Article

A Characterization of Projective Special Unitary Group PSU $(3,3)$ and Projective Special Linear Group PSL $(3,3)$ by NSE

Farnoosh Hajati ${ }^{1}$, Ali Iranmanesh ${ }^{2, *}$ (D) and Abolfazl Tehranian ${ }^{1}$
1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran; F_hajati@azad.ac.ir (F.H.); tehranian@srbiau.ac.ir (A.T.)
2 Department of Mathematics, Tarbiat Modares University, Tehran 14115-137, Iran
* Correspondence: iranmanesh@modares.ac.ir

Received: 17 May 2018; Accepted: 29 June 2018; Published: 10 July 2018

Abstract

Let G be a finite group and $\omega(G)$ be the set of element orders of G. Let $k \in \omega(G)$ and m_{k} be the number of elements of order k in G. Let $n s e(G)=\left\{m_{k} \mid k \in \omega(G)\right\}$. In this paper, we prove that if G is a finite group such that $n \operatorname{se}(G)=n s e(H)$, where $H=\operatorname{PSU}(3,3)$ or $\operatorname{PSL}(3,3)$, then $G \cong H$.

Keywords: element order; number of elements of the same order; projective special linear group; projective special unitary group; simple K_{n}-group

1. Introduction

We devote this section to relevant definitions, basic facts about nse, and a brief history of this problem. Throughout this paper, G is a finite group. We express by $\pi(G)$ the set of prime divisors of $|G|$, and by $\omega(G)$, we introduce the set of order of elements from G. Set $m_{k}=m_{k}(G)=\mid\{g \in G \mid$ the order of g is $k\} \mid$ and $n s e(G)=\left\{m_{k} \mid k \in \omega(G)\right\}$. In fact, m_{k} is the number of elements of order k in G and $\operatorname{nse}(G)$ is the set of sizes of elements with the same order in G.

One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property (up to isomorphism). A finite nonabelian simple group H is called characterizable by nse if every finite group G with $n s e(G)=n s e(H)$ implies that $G \cong H$.

After the monumental attempt to classify the finite simple groups, a huge amount of information about these groups has been collected. It has been noticed that some of the known simple groups are characterizable by some of their properties. Until now, different characterization are considered for some simple groups.

The twentieth century mathematician J.G. Thompson posed very interesting problem [1] .
Thompson Problem. Let $T(G)=\left\{\left(k, m_{k}\right) \mid k \in \omega(G), m_{k} \in n s e(G)\right\}$ where m_{k} is the number of elements with order k. Suppose that $T(G)=T(H)$. If G is a finite solvable group, is it true that H is also necessary solvable?

Characterization of a group G by $\operatorname{nse}(G)$ and $|G|$, for short, deals with the number of elements of order k in the group G and $|G|$, where one must answer the question "is a finite group G, can be characterized by the set nse (G) and $|G|$?" While mathematicians might undoubtedly give many answers to such a question, the answer in Shao et al. [2,3] would probably rank near the top of most responses. They proved that if G is a simple $k_{i}(i=3,4)$ group, then G is characterizable by nse (G) and $|G|$. Several groups were characterized by nse and order. For example, in [4,5], it is proved that the Suzuki group, and sporadic groups are characterizable by nse and order. We remark here that not all groups can be characterized by their group orders and the set nse. For example, let $H_{1}=C_{4} \times C_{4}$ and $H_{2}=C_{2} \times Q_{8}$, where C_{2} and C_{4} are cyclic groups of order 2 and 4 , respectively, and Q_{8} is a quaternion
group of order 8 . It is easy to see that $\operatorname{nse}\left(H_{1}\right)=\operatorname{nse}\left(H_{2}\right)=\{1,3,12\}$ and $\left|H_{1}\right|=\left|H_{2}\right|=16$ but $H_{1} \not \neq H_{2}$.

We know that the set of sizes of conjugacy classes has an essential role in determining the structure of a finite group. Hence, one might ask whether the set of sizes of elements with the same order has an essential role in determining the structure of a finite group. It is claimed that some simple groups could be characterized by exactly the set nse, without considering the order of group. In [6-12], it is proved that the alternating groups A_{n}, where $n \in\{7,8\}$, the symmetric groups S_{n} where $n \in\{3,4,5,6,7\}, M_{12}, L_{2}(27), L_{2}(q)$ where $q \in\{16,17,19,23\}, L_{2}(q)$ where $q \in\{7,8,11,13\}$, $L_{2}(q)$ where $q \in\{17,27,29\}$, are uniquely determined by nse (G). Besides, in [13-16], it is proved that $U_{3}(4), L_{3}(4), U_{3}(5)$, and $L_{3}(5)$ are uniquely determined by nse (G). Recently, in [17-19], it is proved that the simple groups $G_{2}(4), L_{2}\left(3^{n}\right)$, where $\left|\pi\left(L_{2}\left(3^{n}\right)\right)\right|=4$, and $L_{2}\left(2^{m}\right)$, where $\left|\pi\left(L_{2}\left(2^{m}\right)\right)\right|=4$, are uniquely determined by nse (G). Therefore, it is natural to ask what happens with other kinds of simple groups.

The purpose of this paper is to continue this work by considering the following theorems:
Theorem 1. Let G be a group such that nse $(G)=n s e(\operatorname{PSU}(3,3))$. Then G is isomorphic to $\operatorname{PSU}(3,3)$.
Theorem 2. Let G be a group such that nse $(G)=n s e(\operatorname{PSL}(3,3))$. Then G is isomorphic to $\operatorname{PSL}(3,3)$.

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the paper. For a natural number n, by $\pi(n)$, we mean the set of all prime divisors of n, so it is obvious that if G is a finite group, then $\pi(G)=\pi(|G|)$. A Sylow r-subgroup of G is denoted by P_{r} and by $n_{r}(G)$, we mean the number of Sylow r-subgroup of G. Also the largest element order of P_{r} is signified by $\exp \left(P_{r}\right)$. In addition, G is called a simple K_{n} group if G is a simple group with $|\pi(G)|=n$. Moreover, we denote by ϕ, the Euler function. In the following, we bring some useful lemmas which be used in the proof of main results.

