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Abstract: It is not unusual that Xn
dist−→ VZ where Xn, V, Z are real random variables, V is

independent of Z and Z ∼ N (0, 1). An intriguing feature is that P
(
VZ ∈ A

)
= E

{
N (0, V2)(A)

}
for

each Borel set A ⊂ R, namely, the probability distribution of the limit VZ is a mixture of centered
Gaussian laws with (random) variance V2. In this paper, conditions for dTV(Xn, VZ)→ 0 are given,
where dTV(Xn, VZ) is the total variation distance between the probability distributions of Xn and VZ.
To estimate the rate of convergence, a few upper bounds for dTV(Xn, VZ) are given as well. Special
attention is paid to the following two cases: (i) Xn is a linear combination of the squares of Gaussian
random variables; and (ii) Xn is related to the weighted quadratic variations of two independent
Brownian motions.

Keywords: mixture of Gaussian laws; rate of convergence; total variation distance; Wasserstein
distance; weighted quadratic variation

MSC: 60B10; 60F05

1. Introduction

All random elements involved in the sequel are defined on a common probability space (Ω,F , P).
We let B denote the Borel σ-field on R and N (a, b) the Gaussian law on B with mean a and variance b,
where a ∈ R, b ≥ 0, and N (a, 0) = δa. Moreover, Z always denotes a real random variable such that:

Z ∼ N (0, 1).

In plenty of frameworks, it happens that:

Xn
dist−→ VZ, (1)

where Xn and V are real random variables and V is independent of Z. Condition (1) actually occurs
in the CLT, both in its classical form (with V = 1) and in its exchangeable and martingale versions
(Examples 3 and 4). In addition, condition (1) arises in several recent papers with various distributions
for V. See, e.g., [1–8].

An intriguing feature of condition (1) is that the probability distribution of the limit:

P
(
VZ ∈ A

)
=
∫
N (0, V2)(A) dP, A ∈ B,

is a mixture of centered Gaussian laws with (random) variance V2. Moreover, condition (1) can be
often strengthened into:
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dW(Xn, VZ)→ 0, (2)

where dW(Xn, VZ) is the Wasserstein distance between the probability distributions of Xn and VZ.
In fact, condition (2) amounts to (1) provided the sequence (Xn) is uniformly integrable; see Section 2.1.

A few (engaging) problems are suggested by conditions (1) and (2). One is:

(*) Give conditions for dTV(Xn, VZ)→ 0, where

dTV(Xn, VZ) = sup
A∈B
|P(Xn ∈ A)− P(VZ ∈ A)|.

Under such (or stronger) conditions, estimate the rate of convergence, i.e., find quantitative
bounds for dTV(Xn, VZ).

Problem (*) is addressed in this paper. Before turning to results, however, we mention an example.

Example 1. Let B be a fractional Brownian motion with Hurst parameter H and

Xn =
n1+H

2

∫ 1

0
tn−1(B2

1 − B2
t ) dt.

The asymptotics of Xn and other analogous functionals of the B-paths (such as weighted power variations)
is investigated in various papers. See, e.g., [5,7–10] and references therein. We note also that:

∫ 1

0
tnBt dBt =

Xn

nH −
H

2H + n
for each H ≥ 1/4,

where the stochastic integral is meant in Skorohod’s sense (it reduces to an Ito integral if H = 1/2).
Let a(H) = 1/2− |1/2− H| and V =

√
H Γ(2H) B1 ∼ N

(
0, H Γ(2H)

)
. In [8], it is shown that, for

every β ∈ (0, 1), there is a constant k (depending on H and β only) such that:

dTV(Xn, VZ) ≤ k n−β a(H) for all n ≥ 1,

where Z is a standard normal random variable independent of V. Furthermore, the rate n−β a(H) is quite close to
be optimal; see condition (2) of [8].

In Example 1, problem (*) admits a reasonable solution. In fact, in a sense, Example 1 is our
motivating example.

This paper includes two main results.
The first (Theorem 1) is of the general type. Suppose ln :=

∫
|t φn(t)| dt < ∞, where φn is

the characteristic function of Xn. (In particular, Xn has an absolutely continuous distribution). Then,
an upper bound for dTV(Xn, VZ) is provided in terms of ln and dW(Xn, VZ). In some cases, this bound
allows to prove dTV(Xn, VZ) → 0 and to estimate the convergence rate. In Example 5, for instance,
such a bound improves on the existing ones; see Theorem 3.1 of [6] and Remark 3.5 of [7]. However,
for the upper bound to work, one needs information on ln and dW(Xn, VZ), which is not always
available. Thus, it is convenient to have some further tools.

