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Abstract: In this paper, the existence and uniqueness of the solutions to a fractional order nonlinear
coupled system with integral boundary conditions is investigated. Furthermore, Ulam’s type stability
of the proposed coupled system is studied. Banach’s fixed point theorem is used to obtain the existence
and uniqueness of the solutions. Finally, an example is provided to illustrate the analytical findings.
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1. Introduction

Fractional calculus is a branch of mathematical analysis, in which arbitrary order differential
and integral operators are studied. It started with a correspondence between L’Hospital and Leibnitz
in 1695. Presently, plenty of literature is available on theoretical as well as numerical work on this
topic. It has application in numerous fields, for example, control theory, signal and image processing,
aerodynamics and biophysics [1–3]. For the fundamental concepts of fractional calculus, books like
Kilbas et al. [4], Miller and Ross [5] and Halfer [6] are referred. Existence and uniqueness of solutions
for fractional order differential systems in finite dimensional as well infinite dimensional spaces were
studied by several authors [7–11]. Ahmad et al. [8] established existence results for nonlinear boundary
value fractional integro-differential equations with integral boundary conditions.

Integral boundary conditions have several applications in real-life problems such as population
dynamics, blood flow problems, underground water flow, and chemical engineering. For more details
on integral boundary conditions, we refer the reader to [12]. Here we would like to consider a practical
example of the integral boundary condition:

−x′′ = g(t) f (t, x), x(0) = 0, βx′(1) = x(η),

where t ∈ (0, 1), η ∈ (0, 1] and β is a positive constant. This is the model for a thermostat. Solutions of
the problem are stationary solutions for a one-dimensional heat equation, corresponding to a heated
bar, with a controller at 1, which adds or removes heat, depending on the temperature detected by a
sensor at η.

This problem can be generalized. One can consider the heat equation with nonlinear gradient
source terms that vary in time. Moreover, now, the heated bar, with a controller at 1, which adds
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or removes heat depending on the temperature detected by sensors located at any points of the bar
(it depends on how we define the function h). This problem can be written in the form

x′′ = f (t, x, x′), x(0) = 0, x′(1) =
∫ 1

0
x(s)dh(s)(η).

Recently, Ulam’s type stability has been of great interest to many researchers. In 1940, the above
mentioned stability was first introduced by Ulam [13]. Then, it was explained by Hyers [14] in the
subsequent years. Ulam and Hyers studied it for various kinds of differential equations with integer
order. Nowadays, we describe the result of Hyers simply saying that Cauchy functional equation
is Hyers-Ulam stable (or has the Hyers-Ulam stability). Next, Hyers and Ulam published some
further stability results for polynomial functions, isometries, and convex functions. The Hyers’ results
are extended and generalized by many researchers for integer order differential equations. Plenty of
significant results on Ulam’s type stability can be found in the literature, we refer [15–17] and references
cited therein.

To the best of our knowledge, there are only few manuscripts devoted to the study of Ulam’s
type stability for coupled system of fractional differential equations. Further, there is no manuscript
considering the Ulam’s stability for coupled system of fractional order α ∈ (1, 2] differential equations
with integral boundary conditions. Motivated by this fact, in this paper, the existence, uniqueness
of solutions as well as Ulam’s type stability for the considered coupled system involving Caputo
derivative is studied. The proposed system is given as follows:

cDαx(t) = f (t, y(t)), α ∈ (1, 2], t ∈ J

cDβy(t) = g(t, x(t)), β ∈ (1, 2], t ∈ J

px(0) + qx′(0) =
∫ 1

0 a1(x(s))ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s))ds,

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s))ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s))ds,

(1)

where J = [0, 1] and f , g : J ×R → R are continuous functions. Here, a1, a2, ã1, ã2 : R → R and
p, p̃ > 0; q, q̃ ≥ 0 are real numbers.

