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Abstract: We consider a distance function on generalized metric spaces and we get a generalization
of Ekeland Variational Principle (EVP). Next, we prove that EVP is equivalent to Caristi–Kirk fixed
point theorem and minimization Takahashi’s theorem.
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1. Introduction

After presentation of Ekeland Variational Principle (EVP) in 1972, it becomes clear that this
principle is equivalent to Caristi fixed point theorem [1–9], Drop theorem [10,11], Flower Petal
theorem [10,11] and Takahashi’s nonconvex minimization theorem. Many scholars have studied
EVP on complete convex space and on locally convex space. EVP is proved for the investigation
of best proximity points for Cyclic contractions, Reich type cyclic contractions, Kannan type cyclic
contractions, Ciric type cyclic contractions, Hardy and Rogers type cyclic contraction, Chatterjee type
cyclic, contractions, and Zamfirescu type cyclic contractions (for more details, see [12]).

2. EVP

Theorem 1. (Ekeland Theorem) Assume that (Z, d) is a complete metric space (see [13]). Let f : Z −→
R∪ {+∞} be a proper, semicontinuous and bounded below function. Then, there exists y ∈ Z such that

f (y) ≤ f (x); d(x, y) ≤ 1 and f (z) > f (y)− εd(y, z) for all y 6= z.

Now, we study generalized metric spaces and their properties, for more details and application,
we refer to [7,14–23].

Definition 1. Assume that Z is a nonempty set and mapping

G : Z× Z× Z −→ [0, ∞)

is satisfied in the following conditions (see [24]):

(i) G(u, v, w) = 0 if u = v = w,
(ii) G(u, u, v) > 0 for all u, v ∈ X, where u 6= v,
(iii) G(u, u, w) ≤ G(u, v, w) for all u, v, w ∈ Z with v 6= w,
(iv) G(u, v, w) = G(p{u, v, w}) such that p is a permutation of u, v, w,
(v) G(u, v, w) ≤ G(u, α, α) + G(α, v, w) for all u, v, w, α in Z.

Then, G is said to be G-metric and pair (Z, G) is said to be G-metric space.
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Definition 2. Let (Z, G) be a G-metric space (see [24]). A sequence {un} in Z is said to be

(a) G-Cauchy sequence if, for all ε > 0, there exists n0 ∈ N such that for every m, n, l ∈ N and m, n, l ≥ n0

then G(un, um, ul) < ε,
(b) G-convergent to u ∈ Z if for all epsilon > 0, there exists natural number n0 such that for all m, n ≥ n0,

then G(un, um, u) < ε.

Proposition 1. Assuming that (Z, G) is a G-metric space, then the following statements are equivalent
(see [24]):

(a) {un} is a G-Cauchy sequence,
(b) for each ε > 0, there exists natural number n0 such that for all m, n ≥ n0, then G(un, um, um) < ε.

Definition 3. A function ξ : R+ −→ R+ is sub-additive when ξ(u + v) ≤ ξ(u) + ξ(v) and ξ(αu) = αξ(u),
for every α > 0.

Definition 4. Let Z be a nonempty set. A function

G : Z× Z× Z −→ [0, ∞)

is said to be quasi-G-metric (shortly q-G-m) if the following conditions hold,

1. G(u, v, w) = 0 if u = v = w,
2. G(u, u, v) > 0 for all u, v ∈ Z , u 6= v,
3. G(u, u, w) ≤ G(u, v, w) for all u, v, w ∈ Z, w 6= v,
4. G(u, v, w) ≤ G(u, α, α) + G(α, v, w) for all u, v, w, α ∈ X.

(Z, G) is said to be q-G-m space when Z is a nonempty set and G is a q-G-m. The concept of Cauchy sequence,
convergence and complete space are defined as G-metric space.

Throughout the paper, unless otherwise specified, Z is a nonempty set and (Z, G) is a q-G-m
space. ψ : (−∞, ∞) −→ (0, ∞) is a nondecreasing function. A function h : Z −→ (−∞, ∞) is said to be
lower semicontinuous from above (shortly Lsca) at u0, when, for each sequence {un} in Z such that
un −→ u0 and h(u1) ≥ h(u2) ≥ · · · ≥ h(un) ≥ · · · , we have h(u0) ≤ lim

n→∞
h(un). The function h is said

to be Lsca on Z, when h is Lsca at every point of Z, h is proper when h 6≡ ∞.