In the second result (Theorem 2), the ideas underlying Example 1 are adapted to weighted
quadratic variations; see [5,8,9]. Let B and B′ be independent standard Brownian motions and

Xn = n1/2
n−1

∑
k=0

f
(

Bk/n − B′k/n
) {

(∆Bk/n)
2 − (∆B′k/n)

2},

where f : R→ R is a suitable function, ∆Bk/n = B(k+1)/n − Bk/n and ∆B′k/n = B′(k+1)/n − B′k/n. Under
some assumptions on f (weaker than those usually requested in similar problems), it is shown that
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dTV(Xn, VZ) =O(n−1/4), where V = 2
√∫ 1

0 f 2
(√

2Bt
)

dt. Furthermore, dTV(Xn, VZ) =O(n−1/2) if
one also assumes inf| f | > 0. (We recall that, if an and bn are non-negative numbers, the notation
an =O(bn) means that there is a constant c such that an ≤ c bn for all n).

2. Preliminaries

2.1. Distances between Probability Measures

In this subsection, we recall a few known facts on distances between probability measures.
We denote by (S, E) a measurable space and by µ and ν two probability measures on E .

The total variation distance between µ and ν is:

‖µ− ν‖ = sup
A∈E
|µ(A)− ν(A)|.

If X and Y are (S, E)-valued random variables, we also write:

dTV(X, Y) = ‖P(X ∈ ·)− P(Y ∈ ·)‖ = sup
A∈E
|P(X ∈ A)− P(Y ∈ A)|

to denote the total variation distance between the probability distributions of X and Y.
Next, suppose S is a separable metric space, E the Borel σ-field and∫

d(x, x0) µ(dx) +
∫

d(x, x0) ν(dx) < ∞ for some x0 ∈ S,

where d is the distance on S. The Wasserstein distance between µ and ν is:

W(µ, ν) = inf
X∼µ,Y∼ν

E[d(X, Y)],

where inf is over the pairs (X, Y) of (S, E)-valued random variables such that X ∼ µ and Y ∼ ν. By a
duality theorem, W(µ, ν) admits the representation:

W(µ, ν) = sup
f

∣∣∣∫ f dµ−
∫

f dν
∣∣∣,

where sup is over those functions f : S→ R such that | f (x)− f (y)| ≤ d(x, y) for all x, y ∈ S; see, e.g.,
Section 11.8 of [11]. Again, if X and Y are (S, E)-valued random variables, we write:

dW(X, Y) = W
[
P(X ∈ ·), P(Y ∈ ·)

]
to mean the Wasserstein distance between the probability distributions of X and Y.

Finally, we make precise the connections between convergence in distribution and convergence
according to Wasserstein distance in the case S = R. Let Xn and X be real random variables such that
E|Xn|+ E|X| < ∞ for each n. Then, the following statements are equivalent:

- limn dW(Xn, X) = 0;

- Xn
dist−→ X and E|Xn| → E|X|;

- Xn
dist−→ X and the sequence (Xn) is uniformly integrable.

2.2. Two Technical Lemmas

The following simple lemma is fundamental for our purposes.
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Lemma 1. If a1, a2 ∈ R, 0 ≤ b1 ≤ b2 and b2 > 0, then:

‖N (a1, b1)−N (a2, b2)‖ ≤ 1−

√
b1

b2
+
|a1 − a2|√

2 π b2
.

Lemma 1 is well known; see e.g. Proposition 3.6.1 of [12] and Lemma 3 of [8].
Note also that, if a1 = a2 = a, Lemma 1 yields:

‖N (a, b1)−N (a, b2)‖ ≤
|b1 − b2|

bi
for each i such that bi > 0.

The next result, needed in Section 4, is just a consequence of Lemma 1. In such a result, X and
Y are separable metric spaces, gn : X × Y → R and g : X × Y → R Borel functions, and X and Y
random variables with values in X and Y , respectively.

Lemma 2. Let ν be the probability distribution of Y. If X is independent of Y and

gn(X, y) ∼ N
(
0, σ2

n(y)
)
, g(X, y) ∼ N

(
0, σ2(y)

)
, σ2(y) > 0

for ν-almost all y ∈ Y , then:

dTV

(
gn(X, Y), g(X, Y)

)
≤ min

{
E
( |σn(Y)− σ(Y)|

σ(Y)

)
, E
( |σ2

n(Y)− σ2(Y)|
σ2(Y)

) }
.