Remark 1. If G is a simple K_{1} - group, then G is a cyclic of prime order.
Remark 2. If $|G|=p^{a} q^{b}$, with p and q distinct primes, and a, b non-negative integers, then by Burnside's $p q$-theorem, G is solvable. In particular, there is no simple K_{2}-groups [20].

Lemma 1. Let G be a group containing more than two elements. If the maximal number s of elements of the same order in G is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$ [21].

Lemma 2. Let G be a group. If $1 \neq n \in n s e(G)$ and $2 \bigvee n$, then the following statements hold [12]:
(1) $2||G|$;
(2) $m_{2}=n$;
(3) for any $2<t \in \omega(G), m_{t} \neq n$.

Lemma 3. Let G be a finite group and m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m \| L_{m}(G) \mid$ [22].

Lemma 4. Let G be a group and P be a cyclic Sylow p-group of G of order p^{α}. If there is a prime r such that $p^{\alpha} r \in \omega(G)$, then $m_{p^{\alpha} r}=m_{r}\left(C_{G}(P)\right) m_{p^{\alpha}}$. In particular, $\phi(r) m_{p^{\alpha}} \mid m_{p^{\alpha} r}$, where $\phi(r)$ is the Euler function of r [23].

Lemma 5. Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n=p^{s} m$, where $(p, m)=1$. If P is not cyclic group and $s>1$, then the number of elements of order n is always a multiple of p^{s} [24].

Lemma 6. Let G be a finite group, $P \in \operatorname{Syl}_{p}(G)$, where $p \in \pi(G)$. Let G have a normal series $1 \unlhd K \unlhd L \unlhd G$. If $P \leq L$ and $p \backslash|K|$, then the following hold [3]:
(1) $N_{\frac{G}{K}}\left(\frac{P K}{K}\right)=\frac{N_{G}(P) K}{K}$;
(2) $\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}(G)=n_{p}(L)$;
(3) $\left|\frac{L}{K}: N_{\frac{L}{K}}\left(\frac{P K}{K}\right)\right| t=\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}\left(\frac{L}{K}\right) t=n_{p}(G)=n_{p}(L)$ for some positive integer t, and $\left|N_{K}(P)\right| t=|K|$.

Lemma 7. Let G be a finite solvable group and $|G|=m n$, where $m=p_{1}^{\alpha 1} \ldots p_{r}^{\alpha r},(m, n)=1$. Let $\pi=$ $\left\{p_{1}, \cdots, p_{r}\right\}$ and let h_{m} be the number of π-Hall subgroups of G. Then $h_{m}=q_{1}^{\beta 1} \cdots q_{s}^{\beta s}$ satisfies the following conditions for all $i \in\{1,2, \cdots, s\}$ [25]:

$$
\begin{equation*}
q_{i}^{\beta i}=1\left(\bmod p_{j}\right) \text { for some } p_{j} \tag{1}
\end{equation*}
$$

(2) The order of some chief factor of G is divisible by $q_{i}^{\beta i}$.

Lemma 8. Let the finite group G act on the finite set X. If the action is semi regular, then $|G|||X|$ [26].
Let us mention the structure of simple K_{3}-groups, which will be needed in Section 3.
Lemma 9. If G is a simple K_{3}-group, then G is isomorphic to one of the following groups [27]: $A_{5}, A_{6}, L_{2}(7)$, $L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)$.

3. Main Results

Suppose G is a group such that $n s e(G)=n s e(H)$, where $H=\operatorname{PSU}(3,3)$, or $\operatorname{PSL}(3,3)$. By Lemma 1, we can assume that G is finite. Let m_{n} be the number of elements of order n. We notice that $m_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n in G. In addition, we notice that if $n>2$, then $\phi(n)$ is even. If $n \in \omega(G)$, then by Lemma 3 and the above discussion, we have

$$
\left\{\begin{array}{l}
\phi(n) \mid m_{n} \tag{1}\\
n \mid \sum_{d \mid n} m_{d}
\end{array}\right.
$$

In the proof of Theorem 1 and Theorem 2, we often apply formula (1) and the above comments.
Proof of Theorem 1. Let G be a group with

$$
\operatorname{nse}(G)=\operatorname{nse}(\operatorname{PSU}(3,3))=\{1,63,504,728,1008,1512,1728\}
$$

where $\operatorname{PSU}(3,3)$ is the projective special unitary group of degree 3 over field of order 3 . The proof will be divided into a sequence of lemmas.

Lemma 10. $\pi(G) \subseteq\{2,3,7\}$.
Proof. First, since $63 \in \operatorname{nse}(G)$, by Lemma $2,2 \in \pi(G)$ and $m_{2}=63$. Let $2 \neq p \in \pi(G)$, by formula (1), $p \mid\left(1+m_{p}\right)$ and $(p-1) \mid m_{p}$, which implies that $p \in\{3,5,7,13,19,1009\}$. Now, we prove that $13 \notin \pi(G)$. Conversely, suppose that $13 \in \pi(G)$. Then formula (1), implies $m_{13}=1728$. On the other hand, by formula (1), we conclude that if $2.13 \in \omega(G)$, then $m_{2.13} \in\{504,1008,1512,1728\}$ and $2.13 \mid 1+m_{2}+m_{13}+m_{2.13}(=2296,2800,3304,3520)$. Hence, $(2.13 \mid 2296),(2.13 \mid 2800),(2.13 \mid 3304)$, or $(2.13 \mid 3520)$, which is a contradiction, and hence $2.13 \notin \omega(G)$. Since $2.13 \notin \omega(G)$, the group P_{13} acts fixed point freely on the set of elements of order 2 , and so, by Lemma $8,\left|P_{13}\right| \mid m_{2}$, which is a contradiction. Hence $13 \notin \pi(G)$. Similarly, we can prove that the prime numbers 19 and 1009 do not belong to $\pi(G)$. Now, we prove $5 \notin \pi(G)$. Conversely, suppose that $5 \in \pi(G)$. Then formula (1), implies $m_{5}=504$. From the formula (1), we conclude that if $3.5 \in \omega(G)$, then $m_{15}=1512$. On the other hand,
if $3.5 \in \omega(G)$, then by Lemma $4, m_{3.5}=m_{5} \cdot \phi(3) . t$ for some integer t. Hence $1512=(504)(2) t$, which is a contradiction and hence $3.5 \notin \omega(G)$. Since $3.5 \notin \omega(G)$, the group P_{5} acts fixed point freely on the set of elements of order 3 , and so $\mid P_{5} \| m_{3}$, which is a contradiction. From what has already been proved, we conclude that $\pi(G) \subseteq\{2,3,7\}$.