Definition 5. Assume that Z is an order space with order � on Z.

(1) � will be quasi-order on Z if it is reflexive and transitive;
(2) The sequence {un}n∈N on Z will be decreasing if for all n ∈ N, un+1 � un;
(3) Let P(u) = {v ∈ Z : v � u} and if {un}n∈N ⊆ P(u) be decreasing and convergent to ũ ∈ Z, then ũ ∈

P(u). Then, the quasi-order � is said to be lower closed if each u ∈ Z.

Definition 6. Assume that (Z, G) is a q-G-m space with quasi-order�. The set P(u) = {v ∈ Z : v � u} u ∈
Z, would be said to be � −complete if every decreasing sequence in P(u) be convergent in it.

Definition 7. Let (Z, G) be a q-G-m space. A function γ : Z× Z× Z −→ [0, ∞) is said to be γ-function when

(1) γ(u, v, w) ≤ γ(u, α, α) + γ(α, v, w) for all u, v, w, α ∈ Z,
(2) if u ∈ Z, {vn}n∈N be a sequence in Z which is convergent to v in Z and γ(u, vn, vn) ≤ M, then γ(u, v, v) ≤

M,
(3) for every ε > 0, there exists δ > 0 such that γ(u, α, α) ≤ δ and γ(α, v, w) ≤ δ imply that G(u, v, w) ≤ ε.

We show the class of all the γ-function by Γ.
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Remark 1. Assume that (Z, G) is a q-G-m space and γ ∈ Γ . If ξ : R+ −→ R+ is a nondecreasing and
sub-additive function such that ξ(0) = 0, then ξ ◦ γ ∈ Γ.

Example 1. Assume that

G : Z3 −→ [0, ∞),

G(u, v, w) =
1
2
(| w− u | + | u− v |).

Then, G is a q-G-m but is not G-metric.

Proof. q-G-m is obvious. We show that G(u, v, w) 6= G{p(u, v, w)} (p is a permutation of u, v, w). Since

G(3, 5, 2) =
1
2
(| 2− 3 | + | 3− 5 |) = 3

2
,

G(2, 3, 5) =
1
2
(| 3− 2 | + | 5− 2 |) = 2,

then G is not a G-metric.

Example 2. Let G(u, v, w) be the same as in the previous example. Then, γ = G is a γ-function.

Proof. (a) and (b) are obvious. Let ε > 0 be given, put δ = ε
2 if γ(u, α, α) = 1

2(| w− α | + | α− v |) <
ε
2 then

G(u, v, w) =
1
2
(| w− v | + | u− v |)

≤ 1
2
(| w− α | + | α− u | + | u− α | + | α− v |)

< ε.

Example 3. Assume that (Z, ‖.‖) is a normed space. Then, the function γ : Z× Z× Z→ [0, ∞) defined by
γ(u, v, w) = ‖v‖ for each u,v,w ∈ Z, is a γ-function. However, it is not a q-G-m on Z.

Example 4. Let Z = R. Define a function G : Z× Z× Z→ [0, ∞), by

G(u, v, w) =

{
0, if u = v = w,
|u|+ 1, otherwise.

Then, G is q-G-m but is not a γ-function.

Lemma 1. Assume that (Z, G) is a G-metric space and γ ∈ Γ . Let {xn} and {yn} be two sequences in Z,
{ρn} and {ϕn} be in [0, ∞], which are convergent to zero (see [20]). Let x, y, z, α ∈ Z, then

(1) If γ(y, xn, xn) ≤ ρn and γ(xn, y, z) ≤ ϕn for all n ∈ N, then G(y, y, z) < ε and hence z = y,
(2) If γ(yn, xn, xn) ≤ ρn and γ(xn, xm, z) ≤ ϕn for every m > n, then G(yn, ym, z) convergent to zero and

hence yn → z,
(3) If γ(xn, xm, xl) ≤ ρn for all m, n, l ∈ N with n ≤ m ≤ l, then {xn} is a G−cauchy sequence.
(4) If γ(xn, α, α) ≤ ρn for all n ∈ N then {un} is a G-cauchy sequence.
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Lemma 2. Let γ ∈ Γ . If sequence {un} be in Z that

lim sup
n−→∞

{γ(un, um, ul), n ≤ m ≤ l} = 0.

Then, {un} will be a G-Cauchy sequence in Z.