Proof. Since X is independent of Y,

dTV

(
gn(X, Y), g(X, Y)

)
= sup

A∈B

∣∣∣∫ (P
(

gn(X, y) ∈ A
)
− P

(
g(X, y) ∈ A

))
ν(dy)

∣∣∣
≤
∫
‖P
(

gn(X, y) ∈ ·
)
− P

(
g(X, y) ∈ ·

)
‖ ν(dy).

Thus, since gn(X, y) and g(X, y) have centered Gaussian laws and g(X, y) has strictly positive
variance, for ν-almost all y ∈ Y , Lemma 1 yields:

dTV

(
gn(X, Y), g(X, Y)

)
≤
∫ |σn(y)− σ(y)|

σ(y)
ν(dy) = E

( |σn(Y)− σ(Y)|
σ(Y)

)
and dTV

(
gn(X, Y), g(X, Y)

)
≤
∫ |σ2

n(y)− σ2(y)|
σ2(y)

ν(dy) = E
( |σ2

n(Y)− σ2(Y)|
σ2(Y)

)
.

3. A General Result

As in Section 1, let Xn, V and Z be real random variables, with Z ∼ N (0, 1) and V independent
of Z. Since |V|Z ∼ VZ, it can be assumed V ≥ 0. We also assume E|Xn|+ E|VZ| < ∞, so that we
can define:

dn = dW
(
Xn, VZ).

In addition, we let:

X′n = Xn + d1/2
n U,

where U is a standard normal random variable independent of (Xn, V, Z : n ≥ 1).
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We aim to estimate dTV(Xn, VZ). Under some conditions, however, the latter quantity can be
replaced by dTV(Xn, X′n).

Lemma 3. For each α < 1/2,

|dTV(Xn, VZ)− dTV(Xn, X′n)| ≤ d1/2
n + d1/2−α

n + P(V < dα
n).

In addition, if E(1/V) < ∞, then:

|dTV(Xn, VZ)− dTV(Xn, X′n)| ≤ d1/2
n
{

1 + E(1/V)
}

.

Proof. The Lemma is trivially true if dn = 0. Hence, it can be assumed dn > 0. Define
X′′n = VZ + d1/2

n U and note that:

|dTV(Xn, VZ)− dTV(Xn, X′n)| ≤ dTV(X′n, X′′n ) + dTV(X′′n , VZ).

For each A ∈ B,

P(X′n ∈ A) =
∫
N (Xn, dn)(A) dP and P(X′′n ∈ A) =

∫
N (VZ, dn)(A) dP.

Hence, Lemma 1 yields:

dTV(X′n, X′′n ) = sup
A∈B

∣∣∣∫ (N (Xn, dn)(A)−N (VZ, dn)(A)
)

dP
∣∣∣

≤
∫
‖N (Xn, dn)−N (VZ, dn)‖ dP ≤ E|Xn −VZ|

d1/2
n

.

On the other hand, the probability distribution of X′′n can also be written as:

P(X′′n ∈ A) =
∫
N (0, V2 + dn)(A) dP.

Arguing as above, Lemma 1 implies again:

dTV(X′′n , VZ) ≤
∫
‖N (0, V2 + dn)−N (0, V2)‖ dP

≤ E
(

1− V√
V2 + dn

)
≤ E

( d1/2
n√

V2 + dn

)
≤ d1/2

n
ε

+ P(V < ε)

for each ε > 0. Letting ε = dα
n with α < 1/2, it follows that:

|dTV(Xn, VZ)− dTV(Xn, X′n)| ≤
E|Xn −VZ|

d1/2
n

+ d1/2−α
n + P(V < dα

n). (3)

Inequality (3) holds true for every joint distribution for the pair (Xn, VZ). In particular, inequality
(3) holds if such a joint distribution is taken to be one that realizes the Wasserstein distance, namely,
one such that E|Xn −VZ| = dn. In this case, one obtains:

|dTV(Xn, VZ)− dTV(Xn, X′n)| ≤ d1/2
n + d1/2−α

n + P(V < dα
n).

Finally, if E(1/V) < ∞, it suffices to note that:

dTV(X′′n , VZ) ≤ E
( d1/2

n√
V2 + dn

)
≤ d1/2

n E(1/V).