Remark 3. If $3,7 \in \pi(G)$, then, by formula (1$), m_{3}=728$ and $m_{7}=1728$. If $7^{a} \in \omega(G)$, since $m_{7_{2}} \notin n s e(G)$, then $a=1$. By Lemma 3, $\left|P_{7}\right| \mid\left(1+m_{7}\right)$ and so $\left|P_{7}\right| \mid 7$. Suppose $7 \in \pi(G)$. Then since $\left|P_{7}\right|=7, n_{7}=\frac{m_{7}}{\phi(7)}=$ $3^{2} .2^{5}| | G \mid$. Therefore, if $7 \in \pi(G)$, then $3,2 \in \pi(G)$. Hence, we only have to consider two proper sets $\{2\}$, $\{2,3\}$, and finally the whole set $\{2,3,7\}$.

Now, we will show that $\pi(G)$ is not equal $\{2\}$ and $\{2,3\}$. For this purpose at first, we need obtain some information about elements of $\omega(G)$.

If $2^{a} \in \omega(G)$, then $\phi\left(2^{a}\right)=2^{a-1} \mid m_{2^{a}}$ and so $0 \leq a \leq 7$.
By Lemma 3, $\left|P_{2}\right| \mid\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{7}}\right)$ and so $\left|P_{2}\right| \mid 2^{10}$.
If $3^{a} \in \omega(G)$, then $1 \leq a \leq 4$.
Lemma 11. $\pi(G) \neq\{2\}$ and $\pi(G) \neq\{2,3\}$.
Proof. We claim that $\pi(G) \neq\{2\}$. Assume the contrary, that is, let $\pi(G)=\{2\}$. Since $2^{8} \notin \omega(G)$, we have $\omega(G) \subseteq\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}\right\}$. Hence $|G|=2^{m}=5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ and m are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 1$. Since $5544 \leq|G|=2^{m} \leq 5544+\left(k_{1}+k_{2}+k_{3}+k_{4}+k_{5}\right) 1728$, we have $5544 \leq|G|=2^{m} \leq 5544+1728$. Now, it is easy to check that the equation has no solution, which is a contradiction. Hence $\pi(G) \neq\{2\}$. Our next claim is that $\pi(G) \neq\{2,3\}$. Suppose, contrary to our claim, that $\pi(G)=\{2,3\}$. Since $3^{5} \notin \omega(G), \exp \left(P_{3}\right)=3,3^{2}, 3^{3}, 3^{4}$.

- Let $\exp \left(P_{3}\right)=3$. Then by Lemma 3, $\left|P_{3}\right| \mid\left(1+m_{3}\right)$ and so $\left|P_{3}\right| \mid 3^{6}$. We will consider six cases for $\left|P_{3}\right|$.

Case 1. If $\left|P_{3}\right|=3$, then since $\left.n_{3}=\frac{m_{3}}{\phi(3)}=2^{2} .7 .13| | G \right\rvert\,, 13 \in \pi(G)$, which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{2}$, then since $\exp \left(P_{3}\right)=3$ and $2^{7} .3 \notin \omega(G)$, we have $\omega(G) \subseteq$ $\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}\right\} \cup\left\{3,3.2,3.2^{2}, 3.2^{3}, 3.2^{4}, 3.2^{5}, 3.2^{6}\right\}$, and $|\omega(G)| \leq 15$. Therefore, $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}=|G|=2^{a} .9$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. Since $5544 \leq 2^{a} .9 \leq$ $5544+8.1728$, we have $a=10$ or $a=11$.
If $a=11$, then since $\left|P_{2}\right| \mid 2^{10}$, we have a contradiction.
If $a=10$, then $3672=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+$ $k_{4}+k_{5} \leq 8$. By a computer calculation it is easily seen that the equation has no solution.
Case 3. If $\left|P_{3}\right|=3^{3}$, then $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}=|G|=2^{a} .27$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. Since $5544 \leq 2^{a} .27 \leq 5544+8.1728$, we have $a=8$ or $a=9$.
If $a=8$, then $1368=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. By a computer calculation, it is easily seen that the equation has no solution.
If $a=9$, then $8280=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. In this case, the equation has nine solutions. For example, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=(1,0,3,2,1)$ is one of the solutions. We show this is impossible. Since $k_{2}=0$ and $m_{3}=728$, it follows that $m_{2^{i}} \neq 728$ for $1 \leq i \leq 7$. On the other hand, since $2^{8} \notin \omega(G)$, $\exp \left(P_{2}\right)=2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}$. Hence, if $\exp \left(P_{2}\right)=2^{i}$ where $1 \leq i \leq 7$, then $\mid P_{2} \|\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{i}}\right)$ by Lemma 3. Since $m_{2^{i}} \neq 728$, for $1 \leq i \leq 7$ by a computer calculation, we have $\mid P_{2} \| 2^{7}$, which is a contradiction. The same conclusion can be drawn for other solutions.