Proof. Assume ρn = sup{γ(un, um, ul)}, then lim
n→∞

ρn = 0. By Lemma 1 (3), {un} is a G-Cauchy
sequence.

Lemma 3. Let h : Z −→ [−∞, ∞] be a function and γ ∈ Γ. Let P(u) be defined by

P(u) = {v ∈ Z; v 6= u, γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v))}·

If P(u) be nonempty, then, for every v ∈ P(u),

P(v) ⊆ P(u) and h(v) ≤ h(u).

Proof. Let v ∈ P(u). Thus, v 6= u and γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)). Since γ(u, v, v) ≥ 0 and ψ is
a nondecreasing and positive function, then h(u) ≥ h(v). If P(v) = ∅, then P(v) ⊆ P(u). Therefore,
w 6= v and γ(v, w, w) ≤ ψ(h(v))(h(v)− h(w)) as above h(v) ≥ h(w). Since Γ ∈ Γ, then

γ(u, w, w) ≤ γ(u, v, v) + γ(v, w, w) ≤ ψ(h(u))(h(u)− h(w)).

We claim that w 6= u. Assume that w = u so γ(u, w, w) = 0. On the other hand,

γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)) ≤ ψ(h(u))(h(u)− h(w)) = 0

=⇒ γ(u, v, v) = 0.

Then, γ(u, v, v) = 0. For every ε > 0, we have γ(u, w, w) = 0 < ε and γ(w, v, v) = 0 < ε.
Then, by definition γ-function, we have G(w, v, v) < ε, so G(w, v, v) = 0 and w = v, which is a
contradiction; therefore, w ∈ P(u) and P(v) ⊆ P(u).

Proposition 2. Assume that (Z, G) is a complete q-G- m space, h : Z −→ [−∞, ∞] is a proper and bounded
below function and γ ∈ Γ. Let

P(u) = {v ∈ Z; v 6= u, γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v))}·

Let {un} be a sequence in Z such that S(un) is nonempty and for all n ∈ N, un+1 ∈ S(un).

Then, there exists u0 ∈ Z such that un −→ u0 and u0 ∈
∞⋂

n=1
P(un). In addition, if, for every n ∈ N,

h(un+1) ≤ inf
w∈S(un)

h(w) + 1
n , then

∞⋂
n=1

S(un) is a singleton set.

Proof. At first, we prove that {un} is a Cauchy sequence by Lemma 3, h(un) ≥ h(un+1) for all n ∈ N.
Therefore, {h(un)} is non-increasing. On the other hand, if h is bounded below, then lim

n→∞
h(un) = r,

and h(un) ≥ r, for all n ∈ N. We claim that

lim sup
n→∞

{γ(un, um, um) : m > n} = 0·
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We have

γ(un, um, um) ≤ γ(un, un+1, un+1) + γ(un+1, um, um)

≤ γ(un, un+1, un+1) + γ(un+1, un+2, un+2) + · · ·
+ γ(um−1, um, um).

Thus,

γ(un, um, um) ≤
m−1

∑
j=n

γ(un, um, um) ≤ ψ(h(u))(h(un)− r)

for all m, n ∈ N with m > n.
Put ρn = ψ(h(u))(h(un) − r); then, sup{γ(un, um, um) : m > n} ≤ ρn, for all n ∈ N.

Since lim
n→∞

h(un) = r, we have that

lim sup
n−→∞

{γ(un, um, um) : m > n} = 0

and lim
n→∞

ρn = 0. By Lemma 2, {un} is a G-Cauchy sequence. Then, there exists u0 ∈ Z such that

un → u0. Now, we show that u0 ∈
∞⋂

n=1
P(un). Since h is Lsca, then h(u0) ≤ lim

n→∞
h(un) = r ≤ h(uk).

Letting n ∈ N, we have

γ(un, um, um) ≤
m−1

∑
j=n

γ(uj, uj+1, uj+1) ≤ ψ(h(un))(h(un)− h(u0))

for all m ∈ N and m > n. Since γ(u, v, ·) and γ(u, ·, v) : Z −→ (0, ∞) is semicontinuous from below, then

γ(un, u0, u0) ≤ ψ(h(un)(h(un)− h(u0))

for all n ∈ N. In addition, u0 6= u for all n ∈ N. Otherwise, there exists j ∈ N such that u0 = uj. Since

γ(uj, uj+1, uj+1) ≤ ψ(h(uj))(h(uj)− h(uj+1))

≤ ψ(h(uj))(h(uj)− h(u0)) = 0,

then we have γ(uj, uj+1, uj+1) = 0 and in the same way

γ(uj+1, uj+2, uj+2) = 0.