Mathematics 2018, 6, 99 6 of 14

For Lemma 3 to be useful, dTV(Xn, X′n) should be kept under control. This can be achieved under
various assumptions. One is to ask Xn to admit a Lipschitz density with respect to Lebesgue measure.

Theorem 1. Let φn be the characteristic function of Xn and

ln =
∫
|t φn(t)| dt = 2

∫ ∞

0
t |φn(t)| dt.

Given β ≥ 1, suppose supn E|Xn|β < ∞ and dn → 0. Then, there is a constant k, independent of n,
such that:

dTV(Xn, X′n) ≤ k
(

ln d1/2
n

)β/(β+1)
.

In particular,

dTV(Xn, VZ) ≤ d1/2
n + d1/2−α

n + P(V < dα
n) + k

(
ln d1/2

n

)β/(β+1)

for each α < 1/2, and

dTV(Xn, VZ) ≤ d1/2
n
{

1 + E(1/V)
}
+ k

(
ln d1/2

n

)β/(β+1)
if E(1/V) < ∞.

It is worth noting that, if β = 1, the condition supn E|Xn| < ∞ follows from dn → 0. On the

other hand, dn → 0 can be weakened into Xn
dist−→ VZ whenever supn E|Xn|β < ∞ for some β > 1; see

Section 2.1.

Proof of Theorem 1. If ln = ∞, the Theorem is trivially true. Thus, it can be assumed ln < ∞.
Since φn is integrable, the probability distribution of Xn admits a density fn with respect to

Lebesgue measure. In addition,

| fn(x)− fn(y)| = (1/2π) |
∫
(e−itx − e−ity) φn(t) dt|

≤ |x− y|
2π

∫
|t φn(t)| dt =

ln |x− y|
2π

.

Given t > 0, it follows that:

2 dTV(Xn, X′n) ≤ 2
∫
‖P(Xn ∈ ·)− P(Xn + d1/2

n u ∈ ·)‖N (0, 1)(du)

=
∫ ∫
| fn(x)− fn(x− d1/2

n u)| dxN (0, 1)(du)

≤ P(|Xn| > t) + P(|X′n| > t) +
∫ t

−t

∫
| fn(x)− fn(x− d1/2

n u)| N (0, 1)(du) dx.

Since supn E|Xn|β < ∞ and dn → 0, one obtains:

P(|Xn| > t) + P(|X′n| > t) ≤ P(|Xn| > t) + P(|Xn| > t/2) + P(d1/2
n |U| > t/2)

≤ 2 P(|Xn| > t/2) +
dβ/2

n E|U|β

(t/2)β

≤ 2 E|Xn|β + dβ/2
n E|U|β

(t/2)β
≤ k∗

tβ
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for some constant k∗. Hence,

2 dTV(Xn, X′n) ≤
k∗

tβ
+

ln d1/2
n

2π

∫ t

−t

∫
|u| N (0, 1)(du) dx

≤ k∗

tβ
+

ln d1/2
n

π
t for each t > 0.

Minimizing over t, one finally obtains:

2 dTV(Xn, X′n) ≤ c(β) (k∗)1/(β+1)
( ln d1/2

n
π

)β/(β+1)
,

where c(β) is a constant that depends on β only. This concludes the proof.

Theorem 1 provides upper bounds for dTV(Xn, VZ) in terms of ln and dn. It is connected to
Proposition 4.1 of [4], where dTV is replaced by the Kolmogorov distance.

In particular, Theorem 1 implies that dTV(Xn, VZ)→ 0 provided V > 0 a.s. and

lim
n

d1/2
n ln = lim

n
dW(Xn, VZ)1/2

∫
|t φn(t)| dt = 0.

In addition, Theorem 1 allows to estimate the convergence rate. As an extreme example, if dn → 0,
E(1/V) < ∞ and supn

{
ln + E|Xn|β

}
< ∞ for all β ≥ 1, then:

dTV(Xn, VZ) = O(dα
n) for every α < 1/2.

We next turn to examples. In each such examples, Z is a standard normal random variable
independent of all other random elements.