Case 4. If $\left|P_{3}\right|=3^{4}$, then $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}=|G|=2^{a} .81$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. Since $5544 \leq 2^{a} .81 \leq 5544+8.1728$, we have $a=7$. If $a=7$, then $4824=504 k_{1}+728 k_{2}+$ $1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. One sees immediately that the equation has no solution.
Case 5. If $\left|P_{3}\right|=3^{5}$, then $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}=|G|=2^{a} .243$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. Since $5544 \leq 2^{a} .243 \leq 5544+8.1728$, we have $a=5$ or $a=6$.
If $a=5$, then $2232=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$. By a computer calculation $(1,0,0,0,1)$ is the only solution of this equation. Then $|\omega(G)|=9$, it is clear that $\exp \left(P_{2}\right)=2^{4}$ or $\exp \left(P_{2}\right)=2^{5}$. Also since $k_{2}=0$ and $m_{3}=728, m_{2^{i}} \neq 728$ for $1 \leq i \leq 7$.
If $\exp \left(P_{2}\right)=2^{5}$, then since $|G|=2^{5} .3^{5}$, the number of Sylow 2-subgroups of G is $1,3,9,27,81,243$ and so the number of elements of order 2 is $1,3,9,27,81,243$ but none of which belong to nse(G).
If $\exp \left(P_{2}\right)=2^{4}$, then $\omega(G)=\left\{1,2,2^{2}, 2^{3}, 2^{4}\right\} \cup\left\{3,3.2,3.2^{2}, 3.2^{3}\right\}$. Since $3.2^{4} \notin \omega(G)$, it follows that the group P_{3} acts fixed point freely on the set of elements of order 2^{4}. Hence, $\left|P_{3}\right| \mid m_{2^{4}}$, which is a contradiction $\left(m_{2^{4}} \in\{504,1008,1512,1728\}\right)$.
If $a=6$, then $10,008=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$. By a computer calculation, $(0,0,2,3,2)$, and $(1,0,0,4,2)$ are solutions of this equation. Since $|\omega(G)|=14$, we have $\omega(G)=\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}\right\} \cup\left\{3,3.2,3.2^{2}, 3.2^{3}, 3.2^{4}, 3.2^{5}, 3.2^{6}\right\}$. We know $|G|=2^{6} .3^{5}$. It follows that, the number of Sylow 2-subgroups of G is $1,3,9,27,81,243$ and so the number of elements of order 2 is $1,3,9,27,81,243$ but none of which belong to nse(G).
Case 6. Similarly, we can rule out $\left|P_{3}\right|=3^{6}$.

- Let $\exp \left(P_{3}\right)=3^{2}$. Then by Lemma 3, $\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}\right.$) and so $\left|P_{3}\right| \mid 3^{3}$ (for example when $\left.m_{9}=1512\right)$. We will consider two cases for $\left|P_{3}\right|$.

Case 1. If $\left|P_{3}\right|=3^{2}$, then $n_{3}=\frac{m_{9}}{\phi(9)}$, since $m_{9} \in\{504,1008,1512,1728\}, n_{3}=2^{2} .3 .7$ or $n_{3}=2^{2} .7 .3^{2}$ or $n_{3}=2^{3} .3 .7$, and so $7 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3^{2}$, since a cyclic group of order 9 has two elements of order $3, m_{3} \leq 2^{5} .3^{2} .2=576$, which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{3}$, then since $2^{7} .3 \notin \omega(G)$ and $2^{7} .3^{2} \notin \omega(G),|\omega(G)| \leq 22$. Therefore, $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}=|G|=2^{a} .27$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 15$. Since $5544 \leq 2^{a} .27 \leq 5544+15.1728$, we have $a=8, a=9$, or $a=10$.
If $a=8$, then $1368=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 15$. By a computer calculation, it is easily seen that the equation has no solution.
If $a=9$, then $8280=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 15$. By a computer calculation, the equation has 22 solutions. For example, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=(1,0,0,4,1)$. We show this solution is impossible. Since $k_{2}=0$ and $m_{3}=728$, it follows that $m_{2^{i}} \neq 728$, for $1 \leq i \leq 7$. On the other hand, if $2^{a} \in \omega(G)$, then $0 \leq a \leq 7$. By Lemma 3, we have $\mid P_{2} \|\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{7}}\right)$, since $m_{2^{i}} \neq 728$ for $1 \leq i \leq 7$, by a computer calculation we have $\mid P_{2} \| 2^{7}$, which is a contradiction. Arguing as above, for other solutions, we have a contradiction.
Similarly, $a=10$ can be ruled out as the above method.

- Let $\exp \left(P_{3}\right)=3^{3}$. Then by Lemma 3, $\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}\right)$ and so $\left|P_{3}\right| \mid 3^{4}$ (for example when $\left(m_{9}=1512\right.$ and $\left.m_{27}=1728\right)$). We will consider two cases for $\left|P_{3}\right|$.

Case 1. If $\left|P_{3}\right|=3^{3}$, then $n_{3}=\frac{m_{27}}{\phi(27)}$, since $m_{27} \in\{504,1008,1512,1728\}, n_{3}=2^{3} .7$ or $n_{3}=2^{2} .7$ or $n_{3}=2^{2} .3 .7$, and so $7 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3$, since a cyclic group of order 27 has two elements of order $3, m_{3} \leq 2^{5} .3 .2=192$, which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{4}$, and P_{3} is not cyclic subgroup, then by Lemma $5,27 \mid m_{27}$. Since ($27 / 504$) and (27 $V 1008$), it is understood that $m_{27} \in\{1512,1728\}$. Since $2^{7} .3 \notin \omega(G), 2^{7} .3^{2} \notin$ $\omega(G)$, and $2^{7} .3^{3} \notin \omega(G),|\omega(G)| \leq 29$. Therefore $5544+504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+$ $1728 k_{5}=|G|=2^{a} .81$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 22$. Since $5544 \leq 2^{a} .81 \leq 5544+22.1728$, we have $a=7$, $a=8$, or $a=9$.
If $a=7$, then $4824=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 22$. By a computer calculation, it is easily seen that the equation has no solution.
If $a=8$, then $15192=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+$ $k_{4}+k_{5} \leq 22$. By a computer calculation, the equation has 22 solutions. For example, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=(0,0,2,3,5)$. We show this solution is impossible. Since $k_{2}=0$ and $m_{3}=728$, it follows that $m_{2^{i}} \neq 728$, for $1 \leq i \leq 7$. On the other hand, by Lemma 3, we have $\left|P_{2}\right| \mid\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{7}}\right)$, since $m_{2^{i}} \neq 728$ for $1 \leq i \leq 7$, by a computer calculation we have $\left|P_{2}\right| 2^{7}$, which is a contradiction. Assume $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=(0,9,0,0,5)$ is a solution. Since $\left|P_{2}\right| \mid\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{7}}\right)$ by Lemma 3. Indeed, $\left|P_{2}\right| \mid(1+63+$ $\left.504 t_{1}+728 t_{2}+1008 t_{3}+1512 t_{4}+1728 t_{5}\right)$ where $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$, are non-negative integers and $0 \leq t_{1}+t_{2}+t_{3}+t_{4}+t_{5} \leq 6$. Since $k_{1}=0, k_{2}=9$, and $k_{3}=0,0 \leq t_{1} \leq 1,0 \leq t_{2} \leq 10$, and $0 \leq t_{3} \leq 1$. Since $k_{4}=0$ and $m_{27}=1512$ or $1728, t_{4}=0$. Also $k_{5}=5$, and thus $0 \leq t_{5} \leq 6$. By an easy calculation, this is impossible. Arguing as above, for other solutions, we have a contradiction.
If $a=9$, then $35928=504 k_{1}+728 k_{2}+1008 k_{3}+1512 k_{4}+1728 k_{5}$ where $0 \leq k_{1}+k_{2}+k_{3}+$ $k_{4}+k_{5} \leq 22$. By a computer calculation, it is easily seen that the equation has no solution.