Now assume that ε > 0, γ(uj, uj+1, uj+1) = 0 < δ and γ(uj+1, uj+2, uj+2) = 0 < δ. Therefore, by
Definition 7 (3), we get G(uj, uj+2, uj+2) < ε. Then, uj = uj+2 that is a contradiction since uj 6= uj+2.
Since uj+1 ∈ P(uj), then P(uj+1) ⊆ P(uj) and uj+2 ∈ P(uj+1). Thus, uj+2 ∈ P(uj). Suppose that

uj+2 6= uj for all n ∈ N. We have u0 ∈
∞⋂

n=1
P(un), then

∞⋂
n=1

P(un) 6= ∅. Let h(un+1) ≤ inf
w∈P(un)

h(w) + 1
n ,

for all u0 6= un. We show that
∞⋂

n=1
P(un) = {u0}. Assume that z ∈

∞⋂
n=1

S(un), then

γ(un, z, z) ≤ ψ(h(un))(h(un)− h(z))

≤ ψ(h(u1))(h(un)− inf
w∈P(un)

h(w))

≤ ψ(h(u1))(h(un)− h(un+1) +
1
n
).
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Let
ψn = ψ(h(u1))(h(un)− h(un+1) +

1
n
)

for all n ∈ N, then lim
n→∞

ψn = 0, so lim
n→∞

γ(un, z, z) = 0. On the other hand, {um} is a G-Cauchy

sequence. Then, lim
n→∞

γ(um, um, un) = 0 and un → ∞, by uniqueness z = u0. Then,
∞⋂

n=1
P(un) = {u0}.

Theorem 2. (Generalized Ekeland’s variational principle) Assume that (Z, G) is a complete q-G-m space
and h : Z −→ (−∞, ∞] is a proper, bounded below and Lsca function. Suppose that γ is a γ-function on
Z× Z× Z, then there exists u ∈ Z such that

γ(y, u, u) > ψ(h(u))(h(u)− h(y))

for all u ∈ Z with y 6= u.

Proof. Suppose it is not true. Then, for every u ∈ Z, there exists v ∈ Z, v 6= u such that γ(u, v, v) ≤
ψ(h(u))(h(u)− h(v)). Then P(u) 6= ∅. We define the sequence {un} as follows. Put u1 = α, we choose
u2 ∈ S(u1) such that h(u2) ≤ inf

u∈S(u1)
h(u)+ 1. In the same way suppose that un ∈ Z is given. We choose

un+1 ∈ S(un) such that h(un+1) ≤ inf
u∈P(un)

h(u) + 1
n ·. By Proposition 2, there exists u0 ∈ Z such that

∞⋂
n=1

P(un) = {u0}.

By Lemma 3, we have P(u0) ⊆
∞⋂

n=1
P(un) = {u0} and then P(u0) = {u0}. This is a contradiction.

Therefore, there exists y ∈ Z such that

γ(y, u, u) > ψ(h(y))(h(y)− h(u)).

Now, we present two generalizations of Ekeland-type variational principles in the q-G-m spaces
and complete q-G-m spaces.

Theorem 3. Assume that (Z, G) is a q-G-m space, γ : Z× Z× Z −→ R+ is a γ-function on Z. Suppose that
ψ : (−∞, ∞) −→ (0, ∞) is a nondecreasing function and the function h : Z −→ R∪ {+∞} is proper and
bounded below. We define the quasi-order � as follows:

v � u i f f u = v or γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)). (1)

Suppose that there exists û ∈ Z such that inf
u∈Z

h(u) < h(û) and P(û) = {v ∈ Z : v � û}, is� −complete.

Then, there exists ū ∈ Z such that
(a) γ(û, ū, ū) ≤ ψ(h(û))(h(û)− h(ū)),
(b) γ(ū, u, u) > ψ(h(ū))(h(ū)− h(u)).