The plan of the paper is as follows. In the second section, some useful definitions, notations,
lemmas and results are given which will be required for the later sections. In the third section, existence
and uniqueness of the solutions for the coupled system (1) is studied. In the fourth section, Ulam’s type
stability results are obtained. In the last section, a few examples are given to show the application of
the obtained abstract results.

2. Preliminaries and Assumptions

In this section, some useful definitions, notations and lemmas are briefly reviewed.

Definition 1. [4] For any function z ∈ ((0, 1),R), the Caputo derivative of fractional order α ∈ R+ is
defined as

cDαz(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1z(n)(s)ds, n = [α] + 1,

where [α] denotes the integer part of α and Γ(·) is the gamma function.

Definition 2. [4] The Riemann-Liouville fractional integral of order α ∈ R+ is defined by

Jαz(t) =
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds,
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where z(t) ∈ L1([0, 1],R+).

Lemma 1. [4] For any α > 0, then the differential equations

cDαz(t) = 0

has solution given by

z(t) = c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 0, 1, · · · , n− 1,

where n = [α] + 1.

Lemma 2. [4] For any α > 0, then the solution of the differential equations

cDαz(t) = h(t)

will be given by

Jα[cDαz(t)] = Jαz(t) + c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 0, 1, · · · , n− 1,

where n = [α] + 1.

Lemma 3. [8] For any h, γ1, γ2 ∈ C([0, 1],R), the unique solution of the boundary value problem{
cDαz(t) = h(t), α ∈ (1, 2], t ∈ [0, 1]
pz(0) + qz′(0) =

∫ 1
0 γ1(s)ds, pz(1) + qz′(1) =

∫ 1
0 γ2(s)ds,

(2)

is given by

z(t) =
∫ 1

0
Gα(t, s)h(s)ds +

1
p2

[
(p(1− t) + q)

∫ 1

0
γ1(s)ds + (q + pt)

∫ 1

0
γ2(s)ds

]
, (3)

where Gα(t, s) is the Green’s function given by

Gα(t, s) =


p(t−s)α−1+(q−pt)(1−s)α−1

pΓ(α) + q(q−pt)(1−s)α−2

p2Γ(α−1) , s ≤ t,

(q−pt)(1−s)α−1

pΓ(α) + q(q−pt)(1−s)α−2

p2Γ(α−1) , t ≤ s.

(4)

Lemma 4. The space B = {z(t) | z ∈ C(J )} is a Banach space under the defined norm ‖z‖B =

maxt∈J |z(t)|. Similarly, the norm on product space is defined by ‖(z, z̃)‖B×B = ‖z‖B + ‖z̃‖B .
Obviously (B × B, ‖(·, ·)‖B×B) is a Banach space. Further, the cone C ⊂ B × B is defined by

C = {(z, z̃) ∈ B × B | z(t) ≥ 0, z̃(t) ≥ 0}.

Here, the problem (1) is transformed into a fixed point problem. Let F : B × B → B ×B be the
operator defined as
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F (x, y)(t) =



∫ 1
0 Gα(t, s) f (s, y(s))ds + 1

p2

[
(p(1− t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]

∫ 1
0 Gβ(t, s)g(s, x(s))ds + 1

p̃2

[
( p̃(1− t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]



=

Fα(y, x)(t)

Fβ(x, y)(t)

 . (5)

Then the fixed point of the operator F coincides with the solution of coupled system (1).
In order to prove the existence and uniqueness of solutions of coupled system (1),

following assumptions are taken:

(A1) For t ∈ J , there exist λ, µ ∈ C(J ,R+), such that

| f (t, y(t))| ≤ λ(t) + µ(t)|y(t)|, ∀ y(t) ∈ C(J ,R)

with λ∗ = supt∈J λ(t), µ∗ = supt∈J µ(t).
Similarly, for t ∈ J , there exist ν, ξ ∈ C(J ,R+), such that

|g(t, x(t))| ≤ ν(t) + ξ(t)|x(t)|, ∀ x(t) ∈ C(J ,R)

with ν∗ = supt∈J ν(t), ξ∗ = supt∈J ξ(t).
(A2) For t ∈ J , there exist positive constant La1 , La2 , such that

|a1(x(t))| ≤ La1 |x(t)| and |a2(x(t))| ≤ La2 |x(t)|, ∀ x(t) ∈ C(J ,R)