- Let $\exp \left(P_{3}\right)=3^{4}$. Then by Lemma $3,\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}+m_{3^{4}}\right)$ and so $\left|P_{3}\right| \mid 3^{4}$ (for example when ($m_{9}=504, m_{27}=1008$, and $\left.m_{81}=1728\right)$).
If $\left|P_{3}\right|=3^{4}$, then $n_{3}=\frac{m_{81}}{\phi(81)}$, since $m_{81} \in\{1512,1728\}, n_{3}=3.7$ or $n_{3}=2^{5}$. If $n_{3}=3.7$, then $7 \in \pi(G)$ which is a contradiction. If $n_{3}=2^{5}$, since a cyclic group of order 81 has two elements of order 3 , then $m_{3} \leq 2^{5} .2$, which is a contradiction.

Remark 4. According to Lemmas 10 and 11, Remark 3 we have $\pi(G)=\{2,3,7\}$.
Lemma 12. $G \cong \operatorname{PSU}(3,3)$.
Proof. First, we show that $|G|=\mid \operatorname{PSU}\left(3,3 \mid\right.$. From the above arguments, we have $\left|P_{7}\right|=7$. Since $3.7 \notin \omega(G)$, the group P_{3} acts fixed point freely on the set of elements of order 7, and so $\left|P_{3}\right| \mid m_{7}$. Hence $\left|P_{3}\right| \mid 3^{3}$. Likewise, $2.7 \notin \omega(G)$, and so $\left|P_{2}\right| \mid 2^{6}$. Hence, we have $|G|=2^{m} .3^{n} .7$. Since $5544=2^{3} \cdot 3^{2} .7 \cdot 11 \leq 2^{m} \cdot 3^{n} .7$, we conclude that $|G|=2^{6} .3^{3} .7$ or $|G|=2^{5} .3^{3} .7$. The proof is completed by showing that there is no group such that $|G|=2^{6} .3^{3} .7$ and $n s e(G)=n s e(\operatorname{PSU}(3,3))$. First, we claim that G is a non-solvable group. Suppose that G is solvable, since $n_{7}=\frac{m_{7}}{\phi(7)}=2^{5} .3^{2}$, by Lemma $7,2^{5} \equiv 1(\bmod 7)$, which is a contradiction. Therefore, G is a non-solvable group and $7^{2} \backslash|G|$. Hence, G has a normal series $1 \unlhd N \unlhd H \unlhd G$, such that N is a maximal solvable normal subgroup of G and $\frac{H}{N}$ is a non-solvable minimal normal subgroup of $\frac{G}{N}$. Indeed, $\frac{H}{N}$ is a non-abelian simple K_{3}-group, and so by Lemma $9, \frac{H}{N}$ is isomorphic to $L_{2}(7)$ or $L_{2}(8)$. Suppose that $\frac{H}{N} \cong L_{2}(7)$. We know $n_{7}\left(L_{2}(7)\right)=8$. From Lemma 6 , we have $n_{7}\left(\frac{H}{N}\right) t=n_{7}(G)$, and so, $n_{7}(G)=8 t$ for some integer t. On the other hand, since $n_{7}(G) \mid 2^{6} .3^{3}$ and $n_{7}(G)=1+7 k$, we have $n_{7}(G)=1, n_{7}(G)=8, n_{7}(G)=36, n_{7}(G)=64$, or
$n_{7}(G)=288$. If $n_{7}(G)=36$, then since $36=8 t$ has no integer solution, we have a contradiction. Similarly, if $\frac{H}{N} \cong L_{2}(8)$, we have a contradiction. As a result, $|G|=2^{5} .3^{3} .7=|\operatorname{PSU}(3,3)|$. Hence $|G|=|\operatorname{PSU}(3,3)|$, and by assumption, $n s e(G)=n s e(\operatorname{PSU}(3,3))$, so by $[2], G \cong \operatorname{PSU}(3,3)$ and the proof is completed.

The remainder of this section will be devoted to the proof of Theorem 2.
Proof of Theorem 2. Let G be a group with

$$
\operatorname{nse}(G)=\operatorname{nse}(\operatorname{PSL}(3,3))=\{1,117,702,728,936,1404,1728\}
$$

where $\operatorname{PSL}(3,3)$ is the projective special linear group of degree 3 over field of order 3 . The proof will be divided into a sequence of lemmas.