Proof. The reflexive property is obvious. We show that � is transitive. Let w � v and v � u, then

w = v or γ(v, w, w) ≤ ψ(h(v))(h(v)− h(w)) (2)

and
v = u or γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)). (3)
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If w = v or u = v, the transitive is established. Let u 6= v 6= w, since γ(u, v, w) ≥ 0 and ψ(u) > 0;
then, by Equations (2) and (3), we have h(v) ≥ h(w) and h(u) ≥ h(v). Thus, h(w) ≤ h(u). Since ψ is
nondecreasing, then ψ(h(v)) ≤ ψ(h(u)) by Definition 7 (1), (2) and (3), we get

γ(u, w, w) ≤ γ(u, v, v) + γ(v, w, w)

≤ ψ(h(u))(h(u)− h(v)) + ψ(h(v))(h(v)− h(w))

≤ ψ(h(u))(h(u)− h(v)) + ψ(h(u))(h(v)− h(w))

= ψ(h(u))(h(u)− h(w)).

Thus, w � u, which means� is quasi-order on Z. We define the sequence {un} in P(û) as follows. Let

P(un) = {v ∈ P(û) : v = un or γ(un, v, v) ≤ ψ(h(un))(h(un)− h(v))}
= {v ∈ P(û) : v � un}.

Putting û = u0, we choose u2 ∈ p(u1) such that h(u2) ≤ inf
u∈P(u1)

h(u) + 1
2 . Let un−1 be specified.

Then, we choose un ∈ P(un−1) such that

h(un) ≤ inf
u∈P(un−1)

h(u) +
1
n

. (4)

Then, we have that un � un−1 and {un} is decreasing. Moreover,

γ(un−1, un, un) ≤ ψ(h(un−1))(h(un−1)− h(un)),

and then, h(un) ≤ h(un−1) for all n ∈ N. This means that {h(un)} is decreasing. On the other hand, h is
bounded below, Thus, {h(un)}is convergent. Letting lim

n→∞
h(un) = r, we prove that {un} is a Cauchy

sequence in P(û). Assuming that n < m, then

γ(un, um, um) ≤ γ(un, un+1, un+1) + γ(un+1, um, um)

≤ γ(un, un+1, un+1) + γ(un+1, un+2, un+2) + · · ·
+ γ(um−1, um, um)

≤ ψ(h(un))(h(un)− h(un+1)) + ψ(h(un+1))(h(un+1)

− h(un+2)) + · · ·+ ψ(h(um−1))(h(um−1)− h(um))

≤ ψ(h(un))(h(un)− h(un+1)) + ψ(h(un))(h(un+1)

− h(un+2)) + · · ·+ ψ(h(un))(h(um−1)− h(um))

≤ ψ(h(un))(h(un)− h(um))

≤ ψ(h(un))(h(un)− r).

Put ρn = ψ(h(un))(h(un)− r), so lim
n−→∞

ρn = 0 and by Lemma 1 (3), {un} is a Cauchy sequence

in P(û). Since P(û), is � −complete, then {un} is convergent to ū ∈ P(û). Since � is transitive,
P(un) ⊂ P(un−1) for all n ∈ N. Therefore, (a) holds. We show that {ū} = P(ū). On the other hand,
assuming that u ∈ p(ū) and u 6= ū, we have:

γ(ū, u, u) ≤ ψ(h(ū))(h(ū)− h(u)).

Since γ and ψ are nonnegative, then h(u) ≤ h(ū). ū ∈ P(un−1), implies that u � ū and ū � un−1.
Then, u � un−1 (transitive �) for all n ∈ N. In addition, we have

h(ū) ≤ h(un) ≤ h(un) +
1
n

.
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On the other hand lim
n−→∞

h(un) = r, thus h(ū) ≤ r ≤ h(u) ≤ h(ū). Therefore, h(ū) = h(u) = r.

Since u � un for all n ∈ N, we have

γ(un, u, u) ≤ ψ(h(un))(h(un)− h(u)) (5)

= ψ(h(un))(h(un)− r)

= ρn.

In addition, we have

γ(un, ū, ū) ≤ ψ(h(un))(h(un)− h(ū)) (6)

= ψ(h(un))(h(un)− r)

= ρn.

Thus, lim
n−→∞

ρn = 0. By Equations (5) and (6) and Lemma (1), (1) we have u = ū. Thus, {ū} = P{ū}.
Hence,

γ(ū, u, u) > ψ(h(ū))(h(ū)− h(u)·

for all u ∈ Z, u 6= ū.