Example 2. (Classical CLT). Let V = 1 and Xn = (1/
√

n) ∑n
i=1 ξi, where ξ1, ξ2, . . . is an i.i.d. sequence

of real random variables such that E(ξ1) = 0 and E(ξ2
1) = 1. In this case, dn = O(n−1/2); see Theorem 2.1

of [13]. Suppose now that E|ξ1|β < ∞ for all β ≥ 1 and ξ1 has a density f (with respect to Lebesgue measure)
such that

∫
| f ′(x)| dx < ∞. Then, supn

{
ln + E|Xn|β

}
< ∞ for all β ≥ 1, and Theorem 1 yields:

dTV(Xn, Z) = O(n−α) for each α < 1/4.

This rate, however, is quite far from optimal. Under the present assumptions on ξ1, in fact,
dTV(Xn, Z) = O(n−1/2); see Theorem 1 of [14].

We finally prove supn
{

ln + E|Xn|β
}

< ∞. It is well known that E|ξ1|β < ∞ for all β implies
supn E|Xn|β < ∞ for all β. Hence, it suffices to prove supn ln < ∞. Let φ be the characteristic function of
ξ1 and q =

∫
| f ′(x)| dx. An integration by parts yields |φ(t)| ≤ q/|t| for each t 6= 0. By Lemma 1.4 of [15],

one also obtains |φ(t)| ≤ 1− (1/43)(t/q)2 for |t| < 2q (just let b = 2q and c = 1/2 in Lemma 1.4 of [15]).
Since φn(t) = φ(t/

√
n)n for each t ∈ R,

|φn(t)| ≤
( q
√

n
|t|

)n
for |t| ≥ q

√
n and

|φn(t)| ≤
(

1− t2

43 q2n

)n
for |t| < q

√
n.

Using these inequalities, supn ln < ∞ follows from a direct calculation.

As noted above, the rate provided by Theorem 1 in the classical CLT is not optimal. While not
exciting, this fact could be expected. Indeed, Theorem 1 is a general result, applying to arbitrary Xn,
and should not be requested to give optimal bounds in a very special case (such as the classical CLT).
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Example 3. (Exchangeable CLT). Suppose now that (ξn) is an exchangeable sequence of real random variables
with E(ξ2

1) < ∞. Define

V =
√

E(ξ2
1 | T )− E(ξ1 | T )2 and Xn =

∑n
i=1{ξi − E(ξ1 | T )}√

n
,

where T is the tail σ-field of (ξn). By de Finetti’s theorem,

dTV(Xn, VZ) ≤ E
(
‖P(Xn ∈ · | T )−N (0, V2)‖

)
.

Hence, dTV(Xn, VZ) → 0 provided ‖P(Xn ∈ · | T )−N (0, V2)‖ P−→ 0. As to Theorem 1, note that

Xn
dist−→ VZ (see e.g. Theorem 3.1 of [16]) and

E(X2
n) = E

{
E(X2

n | T )
}
= n E

{
E
((∑n

i=1(ξi − E(ξ1 | T ))
n

)2 | T
)}

= n E(V2/n) = E(V2) < ∞.

Furthermore, ln ≤ E
{∫
|t| |E

(
eitXn | T

)
| dt
}

. Thus, by Theorem 1, dTV(Xn, VZ)→ 0 whenever

E(ξ2
1 | T ) > E(ξ1 | T )2 a.s. and lim

n
d1/2

n E
{∫
|t| |E

(
eitXn | T

)
| dt
}
= 0.

Example 4. (Martingale CLT). Let

Xn =
kn

∑
j=1

ξn,j,

where (ξn,j : n ≥ 1, j = 1, . . . , kn) is an array of real square integrable random variables and kn ↑ ∞. For each
n ≥ 1, let:

Fn,0 ⊂ Fn,1 ⊂ . . . ⊂ Fn,kn

be sub-σ-fields of F with Fn,0 = {∅, Ω}. A well known version of the CLT (see e.g. Theorem 3.2 of [17]) states

that Xn
dist−→ VZ provided:

(i) ξn,j is Fn,j-measurable and E
(
ξn,j | Fn,j−1

)
= 0 a.s.;

(ii) ∑j ξ2
n,j

P−→ V2, maxj|ξn,j|
P−→ 0, supn E

(
maxj ξ2

n,j
)
< ∞;

(iii) Fn,j ⊂ Fn+1,j.

Condition (iii) can be replaced by:

(iv) V is measurable with respect to the σ-field generated byN ∪
(
∩n,jFn,j

)
whereN = {A ∈ F : P(A) = 0}.

Note also that, under (i), one obtains E(X2
n) = ∑kn

j=1 E(ξ2
n,j).

