.org/10.1007/978-1-4614-6479-2_4


Mathematics 2018, 6, 132 19 of 19

48. Daniels, J.L.; Waters, G.A.; Le Calvez, J.H.; Bentley, D.; Lassek, J.T. Contacting more of the barnett
shale through an integration of real-time microseismic monitoring, petrophysics, and hydraulic fracture
design. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA,
11–14 November 2007.

49. King, G.E. Thirty years of gas shale fracturing: What have we learned? In Proceedings of the SPE Annual
Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010.

50. Lucia, S.; Finkler, T.; Engell, S. Multi-stage nonlinear model predictive control applied to a semi-batch
polymerization reactor under uncertainty. J. Process Control 2013, 23, 1306–1319. [CrossRef]

51. Gutierrez, G.; Ricardez-Sandoval, L.A.; Budman, H.; Prada, C. An MPC-based control structure selection
approach for simultaneous process and control design. Comput. Chem. Eng. 2014, 70, 11–21. [CrossRef]

52. Rodriguez-Perez, B.E.; Flores-Tlacuahuac, A.; Ricardez Sandoval, L.; Lozano, F.J. Optimal Water Quality
Control of Sequencing Batch Reactors Under Uncertainty. Ind. Eng. Chem. Res. 2018, 57, 9571–9590.
[CrossRef]
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