Theorem 4. Let (Z, G) be a complete q-G-m space and

γ : Z× Z× Z −→ R+

be a γ-function on Z, ψ : (−∞, ∞] −→ (0, ∞) be a nondecreasing function and function h : Z −→ R∪ {∞} be
Lsca, proper and bounded below. Suppose that there is û ∈ Z such that inf

u∈Z
h(u) < h(û). Then, there is ū ∈ Z

such that
(a) γ(û, ū, ū) ≤ ψ(h(û))(h(û)− h(ū)),
(b) γ(ū, u, u) > ψ(h(ū))(h(ū)− h(u)) for all u ∈ Z , u 6= ū.

Proof. We define order � as follows:

v ≤ u i f f u = v or γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)). (7)

We prove that � is quasi-order. We show that � is lower closed. Assume that {un} is a sequence
in Z, such that {un} convergent to u ∈ Z and un+1 � un, thus

γ(un, un+1, un+1) ≤ ψ(h(un))(h(un)− h(un+1)). (8)

Since γ ≥ 0 and ψ ≥ 0, then h(un+1) ≤ h(un). Therefore, {h(un)} is a nondecreasing sequence.
Since h is bounded below, then there is lim

n−→∞
h(un). Let lim

n−→∞
h(un) = r for all n ∈ N. In addition, if h

be Lsca, then h(u) ≤ lim
n−→∞

h(un) and we have h(u) ≤ r ≤ h(un). Let n ∈ N be fixed. Using Theorem 3,

we have

γ(un, um, um) ≤ ψ(h(un))(h(un)− h(um))

≤ ψ(h(un))(h(un)− h(u)).

Therefore, h(u) ≤ h(un) for all n ∈ N. Put M = ψ(h(un))(h(un)− h(u)). By Definition 7, (2),
we have γ(un, um, um) ≤ M for all n ∈ N. Then,

γ(un, u, u) ≤ M = ψ(h(un))(h(un)− h(u)) · f or all n ∈ N.
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Thus, u � un, which means � is lower closed and P(w) = {v ∈ Z : v � w} for all w ∈ Z, is lower
closed. Let

P(un) = {v ∈ Z : v = un or γ(un, v, v) ≤ ψ(h(un))(h(un)− h(v))}
= {v ∈ Z : v � u}.

Then, P(un) is lower closed for every n ∈ N. Therefore, P(un) is � −complete space. The rest of
proof obtained of Theorem 3.

Remark 2. Theorem 3 and Theorem 4 are generalizations of Theorem 2.1 in [5] , Theorem 1.1 in [25], Theorem 1
in [13], Theorem 3 in [26] , Theorem 2.1 in [27] and Theorem 3 in [28].

Corollary 1. Let ψ, Z, γ and h be the same as Theorem 4. Let ξ : R+ −→ R+ be non-decreasing and
sub-additive such that ξ(0) = 0. Assume that there is û ∈ Z such that inf

u∈Z
h(u) < h(û), then there exists ū ∈ Z

such that
(a) ξ(γ(û, ū, ū)) ≤ ψ(h(û))(h(û)− h(ū)),
(b) ξ(γ(ū, u, u)) > ψ(h(ū))(h(ū)− h(u)), u 6= ū.

Proof. By Remark 1, we conclude that η ◦ γ ∈ Γ. The rest of proof is obtained from Theorem 4.

3. EVP Results

Theorem 5. Let (Z, G) be a complete q-G-m space and γ ∈ Γ. Let ψ : (−∞, ∞] −→ (0, ∞) be nondecreasing
and the function h be a proper, bounded below and Lsca, then the following statements are equivalent to
Theorem 4.
(a) (Caristi–Kirk type fixed point theorem) Assume that T : Z −→ 2Z is a multi-valued map with nonempty
value. If

γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)) (9)

is satisfied for all v ∈ T(u), and T has a fixed point, i.e., there is ū ∈ Z such that {ū} = T(ū). If

γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v)) (10)

for some v ∈ T(u), then there exists ū ∈ Z, such that ū ∈ T(ū).
(b) (Takahashi’s minimization theorem) Let inf

w∈Z
h(w) < h(û) for every û ∈ Z, and let there be u ∈ Z

such that
γ(û, u, u) ≤ ψ(h(û))(h(û)− h(u)) ; u 6= û. (11)

Then, there exists ū ∈ Z such that h(ū) = inf
v∈Z

h(v).