Now, in addition to (i)–(ii)–(iii) or (i)–(ii)–(iv), suppose supn ∑kn
j=1 E(ξ2

n,j) < ∞. Then, Theorem 1 (applied

with β = 2) implies dTV(Xn, VZ)→ 0 whenever V > 0 a.s. and limn d1/2
n ln = 0. Moreover,

dTV(Xn, VZ) = O
((

ln d1/2
n
)2/3

)
if E(1/V) + ln < ∞ for each n.

Our last example is connected to the second order Wiener chaos. We first note a simple fact as
a lemma.
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Lemma 4. Let ξ = (ξ1, . . . , ξk) be a centered Gaussian random vector. Define:

Y =
k

∑
j=1

aj
{

ξ2
j − γ2

j
}

,

where aj ∈ R and γ = (γ1, . . . , γk) is an independent copy of ξ. Then, the characteristic function ψ of Y can be
written as:

ψ(t) = E
{

e−t2S}, t ∈ R, where S = ∑
i,j

ai aj E
(
ξiξ j

) (
ξi + γi

) (
ξ j + γj

)
.

Proof. Let σi,j = E
(
ξiξ j

)
, ξ∗ = (ξ + γ)/

√
2 and γ∗ = (ξ − γ)/

√
2. Then,

(ξ∗, γ∗) ∼ (ξ, γ), Y = 2 ∑
j

aj ξ∗j γ∗j , S = 2 ∑
i,j

aiajσi,jξ
∗
i ξ∗j .

Therefore,

ψ(t) = E
{

E
(
eitY | ξ∗

)}
= E

{
e−2t2 ∑i,j aiajσi,jξ

∗
i ξ∗j
}
= E

{
e−t2S}.

Example 5. (Squares of Gaussian random variables). For each n ≥ 1, let (ξn,1, . . . , ξn,kn) be a centered
Gaussian random vector and

Xn =
kn

∑
j=1

an,j
{

ξ2
n,j − E(ξ2

n,j)
}

where an,j ∈ R.

Take an independent copy (γn,1, . . . , γn,kn) of (ξn,1, . . . , ξn,kn) and define:

Yn =
kn

∑
j=1

an,j
{

ξ2
n,j − γ2

n,j
}

,

Sn =
kn

∑
i=1

kn

∑
j=1

an,i an,j E
(
ξn,iξn,j

) (
ξn,i + γn,i

) (
ξn,j + γn,j

)
.

Note that Sn is a (random) quadratic form of the covariance matrix
(
E
(
ξn,iξn,j

)
: 1 ≤ i, j ≤ kn

)
. Therefore,

Sn ≥ 0.
Since |φn|2 agrees with the characteristic function of Yn, Lemma 4 yields:

|φn(t)|2 = E
{

e−t2Sn
}

.

Being Sn ≥ 0, it follows that:

|φn(t)|2 = E
{

e−t2Sn 1
{Sn≥t

ε−4
2 }

}
+ E

{
e−t2Sn 1

{Sn<t
ε−4

2 }

}
≤ e−tε/2

+ P(Sn < t
ε−4

2 ) = e−tε/2
+ P

(
S−2−ε

n > t4+ ε(2−ε)
2
)

≤ e−tε/2
+ E

(
S−2−ε

n
)

t−4− ε(2−ε)
2 for all ε > 0 and t > 0.
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Hence,

ln
2

=
∫ ∞

0
t |φn(t)| dt ≤ 1 +

∫ ∞

1
t |φn(t)| dt

≤ 1 +
∫ ∞

1
t e
−tε/2

2 dt +
√

E
(
S−2−ε

n
) ∫ ∞

1
t−1− ε(2−ε)

4 dt,

so that supn ln < ∞ whenever supn E
(
S−2−ε

n
)
< ∞ for some ε ∈ (0, 2).

To summarize, applying Theorem 1 with β = 2, one obtains:

dTV(Xn, VZ) = O(d1/3
n ) (4)

provided Xn
dist−→ VZ, for some V independent of Z, and

E(1/V) + sup
n

{
E
(
S−2−ε

n
)
+ E(X2

n)
}
< ∞ for some ε ∈ (0, 2).

The bound (4) requires strong conditions, which may be not easily verifiable in real problems. However,
the above result is sometimes helpful, possibly in connection with the martingale CLT of Example 4. As an
example, the conditions for (4) are not hard to be checked when ξn,1, . . . , ξn,kn are independent for fixed n. We
also note that, to our knowledge, the bound (4) improves on the existing ones. In fact, letting p = 2 in Theorem
3.1 of [6] (see also Remark 3.5 of [7]) one only obtains dTV(Xn, VZ) = O(d1/5

n ).