Similarly, For t ∈ J , there exist positive constant Lã1 , Lã2 , such that

|ã1(y(t))| ≤ Lã1 |y(t)| and |ã2(x(t))| ≤ Lã2 |y(t)|, ∀ y(t) ∈ C(J ,R)

(A3)

P1 =
∫ 1

0
|Gα(t, s)|λ(s)ds < ∞, Q1 =

∫ 1

0
|Gα(t, s)|µ(s)ds +

(p + q)(La1 + La2)

p2 <
1
2

and

P2 =
∫ 1

0
|Gβ(t, s)|ν(s)ds < ∞, Q2 =

∫ 1

0
|Gβ(t, s)|ξ(s)ds +

( p̃ + q̃)(Lã1 + Lã2)

p̃2 <
1
2

.

(A4) For all y, ỹ ∈ C(J , R) and for each t ∈ J there exists a positive constant K f , such that

| f (t, y)− f (t, ỹ)| ≤ K f |y− ỹ|.

Similarly, for all x, x̃ ∈ C(J , R) and for each t ∈ J there exists a positive constant Kg, such that

|g(t, x)− g(t, x̃)| ≤ Kg|x− x̃|.

(A5) For all x, x̃ ∈ C(J , R) and for each t ∈ J there exist positive constants Ka1 , Ka2 , such that

|a1(x)− a1(x̃)| ≤ Ka1 |x− x̃| and |a2(x)− a2(x̃)| ≤ Ka2 |x− x̃|.
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Similarly, for all y, ỹ ∈ C(J , R) and for each t ∈ J there exist positive constants Kã1 , Kã2 ,
such that

|ã1(y)− ã1(ỹ)| ≤ Kã1 |y− ỹ| and |ã2(y)− ã2(ỹ)| ≤ Kã2 |y− ỹ|.

(A6) Let

(i) φ1 = K(β p̃q̃)Kg + Kpq, where Kpq =
(p+q)(Ka1+Ka2 )

p2 and

K(β p̃q̃) = max
t∈[0,1]

∣∣∣ ∫ 1

0
Gβ(t, s)ds

∣∣∣
=

∣∣∣∣∣
∫ t

0

[
p̃(t− s)β−1 + (q̃− p̃t)(1− s)β−1

p̃Γ(β)
+

q̃(q̃− p̃t)(1− s)β−2

p̃2Γ(β− 1)

]
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

t

[
(q̃− p̃t)(1− s)β−1

p̃Γ(β)
+

q̃(q̃− p̃t)(1− s)β−2

p̃2Γ(β− 1)

]
ds

∣∣∣∣∣
=

1
Γ(β + 1)

+
2( p̃ + q̃)
Γ(β + 1)

+
2(q̃2 + p̃q̃)

p̃2Γ(β)
;

(ii) φ2 = K(αpq)K f + K p̃q̃, where K p̃q̃ =
( p̃+q̃)(Kã1+Kã2 )

p̃2 and

K(αpq) = max
t∈[0,1]

∣∣∣ ∫ 1

0
Gα(t, s)ds

∣∣∣
=

1
Γ(α + 1)

+
2(p + q)
Γ(α + 1)

+
2(q2 + pq)

p2Γ(α)
.

3. Existence and Uniqueness Analysis

Theorem 1. If all the assumptions (A1)–(A6) and φ = max{φ1, φ2} < 1 are fulfilled, then the fractional
order coupled system (1) has a unique solution.