Lemma 13. $\pi(G) \subseteq\{2,3,13\}$.
Proof. First, since $117 \in \operatorname{nse}(G)$, by Lemma $2,2 \in \pi(G)$ and $m_{2}=117$. Applying formula (1), we obtain $\pi(G) \subseteq\{3,5,7,13,19,937\}$. Now, we prove that $7 \notin \pi(G)$. Conversely, suppose that $7 \in \pi(G)$. Then formula (1), implies $m_{7}=1728$. From the formula (1), we conclude that if $2.7 \in \omega(G)$, then $m_{14}=702$. On the other hand, if $2.7 \in \omega(G)$, then by Lemma $4, m_{2.7}=m_{7} \cdot \phi(2) . t$ for some integer t. Hence $702=1728 t$, which is a contradiction and hence $2.7 \notin \omega(G)$. Since $2.7 \notin \omega(G)$, the group P_{7} acts fixed point freely on the set of elements of order 2 of G. Hence, by Lemma $8, \mid P_{7} \| m_{2}$, which is a contradiction. In the same manner, we can see that $5 \notin \pi(G)$. Now, we prove $19 \notin \pi(G)$. Conversely, suppose that $19 \in \pi(G)$. Then formula (1), implies $m_{19} \in\{702,1728\}$. On the other hand, by formula (1), we conclude that if $2.19 \in \omega(G)$, then $m_{2.19} \in\{702,936,1404,1728\}$. Now, if $m_{19}=702$, then $2.19 \mid 1+m_{2}+m_{19}+m_{2.19}(=1522,1756,2224,2548)$, which is a contradiction, and if $m_{19}=1728$, $2.19 \mid 1+m_{2}+m_{19}+m_{2.19}(=2548,2782,3250,3574)$ which is a contradiction. Hence $2.19 \notin \omega(G)$. Since $2.19 \notin \omega(G)$, the group P_{19} acts fixed point freely on the set of elements of order 2 of G, and so $\left|P_{19}\right| \mid m_{2}$, which is a contradiction. Similarly, we can prove that $937 \notin \pi(G)$. From what has already been proved, we conclude that $\pi(G) \subseteq\{2,3,13\}$.

Remark 5. If $3,13 \in \pi(G)$, then $m_{3}=728$ and $m_{13}=1728$. If $(13)^{a} \in \omega(G)$, since $m_{(13)^{2}} \notin \operatorname{nse}(G)$, then $a=1$. By Lemma 3, $\left|P_{13}\right| \mid 1+m_{13}$ and so $\left|P_{13}\right| \mid 13$. Suppose $13 \in \pi(G)$. Then since $\left|P_{13}\right|=13$, $\left.n_{13}=\frac{m_{13}}{\phi(13)}=3^{2} .2^{4}| | G \right\rvert\,$.Therefore, if $13 \in \pi(G)$, then $3,2 \in \pi(G)$. Hence, we only have to consider two proper sets $\{2\},\{2,3\}$, and finally the whole set $\{2,3,13\}$.

Now, we will show that $\pi(G)$ is not equal $\{2\}$ and $\{2,3\}$. For this purpose at first, we need obtain some information about elements of $\omega(G)$.

If $2^{a} \in \omega(G)$, then, by formula (1), we have $0 \leq a \leq 4$.
By Lemma 3, $\left|P_{2}\right| \mid\left(1+m_{2}+m_{2^{2}}+\cdots+m_{2^{4}}\right)$ and so $\left|P_{2}\right| \mid 2^{4}$.
If $3^{a} \in \omega(G)$, then $1 \leq a \leq 4$.
Lemma 14. $\pi(G) \neq\{2\}$ and $\pi(G) \neq\{2,3\}$.
Proof. We claim that $\pi(G) \neq\{2\}$. Assume the contrary, that is, let $\pi(G)=\{2\}$. Then $|\omega(G)| \leq 5$. Since, nse (G) has seven elements and $|\omega(G)| \leq 5$, we have a contradiction. Hence $\pi(G) \neq\{2\}$. Our next claim is that $\pi(G) \neq\{2,3\}$. Suppose, contrary to our claim, that $\pi(G)=\{2,3\}$. Since $3^{5} \notin \omega(G), \exp \left(P_{3}\right)=3,3^{2}, 3^{3}, 3^{4}$.

- Let $\exp \left(P_{3}\right)=3$. Then by Lemma 3, $\mid P_{3} \|\left(1+m_{3}\right)$ and so $\left|P_{3}\right| \mid 3^{6}$. We will consider six cases for $\left|P_{3}\right|$.

Case 1. If $\left|P_{3}\right|=3$, then since $\left.n_{3}=\frac{m_{3}}{\phi(3)}=2.7 .13| | G \right\rvert\,, 7 \in \pi(G)$, which is a contradiction.

Case 2. If $\left|P_{3}\right|=3^{2}$, then since $\exp \left(P_{3}\right)=3$ and $3.2^{5} \notin \omega(G),|\omega(G)| \leq 10$. Therefore $5616+702 k_{1}+$ $728 k_{2}+936 k_{3}+1404 k_{4}+1728 k_{5}=|G|=2^{a} .9$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 3$. Since $5616 \leq 2^{a} .9 \leq 5616+3.1728$, we have $a=10$.
If $a=10$, then since $\mid P_{2} \| 2^{4}$, we have a contradiction. Similarly, we can rule out other cases.