(c) (Equilibrium version of Ekeland-type variational principle) Assume that H : Z× Z −→ R∪ {∞} is
a function with the following properties:

(E1) H(u, w) ≤ H(u, v) + H(v, w) for every u, v, w ∈ Z,
(E2) H(u, ·) : Z −→ R∪ {∞}, for every u ∈ Z is proper and Lsca,
(E3) There exists u ∈ Z that inf

u∈Z
H(û, u) > −∞.

Then, there is u ∈ Z such that

(i) ψ(h(û))H(û, ū) + γ(û, ū, ū) ≤ 0,
(ii) ψ(h(ū))H(ū, u) + γ(ū, u, u) > 0 for each u ∈ Z and u 6= ū.

Proof. We show that Theorem 4 implies (a).

By Theorem 4, there is ū ∈ Z such that u 6= ū

γ(ū, u, u) > ψ(h(ū))(h(ū)− h(u)) f or allu ∈ Z, u 6= ū. (12)
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We show that {ū} = T(ū). Suppose that it is not true. By Equation (9), we have γ(ū, v, v) ≤
ψ(h(ū))(h(ū)− h(u)) and γ(ū, v, v) > ψ(h(ū))(h(ū)− h(u))·, for every v ∈ ψ(ū) with y 6= ū. This is a
contradiction. Thus, {ū} = T(ū).

(a)⇒ (b):

Let T : Z −→ 2Z and

T(u) = {v ∈ Z; γ(u, v, v) ≤ ψ(h(u))(h(u)− h(v))}

for all u ∈ Z and for every T in Equation (9).
By (a), there is ū ∈ Z such that {ū} = T(ū). On the other hand, according to assumptions, for

every û ∈ Z with inf
w∈Z

h(w) < h(û), there is u ∈ Z such that γ(û, u, u) ≤ ψ(h(û))(h(û)− h(u)), u 6= û.

Therefore, u ∈ T(û) and T(û)\{û} 6= ∅, thus f (ū) = inf
u∈Z

h(u).

(b)⇒ (c):

Suppose h : Z −→ R∪ {∞} is defined by h(u) = H(û, u), û is the same as in (E3). By (E3), we have
inf
u∈Z

h(u) > −∞, and then h is bounded below. Let (ii) not be true. Then, for each u ∈ Z, v ∈ Z exists such

that
ψ(h(u))H(u, v) + γ(u, v, v) ≤ 0. (13)

By (E1), we have H(û, v) ≤ H(û, u) + H(u, v), then H(û, v) − H(û, u) ≤ H(u, v). Therefore,
by Equation (13), we have

ψ(h(u))(H(û, v)− H(û, u)) + γ(u, v, v) ≤ ψ(h(u))H(u, v) + γ(u, v, v) ≤ 0. (14)

Thus, for all u ∈ Z, there is v ∈ Z, such that

ψ(h(u))(h(v)− h(u)) + γ(u, v, v) ≤ 0·, v 6= u.

On the other hand, γ(u, v, v) ≤ ψ(h(u))(h(v)− h(u)). Now, by (b),

h(ū) = inf
v∈Z

h(v) ≤ h(w)·

Replace u by ū, then

ψ(h(ū))(H(û, v)− H(û, v)) + γ(ū, v, v) ≤ 0, v 6= u.

Thus,

ψ(h(ū))(h(v)− h(ū)) + γ(ū, v, v) ≤ 0 (15)

or γ(ū, v, v) ≤ ψ(h(ū))(h(ū)− h(v)).

Since v 6= u, by Lemma 1, (1), we get γ(ū, ū, ū) 6= 0 and γ(ū, u, u) 6= 0. Thus, we have γ(ū, v, v) > 0
and by Equation (15),

0 < ψ(h(ū))(h(ū)− h(v)) =⇒ h(v) < h(ū),

which is a contradiction.

(c)⇒Theorem 4:

Assume that H : Z×Z −→ R∪{∞} is a function such that H(u, v) = h(v)− h(u), u, v ∈ Z. Then,
by hypothesis, H is satisfied in condition (c). By (i), we have

ψ(h(û))H(û, ū) + γ(û, ū, ū) ≤ 0.



Mathematics 2018, 6, 93 11 of 14

Then,
ψ(h(û))(h(ū)− h(û)) + γ(û, ū, ū) ≤ 0

and so
γ(û, ū, ū) ≤ ψ(h(û))(h(û)− h(ū)).