Proof. For a positive number

δ = max
( 2P1

1− 2Q1
,

2P2

1− 2Q2

)
,

we define a set
W = {(x, y) ∈ B × B : ‖(x, y)‖B×B ≤ δ}.

First, in order to prove that F mapsW into itself, we have

|Fα(y, x)(t)| ≤
∫ 1

0
|Gα(t, s)|| f (s, y(s))|ds

+
1
p2

[
|(p(1− t) + q)|

∫ 1

0
|a1(x(s))|ds + |(q + pt)|

∫ 1

0
|a2(x(s))|ds

]
≤

∫ 1

0
|Gα(t, s)|λ(s)ds +

∫ 1

0
|Gα(t, s)|[µ(s)|y(s)|]ds

+
1
p2

[
(p + q)

∫ 1

0
|a1(x(s))|ds + (p + q)

∫ 1

0
|a2(x(s))|ds

]
≤

∫ 1

0
|Gα(t, s)|λ(s)ds + δ

[ ∫ 1

0
|Gα(t, s)|µ(s)ds +

(p + q)(La1 + La2)

p2

]

= P1 + δQ1 ≤
δ

2
. (6)
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Now taking maximum on both side of the inequality (6) over J , we obtain

‖Fα(y, x)‖B ≤
δ

2
.

Similarly, ‖Fβ(x, y)‖B ≤ δ
2 . Hence, we can conclude that

‖F (x, y)‖B×B ≤ δ. (7)

Inequality (7) shows that F mapsW into itself. Next, in order to show that F is the contraction
operator when t ∈ J , we have

|Fα(y, x)(t)−Fα(ȳ, x̄)(t)| ≤
∫ 1

0
|Gα(t, s)|| f (s, y(s))− f (s, ȳ(s))|ds

+
1
p2

[
|(p(1− t) + q)|

∫ 1

0
|a1(x(s))− a1(x̄(s))|ds

+ |(q + pt)|
∫ 1

0
|a2(x(s))− a2(x̄(s))|ds

]
≤ K(αpq)K f |y(t)− ȳ(t)|

+
(p + q)(Ka1 + Ka2)

p2 |x(t)− x̄(t)|. (8)

When we take maximum on both side of the inequality (8) over J , we obtain

‖Fα(y, x)−Fα(ȳ, x̄)‖B ≤ K(αpq)K f ‖y− ȳ‖B +
(p + q)(Ka1 + Ka2)

p2 ‖x− x̄‖B . (9)

Similarly, the following can be obtained

‖Fβ(x, y)−Fβ(x̄, ȳ)‖B ≤ K(β p̃q̃)Kg‖x− x̄‖B +
( p̃ + q̃)(Kã1 + Kã2)

p̃2 ‖y− ȳ‖B . (10)

From (9) and (9), we get

‖F (x, y)−F (x̄, ȳ)‖B×B ≤ φ‖(x, y)− (x̄, ȳ)‖B×B . (11)

Thus, the operator F is strict contraction. By Banach’s fixed point method, it has a unique fixed
point which is the unique solution of the considered coupled system (1).

4. Ulam’s Stability Analysis

In this section, we study Ulam’s type stability for the coupled system (1).
For some ε = (εα, εβ) > 0, we consider the following inequality

∣∣cDαx(t)− f (t, y(t))
∣∣ ≤ εα, t ∈ J ,∣∣cDβy(t)− g(t, x(t))
∣∣ ≤ εβ, t ∈ J .

(12)

The following definitions are inspired by Rus [18].