- Let $\exp \left(P_{3}\right)=3^{2}$. Then by Lemma 3, |P3||(1+m3+ $m_{3^{2}}$) and $\left|P_{3}\right| \mid 3^{3}$ (for example when $m_{9}=702$). We will consider two cases for $\left|P_{3}\right|$.
Case1. If $\left|P_{3}\right|=3^{2}$, then $\left.n_{3}=\frac{m_{9}}{\phi(9)}| | G \right\rvert\,$, since $m_{9} \in\{702,936,1404,1728\}, n_{3}=3^{2} .13, n_{3}=2^{2} .13 .3$, or $n_{3}=2.3^{2} .13$, and so $13 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3^{2}$, since a cyclic group of order 9 has two elements of order $3, m_{3} \leq 2^{5} .3^{2} .2=576$, which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{3}$, then since $\exp \left(P_{3}\right)=3^{2}, 3.2^{5} \notin \omega(G)$, and $3^{2} .2^{5} \notin \omega(G),|\omega(G)| \leq 15$. Therefore $5616+702 k_{1}+728 k_{2}+936 k_{3}+1404 k_{4}+1728 k_{5}=|G|=2^{a} .27$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 8$. Since $5616 \leq 2^{a} .27 \leq 5616+8.1728$, we have $a=8$ or $a=9$, which is a contradiction.
- Let $\exp \left(P_{3}\right)=3^{3}$. Then by Lemma $3,\left|P_{3}\right| \mid\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}\right)$ and $\left|P_{3}\right| \mid 3^{5}$ (for example when $m_{9}=702$ and $m_{27}=1728$). We will consider tree cases for $\left|P_{3}\right|$.
Case 1. If $\left|P_{3}\right|=3^{3}$, then $n_{3}=\frac{m_{27}}{\phi(27)}$, since $m_{27} \in\{702,1404,1728\}, n_{3}=3.13$, or $n_{3}=2.3 .13$, and so $13 \in \pi(G)$, which is a contradiction, and if $n_{3}=2^{5} .3$, since a cyclic group of order 27 has two elements of order $3, m_{3} \leq 2^{5} .3 .2=192$, which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{4}$, then since $\exp \left(P_{3}\right)=3^{3}, 3.2^{5} \notin \omega(G), 3^{2} .2^{5} \notin \omega(G)$, and $3^{3} .2^{5} \notin \omega(G)$, $|\omega(G)| \leq 20$. Therefore $5616+702 k_{1}+728 k_{2}+936 k_{3}+1404 k_{4}+1728 k_{5}=|G|=2^{a} .81$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 13$. Since $5616 \leq 2^{a} .81 \leq 5616+13.1728$, we have $a=7$ or $a=8$, which is a contradiction. In the same way, we can rule out the case $\left|P_{3}\right|=3^{5}$
- Let $\exp \left(P_{3}\right)=3^{4}$. Then by Lemma $3, \mid P_{3} \|\left(1+m_{3}+m_{3^{2}}+m_{3^{3}}+m_{3^{4}}\right)$ and $\left|P_{3}\right| \mid 3^{5}$ (for example when $\left.m_{9}=1404, m_{27}=m_{81}=1728\right)$. We will consider two cases for $\left|P_{3}\right|$.
Case 1. If $\left|P_{3}\right|=3^{4}$, then $n_{3}=\frac{m_{81}}{\phi(81)}$, since $m_{81} \in\{702,1404,1728\}, n_{3}=13$ or $n_{3}=13.2$ and so $13 \in \pi(G)$, which is a contradiction. If $n_{3}=2^{5}$, since a cyclic group of order 81 has two elements of order 3 , then $m_{3} \leq 2^{5} .2$ which is a contradiction.
Case 2. If $\left|P_{3}\right|=3^{5}$, since $\exp \left(P_{3}\right)=3^{4}, 3.2^{5} \notin \omega(G), 3^{2} .2^{5} \notin \omega(G), 3^{3} .2^{5} \notin \omega(G)$, and $3^{4} .2^{5} \notin \omega(G)$, $|\omega(G)| \leq 25$. Therefore, $5616+702 k_{1}+728 k_{2}+936 k_{3}+1404 k_{4}+1728 k_{5}=|G|=2^{a} .243$ where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$, and a are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 18$. Since $5616 \leq$ $2^{a} .243 \leq 5616+18.1728$, we have $a=5$ or $a=6$ or $a=7$, which is a contradiction.

Remark 6. According to Lemmas 13 and 14, and Remark 5, we have $\pi(G)=\{2,3,13\}$.
Lemma 15. $G \cong \operatorname{PSL}(3,3)$.
Proof. We show that $|G|=\mid \operatorname{PSL}\left(3,3 \mid\right.$. From the above arguments, we have $\left|P_{13}\right|=13$. Since $2.13 \notin \omega(G)$, it follows that, the group P_{2} acts fixed point freely on the set of elements of order 13, and so $\left|P_{2}\right| \mid m_{13}$. Hence, $\left|P_{2}\right| \mid 2^{6}$. Likewise, $3.13 \notin \omega(G)$, and so $\left|P_{3}\right| \mid 3^{3}$. and so $\left|P_{2}\right| \mid m_{13}$. Hence, $\left|P_{2}\right| \mid 2^{6}$. Likewise, $3.13 \notin \omega(G)$, and so $\left|P_{3}\right| \mid 3^{3}$. Hence we have $|G|=2^{m} .3^{n} .13$.

Since $5616=2^{4} .3^{3} .13 \leq 2^{m} .3^{n} .13$, we conclude that $|G|=2^{6} .3^{3} .13,|G|=2^{6} .3^{2} .13,|G|=2^{5} .3^{3} .13$, or $|G|=2^{4} .3^{3} .13$. The proof is completed by showing that there is no group such that $|G|=2^{6} .3^{3} .13$, $|G|=2^{6} .3^{2} .13$, or $|G|=2^{5} .3^{3} .13$, and $n s e(G)=n s e(\operatorname{PSL}(3,3))$. First, we show that there is no group such that $|G|=2^{6} .3^{3} .13$ and $n s e(G)=n \operatorname{se}(\operatorname{PSL}(3,3))$. We claim that G is a non-solvable group. Suppose that G is a solvable group, since $n_{13}=\frac{m_{13}}{\phi(13)}=2^{4} .3^{2}$, by Lemma $7,2^{4} \equiv 1$ (mod13), which is a contradiction. Therefore G is a non-solvable group and $(13)^{2} V|G|$. Hence, G has a normal series
$1 \unlhd N \unlhd H \unlhd G$, such that N is a maximal solvable normal subgroup of G and $\frac{H}{N}$ is a non-solvable minimal normal subgroup of $\frac{G}{N}$. Indeed, $\frac{H}{N}$ is a non-abelian simple K_{3}-group, and so by Lemma 9 $\frac{H}{N}$ is isomorphic to one of the simple K_{3} groups. In fact, $\frac{H}{N} \cong L_{3}(3)$. We know $n_{13}\left(L_{3}(3)\right)=144$. From Lemma 6, we have $n_{13}\left(\frac{H}{N}\right) t=n_{13}(G)$, and so $n_{13}(G)=144 t$ for some integer t. On the other hand, since $n_{13}(G) \mid 2^{6} .3^{3}$ and $n_{13}(G)=1+13 k$, we have $n_{13}(G)=1, n_{13}(G)=27$, or $n_{13}(G)=144$. If $n_{13}(G)=27$, then since $27=144 t$ has no integer solution, we have a contradiction. Similarly, we can rule out the case $|G|=2^{5} .3^{3} .13$ and $n s e(G)=n \operatorname{se}(\operatorname{PSL}(3,3))$. Finally, we have to show that there is no group such that $|G|=2^{6} .3^{2} .13$ and $n s e(G)=n s e(\operatorname{PSL}(3,3))$. By Lemma 7 , it is easy to check that G is a non-solvable group, and $(13)^{2} V|G|$. Hence, G has a normal series $1 \unlhd N \unlhd H \unlhd G$, such that N is a maximal solvable normal subgroup of G and $\frac{H}{N}$ is a non-solvable minimal normal subgroup of $\frac{G}{N}$. Indeed, $\frac{H}{N}$ is a non-abelian simple K_{3}-group, and so by Lemma $9 \frac{H}{N}$ is isomorphic to $L_{3}(3)$. Therefore $|H|=|N| 2^{4} .3^{3} .13$, which is a contradiction. As a result, $|G|=2^{4} .3^{3} .13=|P S L(3,3)|$. Hence $|G|=|\operatorname{PSL}(3,3)|$ and by assumption, $n s e(G)=n s e(\operatorname{PSL}(3,3))$, so by $[2], G \cong \operatorname{PSL}(3,3)$ and the proof is completed.