4. Weighted Quadratic Variations

Theorem 1 works nicely if one is able to estimate dn and ln, which is usually quite hard. Thus, it is
convenient to have some further tools. In this section, dTV(Xn, VZ) is upper bounded via Lemma 2.
We focus on a special case, but the underlying ideas are easily adapted to more general situations.
The results in [8], for instance, arise from a version of such ideas.

For any function x : [0, 1]→ R, denote:

∆x(k/n) = x((k + 1)/n)− x(k/n) where n ≥ 1 and k = 0, 1, . . . , n− 1.

Let q ≥ 2 be an integer, f : R → R a Borel function, and J = {Jt : 0 ≤ t ≤ 1} a real process.
The weighted q-variation of J on {0, 1/n, 2/n, . . . , 1} is:

J∗n =
n−1

∑
k=0

f (Jk/n)
(
∆Jk/n

)q.

As noted in [5], to fix the asymptotic behavior of J∗n is useful to determine the rate of convergence
of some approximation schemes of stochastic differential equations driven by J. Moreover, the study
of J∗n is also motivated by parameter estimation and by the analysis of single-path behaviour of J.
See [5,9,18–21] and references therein.

More generally, given an R2-valued process:

(I, J) = {(It, Jt) : 0 ≤ t ≤ 1},

one could define:

(I, J)∗n =
n−1

∑
k=0

f (Ik/n)
(
∆Jk/n

)q.

The weight f (Ik/n) of
(
∆Jk/n

)q depends now on I. Thus, in a sense, (I, J)∗n can be regarded as the
weighted q-variation of J relative to I.
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Here, we focus on:

Xn = n1/2
n−1

∑
k=0

f
(

Bk/n − B′k/n
) {

(∆Bk/n)
2 − (∆B′k/n)

2}, (5)

where B and B′ are independent standard Brownian motions. Note that, letting q = 2 and I = B− B′,
one obtains:

Xn = n1/2 {(I, B)∗n − (I, B′)∗n
}

.

Thus, n−1/2Xn can be seen as the difference between the quadratic variations of B and B′ relative
to I = B− B′.

We aim to show that, under mild assumptions on f , the probability distributions of Xn converge
in total variation to a certain mixture of Gaussian laws. We also estimate the rate of convergence.
The smoothness assumptions on f are weaker than those usually requested in similar problems;
see, e.g., [5].

Theorem 2. Let B and B′ be independent standard Brownian motions and Z a standard normal random variable
independent of (B, B′). Define Xn by Equation (5) and

V = 2

√∫ 1

0
f 2
(√

2Bt
)

dt .

Suppose E(1/V2) < ∞ and

| f (x)− f (y)| ≤ c |x− y| e|x|+|y|

for some constant c and all x, y ∈ R. Then, there is a constant k independent of n satisfying:

dTV(Xn, VZ) ≤ k n−1/4.

Moreover, if inf| f | > 0, one also obtains dTV(Xn, VZ) ≤ k n−1/2.

To understand better the spirit of Theorem 2, think of the trivial case f = 1. Then, the asymptotic
behavior of Xn = n1/2 ∑n−1

k=0

{
(∆Bk/n)

2 − (∆B′k/n)
2} can be deduced by classical results. In fact,

dTV(Xn, 2Z) = O(n−1/2) and this rate is optimal; see Theorem 1 of [14]. On the other hand, since
V = 2, the same conclusion can be drawn from Theorem 2.

We finally prove Theorem 2.

Proof of Theorem 2. First note that T = (B+ B′)/
√

2 and Y = (B− B′)/
√

2 are independent standard
Brownian motions and

Xn = 2 n1/2
n−1

∑
k=0

f
(√

2 Yk/n
)

∆Tk/n ∆Yk/n.

Note also that:

VZ ∼ 2 T1

√∫ 1

0
f 2
(√

2Yt
)

dt.
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Thus, in order to apply Lemma 2, it suffices to let X = Y = C[0, 1], X = T, and

gn(x, y) = 2 n1/2
n−1

∑
k=0

f
(√

2 y(k/n)
)

∆x(k/n)∆y(k/n),

g(x, y) = 2 x(1)

√∫ 1

0
f 2
(√

2y(t)
)

dt.