Definition 3. The coupled system (1) is said to be Ulam-Hyers stable, if there exist K(αβpqp̃q̃) =

(K(αpq),K(β p̃q̃)) > 0 such that for every solution (x, y) ∈ B × B of the inequality (12), there exists a
unique solution (ϑ, κ) ∈ B × B with∣∣(x, y)(t)− (ϑ, κ)(t)

∣∣ ≤ K(αβpqp̃q̃)ε, t ∈ J . (13)
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Definition 4. The coupled system (1) is said to be generalized Ulam-Hyers stable, if there exist Ψ ∈ C(R+,R+)

with Ψ(0) = 0, such that for every solution (x, y) ∈ B × B of the inequality (12), there exist a unique solution
(ϑ, κ) ∈ B × B of the system (1) which satisfies∣∣(x, y)(t)− (ϑ, κ)(t)

∣∣ ≤ Ψ(ε), t ∈ J . (14)

Remark 1. Let (x, y) ∈ B × B is a solution of the system of inequality (12) if there exist functions
φ, ψ ∈ C(J ,R) which depend upon x and y respectively, such that

(R1) |φ(t)| ≤ εα, |ψ(t)| ≤ εβ, t ∈ J ;
(R2) and 

cDαx(t) = f (t, y(t)) + φ(t), t ∈ J ,

cDβy(t) = g(t, x(t)) + ψ(t), t ∈ J .

Lemma 5. Let (x, y) ∈ B × B be the solution of the inequality (12), then the following inequality will
be satisfied: 

∣∣∣x(t)− ∫ 1
0 Gα(t, s) f (s, y(s))ds− 1

p2

[
(p(1− t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]∣∣∣ ≤ K(αpq)εα, t ∈ J ,

∣∣∣y(t)− ∫ 1
0 Gβ(t, s)g(s, x(s))ds− 1

p̃2

[
( p̃(1− t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]∣∣∣ ≤ K(β p̃q̃)εβ, t ∈ J .

Proof. By Remark 1 (R2), we have

cDαx(t) = f (t, y(t)) + φ(t), t ∈ J ,

cDβy(t) = g(t, x(t)) + ψ(t), t ∈ J ,

px(0) + qx′(0) =
∫ 1

0 a1(x(s))ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s))ds

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s))ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s))ds

(15)

By Applying Lemma 3, the solution of (15) will be as follows:

x(t) =
∫ 1

0 Gα(t, s) f (s, y(s))ds +
∫ 1

0 Gα(t, s)φ(s)ds + 1
p2

[
(p(1− t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]
, t ∈ J ,

y(t) =
∫ 1

0 Gβ(t, s)g(s, x(s))ds +
∫ 1

0 Gα(t, s)ψ(s)ds + 1
p̃2

[
( p̃(1− t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]
, t ∈ J .

(16)

Considering first equation of the system (16), we have
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∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds− 1

p2

[
(p(1− t) + q)

∫ 1

0
a1(x(s))ds

+(q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣ ≤ ∣∣∣ ∫ 1

0
Gα(t, s)φ(s)ds

∣∣∣
≤

∫ 1

0
|Gα(t, s)||φ(s)|ds.

By Remark 1 (R1) and using condition of (A6), we get∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds− 1

p2

[
(p(1− t) + q)

∫ 1

0
a1(x(s))ds

+(q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣ ≤ K(αpq)εα. (17)

Repeating the same procedure for second equation of the system (16), we get∣∣∣y(t)− ∫ 1

0
Gβ(t, s)g(s, x(s))ds− 1

p̃2

[
( p̃(1− t) + q̃)

∫ 1

0
ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0
ã2(y(s))ds

]∣∣∣ ≤ K(β p̃q̃)εβ. (18)

Theorem 2. If all the assumptions (A4)–(A6) are fulfilled, then the fractional order coupled system (1) is
Ulam-Hyers stable and consequently generalized Ulam-Hyers stable provided that

(1− Kpq)(1− K p̃q̃)− KαpqKβ p̃q̃ 6= 0.