4. Conclusions

In this paper, we showed that the groups $\operatorname{PSU}(3,3)$ and $\operatorname{PSL}(3,3)$ are characterized by $n s e$. Further investigations are needed to answer "is a group G isomorphic to $\operatorname{PSU}(3, q)(q>8$ is a prime power) if and only if $n s e(G)=n s e(\operatorname{PSU}(3, q))$?" and "is a group G isomorphic to $\operatorname{PSL}(3, q)$ ($q>8$ is a prime power) if and only if $n s e(G)=n s e(P S L(3, q))$?". In future work, these questions will be considered.

Author Contributions: All authors contributed equally on writing this paper. All authors have read and have approved the final manuscript.
Funding: This research received no external funding.
Acknowledgments: The authors would like to express their deep gratitude to the referees for their helpful comments and valuable suggestion for improvment of this paper. Part of this research work was done while the second author was spending his sabbatical leave at the Department of Mathematics of University of California, Berkeley. This author expresses his thanks for the hospitality and facilities provided by Department of Mathematics of UCB.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, W.. A new characterization of sporadic simple groups. In Group Theory, Proceedings of the 1987 Singapore Conference on Group Theory, Singapore, 8-9 June 1987; Walter de Gruyter: Berlin, Germany, 1989; pp. 531-540.
2. Shoa, C.; Shi, W.; Jiang, Q. A characterization of simple K_{3}-groups. Adv. Math. 2009, 38, 327-330.
3. Shoa, C.; Shi,W.; Jiang,Q. Characterization of simple K4-groups. Front. Math. China 2008, 3, 355-370. [CrossRef]
4. Iranmanesh, A.; Parvizi Mosaed, H.; Tehranian, A. Characterization of Suzuki group by nse and order of group. Bull. Korean Math. Soc. 2016, 53, 651-656. [CrossRef]
5. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A characterization of sporadic simple groups by nse and order. J. Algebra Appl. 2013, 12. [CrossRef]
6. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A new characterization of A_{7}, A_{8}. An. St. Univ. Ovidius Constanta 2013, 21, 43-50. [CrossRef]
7. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of Symmetric groups for some n. Hacet. J. Math. Stat. 2013, 43, 715-723.
8. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new note on characterization of a Mathieu group of degree 12. Southeast Asian Bull. Math. 2014, 38, 383-388.
9. Khalili Asboei, A. A new characterization of PSL(2,27). Bol. Soc. Paran. Mat. 2014, 32, 43-50. [CrossRef]
10. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of PSL $(2, \mathrm{q})$ for some q . Ukr. Math. J. 2016, 67, 1297-1305. [CrossRef]
11. Khatami, M.; Khosravi, B.; Akhlaghi, Z. A new characterization for some linear groups. Monatsh. Math. 2011, 163, 39-50. [CrossRef]
12. Shoa, C.; Jiang, Q. Characterization of groups $L_{2}(q)$ by nse where $q \in\{17,27,29\}$. Chin. Ann. Math. 2016, 37B, 103-110. [CrossRef]
13. Chen, D. A characterization of $\operatorname{PSU}(3,4)$ by nse. Int. J. Algebra Stat. 2013, 2, 51-56. [CrossRef]
14. Liu, S. A characterization of $L_{3}(4)$. Sci. Asia 2013, 39, 436-439. [CrossRef]
15. Liu, S. A characterization of projective special unitary group $U_{3}(5)$ by nse. Arab J. Math. Sci. 2014, 20, 133-140. [CrossRef]
16. Liu, S. A characterization of projective special linear group $L_{3}(5)$ by nse. Ital. J. Pure Appl. Math. 2014, 32, $203-212$.
17. Jahandideh Khangheshlaghi, M.; Darafsheh, M.R. Nse characterization of the Chevalley group $G_{2}(4)$. Arabian J. Math. 2018, 7, 21-26. [CrossRef]
18. Parvizi Mosaed, H.; Iranmanesh, A.; Tehranian, A. Nse characterization of simple group $L_{2}\left(3^{n}\right)$. Publ. Instit. Math. Nouv. Ser. 2016, 99, 193-201. [CrossRef]
19. Parvizi Mosaed, H.; Iranmanesh, A.; Foroudi Ghasemabadi, M.; Tehranian, A. A new characterization of simple group $L_{2}\left(2^{m}\right)$. Hacet. J. Math. Stat. 2016, 44, 875-886.
20. Kurzweil, H.; Stellmacher, B. The Theory of Finite Groups an Introduction; Springer: New York, NY, USA, 2004.
21. Shen, R.; Shoa, C.; Q. Jiang, Q.; Shi., W.; Mazurov, V. A new characterization of A_{5}. Monatsh. Math. 2010, 160, 337-341. [CrossRef]
22. Frobenius, G. Verallgemeinerung der Sylowschen Satze. Berl. Ber. 1895, 2, 981-993.
23. Shoa, C.; Jiang, Q. A new characterization of some linear groups by nse. J. Algebra Its Appl. 2014, 13. [CrossRef]
24. Miller, G.A. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 1904, 11, 6-7. [CrossRef]
25. Hall, M. The Theory of Groups; Macmillan: New York, NY, USA, 1959.
26. Passman, D. Permutation Groups; W. A. Benjamin: New York, NY, USA, 1968.
27. Herzog, M. On finite simple groups of order divisible by three primes only. J. Algebra 1968, 10, 383-388. [CrossRef]