For fixed y ∈ Y , gn(T, y) and g(T, y) are centered Gaussian random variables. Since
E
{(

∆Tk/n
)2}

= 1/n,

σ2
n(y) = E

{
gn(T, y)2} = 4

n−1

∑
k=0

f 2(√2 y(k/n)
) (

∆y(k/n)
)2

and σ2(y) = E
{

g(T, y)2} = 4
∫ 1

0
f 2(√2y(t)

)
dt.

On noting that σ2(Y) ∼ V2, one also obtains:

σ2(Y) > 0 a.s. and E
{

1/σ2(Y)
}
= E(1/V2) < ∞.

Next, define:

an = (1/4) E
{
|σ2

n(Y)− σ2(Y)|
}

= E
{∣∣∣n−1

∑
k=0

f 2(√2 Yk/n
) (

∆Yk/n
)2 −

∫ 1

0
f 2(√2Yt

)
dt
∣∣∣}.

By Lemma 2 and the Cauchy–Schwarz inequality,

dTV(Xn, VZ)2 = dTV

(
gn(T, Y), g(T, Y)

)2
≤ E

( |σn(Y)− σ(Y)|
σ(Y)

)2

≤ E
{

1/σ2(Y)
}

E
{(

σn(Y)− σ(Y)
)2}

≤ E(1/V2) E
{
|σ2

n(Y)− σ2(Y)|
}
= 4 E(1/V2) an.

If inf| f | > 0, since σ2(Y) ≥ 4 inf f 2, Lemma 2 implies again:

dTV(Xn, VZ) ≤ E
( |σ2

n(Y)− σ2(Y)|
σ2(Y)

)
≤

E
(
|σ2

n(Y)− σ2(Y)|
)

4 inf f 2 =
an

inf f 2 .

Thus, to conclude the proof, it suffices to show that an =O(n−1/2).
Define c∗ = max(c, | f (0)|) and note that:

| f (s)| ≤ c∗ e2|s| and | f (s)2 − f (t)2| ≤ 2 c c∗|s− t| e3(|s|+|t|) for all s, t ∈ R.

Define also:

a(1)n = E
{∣∣∣n−1

∑
k=0

f 2(√2 Yk/n
) ((

∆Yk/n
)2 − 1/n

)∣∣∣} and

a(2)n = E
{∣∣∣(1/n)

n−1

∑
k=0

f 2(√2 Yk/n
)
−
∫ 1

0
f 2(√2Yt

)
dt
∣∣∣}.
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Since an ≤ a(1)n + a(2)n , it suffices to see that a(i)n =O(n−1/2) for each i. Since Y has independent
increments and E

{((
∆Yk/n

)2 − 1/n
)2}

= 2/n2,

(
a(1)n
)2

= E
{∣∣∣n−1

∑
k=0

f 2(√2 Yk/n
) ((

∆Yk/n
)2 − 1/n

)∣∣∣}2

≤
n−1

∑
k=0

E
{

f 4(√2 Yk/n
) ((

∆Yk/n
)2 − 1/n

)2
}

=
n−1

∑
k=0

E
{

f 4(√2 Yk/n
)}

E
{((

∆Yk/n
)2 − 1/n

)2}
= (2/n2)

n−1

∑
k=0

E
{

f 4(√2 Yk/n
)}

≤
2 (c∗)4 E

{
e8
√

2M}
n

where M = sup
0≤t≤1

|Yt|.

Similarly,

a(2)n = E
{∣∣∣(1/n)

n−1

∑
k=0

f 2(√2 Yk/n
)
−
∫ 1

0
f 2(√2Yt

)
dt
∣∣∣}

≤
n−1

∑
k=0

∫ (k+1)/n

k/n
E
{
| f 2(√2 Yk/n

)
− f 2(√2 Yt

)
|
}

dt

≤ 2
√

2 c c∗
n−1

∑
k=0

∫ (k+1)/n

k/n
E
{
|Yk/n −Yt| e6

√
2M} dt

≤ 2
√

2 c c∗
√

E
{

e12
√

2M
} n−1

∑
k=0

∫ (k+1)/n

k/n

√
E
{
(Yk/n −Yt)2

}
dt

≤ 2
√

2 c c∗
√

E
{

e12
√

2M
} 1√

n
.

Therefore, a(i)n =O(n−1/2) for each i, and this concludes the proof.
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