Proof. Let (x, y) ∈ B × B be the solution of the system (15) and (ϑ, κ) ∈ B × B be the unique solution
to the following considered system:

cDαϑ(t) = f (t, κ(t)), t ∈ J ,

cDβκ(t) = g(t, ϑ(t)), t ∈ J ,

pϑ(0) + qϑ′(0) =
∫ 1

0 a1(ϑ(s))ds, pϑ(1) + qϑ′(1) =
∫ 1

0 a2(ϑ(s))ds

p̃κ(0) + q̃κ′(0) =
∫ 1

0 ã1(κ(s))ds, p̃κ(1) + q̃κ′(1) =
∫ 1

0 ã2(κ(s))ds

(19)

Using Lemma 3, the solution of (19)

ϑ(t) =
∫ 1

0 Gα(t, s) f (s, κ(s))ds + 1
p2

[
(p(1− t) + q)

∫ 1
0 a1(ϑ(s))ds

+(q + pt)
∫ 1

0 a2(ϑ(s))ds
]
, t ∈ J ,

κ(t) =
∫ 1

0 Gβ(t, s)g(s, ϑ(s))ds + 1
p̃2

[
( p̃(1− t) + q̃)

∫ 1
0 ã1(κ(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(κ(s))ds
]
, t ∈ J .

(20)

We have
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|x(t)− ϑ(t)| =
∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, κ(s))ds− 1

p2

[
(p(1− t) + q)

∫ 1

0
a1(ϑ(s))ds

+ (q + pt)
∫ 1

0
a2(ϑ(s))ds

]∣∣∣
≤

∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds− 1

p2

[
(p(1− t) + q)

∫ 1

0
a1(x(s))ds

+ (q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣
+

∣∣∣ ∫ 1

0
Gα(t, s) f (s, y(s))ds−

∫ 1

0
Gα(t, s) f (s, κ(s))ds

∣∣∣
+

∣∣∣ 1
p2

[
(p(1− t) + q)

∫ 1

0
a1(x(s))ds + (q + pt)

∫ 1

0
a2(x(s))ds

]
− 1

p2

[
(p(1− t) + q)

∫ 1

0
a1(ϑ(s))ds + (q + pt)

∫ 1

0
a2(ϑ(s))ds

]∣∣∣
≤ Kαpqεα + Kαpq|y(t)− κ(t)|+ Kpq|x(t)− ϑ(t)|,

where Kαpq = K(αpq)K f .
Hence, we get

(1− Kpq)‖x− ϑ‖B ≤ K(αpq)εα + Kαpq‖y− κ‖B . (21)

Similarly, we have

(1− K p̃q̃)‖y− κ‖B ≤ K(β p̃q̃)εβ + Kβ p̃q̃‖x− ϑ‖B , (22)

where Kβ p̃q̃ = K(β p̃q̃)Kg.
From (21) and (22), it can be written as

(1− Kpq)‖x− ϑ‖B − Kαpq‖y− κ‖B ≤ K(αpq)εα

(1− K p̃q̃)‖y− κ‖B − Kβ p̃q̃‖x− ϑ‖B ≤ K(β p̃q̃)εβ

(23)

The matrix representation of (23) is as follows(1− Kpq) −Kαpq

−Kβ p̃q̃ (1− K p̃q̃)


‖x− ϑ‖B

‖y− κ‖B

 ≤
K(αpq)εα

K(β p̃q̃)εβ

 .

After simplification of the above inequality, we have‖x− ϑ‖B

‖y− κ‖B

 ≤


(1−K p̃q̃)
∆

Kαpq
∆

Kβ p̃q̃
∆

(1−Kpq)
∆


K(αpq)εα

K(β p̃q̃)εβ

 ,

where ∆ = (1− Kpq)(1− K p̃q̃)− KαpqKβ p̃q̃ 6= 0.
Further simplification gives

‖x− ϑ‖B ≤
(1− K p̃q̃)K(αpq)εα

∆
+

KαpqK(β p̃q̃)εβ

∆
(24)

‖y− κ‖B ≤
Kβ p̃q̃K(αpq)εα

∆
+

(1− Kpq)K(β p̃q̃)εβ

∆
(25)



Mathematics 2018, 6, 96 10 of 12

From inequalities (24) and (25), we have

‖x− ϑ‖B + ‖y− κ‖B ≤
(1− K p̃q̃)K(αpq)εα

∆
+

KαpqK(β p̃q̃)εβ

∆
+

Kβ p̃q̃K(αpq)εα

∆

+
(1− Kpq)K(β p̃q̃)εβ

∆

Therefore, we have

‖(x, y)− (ϑ, κ)‖B×B ≤ K(αβpqp̃q̃)ε, (26)

where ε = max{εα, εβ} and

K(αβpqp̃q̃) =
(1− K p̃q̃)K(αpq)

∆
+

KαpqK(β p̃q̃)

∆
+

Kβ p̃q̃K(αpq)

∆
+

(1− Kpq)K(β p̃q̃)

∆
.

Hence, by inequality (26), we can conclude that the coupled system (1) is Ulam-Hyers stable.
Further, inequality (26) can be written as

‖(x, y)− (ϑ, κ)‖B×B ≤ Ψ(ε), where Ψ(0) = 0. (27)

By inequality (27), we further conclude that the coupled system (1) is generalized Ulam-Hyers stable.

5. Application

Example 1. We consider the following fractional order coupled system:

cDαx(t) = 1
(t+7)2

|y(t)|
1+|y(t)| , α ∈ (1, 2], t ∈ J = [0, 1]

cDβy(t) = 1
100
[
t cos x(t) + x(t) sin t

]
, β ∈ (1, 2], t ∈ J = [0, 1]

x(0) + x′(0) =
∫ 1

0
|x(s)|

13+|x(s)|ds, x(1) + x′(1) =
∫ 1

0
|x(s)|

15+|x(s)|ds

y(0) + y′(0) =
∫ 1

0
1

26
[

cos y(s) + sin y(s)
]
ds, y(1) + y′(1) =

∫ 1
0

1
30
[

cos y(s) + sin y(s)
]
ds

(28)

By comparing the coupled systems (28) to (1), the following values are derived:

p = q = p̃ = q̃ = 1, Ka1 = Kã1 =
1

13
and Ka2 = Kã2 =

1
15

.

Here,

f (t, y(t)) =
1

(t + 7)2
|y(t)|

1 + |y(t)| and g(t, x(t)) =
1

100
[
t cos x(t) + x(t) sin t

]
.

As, | f (t, y)− f (t, ỹ)| ≤ 1
49 |y− ỹ| and |g(t, x)− g(t, x̃)| ≤ 1

50 |x− x̃|, therefore (A4) is satisfied with
K f =

1
49 and Kg = 1

50 . Further, we have

φ1 =

(
1

Γ(β + 1)
+

2( p̃ + q̃)
Γ(β + 1)

+
2(q̃2 + p̃q̃)

p̃2Γ(β)

)
Kg +

(p + q)(Ka1 + Ka2)

p2

=

(
1

Γ(β + 1)
+

4
Γ(β + 1)

+
4

Γ(β)

)
1

50
+ 2
( 1

13
+

1
15

)
< 1.
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Similarly, φ2 < 1. Hence, the coupled system (28) has a unique solution. Moreover, the condition
(1− Kpq)(1− K p̃q̃)− KαpqKβ p̃q̃ 6= 0 in Theorem 2 is also satisfied. Therefore, coupled system (28) is
Ulam-Hyers stable as well as generalized Ulam-Hyers stable.

6. Conclusions

Here we have studied the existence and uniqueness of the solutions as well as the stability for a
coupled system of fractional order α ∈ (1, 2] differential equation with integral boundary conditions.
We have discussed two types of stability, called Ulam-Hyers stability and generalized Ulam-Hyers
stability. As a future work, one can generalize the same concept of stability to a neutral time delay
system/inclusion as well as state delay system/inclusion (finite and infinite delay), which have some
useful scientific applications. This will enhance a new direction of research: a special kind of phase
space to be used for the study of controllability and stability of an infinite delay system/inclusion.
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