In addition, by (ii), we have

ψ(h(ū))H(ū, u) + γ(ū, u, u) > 0

for each u ∈ Z and u 6= ū. Then,

ψ(h(ū))(h(u)− h(ū)) + γ(ū, u, u) > 0.

Corollary 2. (Equilibrium version of Ekeland-type variational principle.) Assume that (Z, G) is a
complete q-G-m space and γ ∈ Γ. Let H : Z× Z −→ R be a function such that:

(E1) H(u, w) ≤ H(u, v) + H(v, w) for all u, v, w ∈ Z,
(E2) H(u, ·) : Z −→ R, for every u ∈ Z be a Lsca and bounded below, then for every ε > 0 and for each û ∈ Z,

there is ū ∈ Z such that

(i) H(û, ū) + γ(û, ū, ū) ≤ 0,
(ii) H(ū, u) + εΓ(ū, u, u) > 0 for every u ∈ Z, u 6= ū.

Proof. Put h : Z −→ R∪ {+∞}, that h(û) = H(u, û) and û ∈ Z. Then, function h is proper, Lsca and
bounded by the below. For every ε > 0 and û ∈ Z, we define ψ(h(û)) = 1

ε . Then, by Theorem 5, we get
(c), (i) and (ii).

Corollary 3. (Nonconvex equilibrium theorem). Assume that the function H : Z× Z −→ (−∞, ∞) is
a proper and lsca and bounded below in the first argument, and ψ : (−∞, ∞) → (0, ∞) is a nondecreasing
function. Let, for each u ∈ Z with {x ∈ Z : H(u, x) < 0} 6= ∅, there exist v = v(u) ∈ Z with v 6= u such that

γ(u, v, v) ≤ ψ
(

H(u, t)
)(

H(u, t)− H(v, t)
)

(16)

holds for all z ∈ Z. Then, there exists y ∈ Z such that H(y, v) ≥ 0 for all v ∈ Z.

Proof. By Theorem 2 for each w ∈ Z, there exists y(w) ∈ Z such that γ(y(w), u, u) >

ψ
(

H(y(w), w)
)(

H(y(w), w) − H(u, w)
)

for each u ∈ Z with u 6= y(w). We show that there exists
y ∈ Z such thatH(y, v) ≥ 0 for all v ∈ Z. On the contrary, for each u ∈ Z, there exists v ∈ Z such that
H(u, v) < 0. Then, for each u ∈ Z, {x ∈ Z : H(u, x) < 0} 6= ∅. According to the assumption, there
exists v = v(y(w)), v 6= y(w) such that γ(y(w), v, v) ≤ ψ

(
H(y(w), w)

)(
H(y(w), w)− H(v, w)

)
, which is

a contradiction.

Example 5. Assume that Z = [0, 1] and G(u, v, w) = max{|u − v|, |u − w|, |v − w|}. Then, (Z, G) is
a complete q-G-m space. Let a,b be positive real numbers with a ≥ b. Assume that H : Z× Z −→ R with
H(u, v) = au− bv. Therefore, function x −→ H(u, v) is proper, lower semicontinuous and bounded below,
and H(1, v) ≥ 0 for every v ∈ Z. In addition, H(u, v) ≥ 0 for every u ∈ [ b

a , 1] and for each v ∈ Z. In fact,
for each u ∈ [0, b

a ], H(u, v) = au− bv < 0 when v ∈ [ a
b u, 1]. Then, set {x ∈ Z : H(u, x) < 0} 6= ∅ for

each u ∈ [0, b
a ]. Supposing u, v ∈ Z, u ≥ v, we have u− v = 1

a{(au− bx)− (av− bx)}, for each x ∈ z.
Let ψ : [0, ∞) −→ [0, ∞) with ψ(t) = 1

a be define. Therefore, G(u, v, v) ≤ ψ
(

H(u, x)
)(

H(u, x)− H(v, x)
)
,

for each u ≥ v, and u, v, x ∈ Z. By Corollary 3, there exists y ∈ Z such that H(y, v) ≥ 0 for every v ∈ Z.
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Definition 8. Let M be a nonempty subset of metric space (see [29]). Assume that H : M×M −→ R is a real
valued function and γ ∈ Γ . Let ε > 0, if there exists ū ∈ Z, such that

H(ū, v) + εγ(ū, v, v) ≥ 0 (17)

for every v ∈ M, then ū is a σ-solution of EP if the inequality in Equation (17) is strict for all u 6= v. Then, ū is
said to be strictly a σ-solution of EP.

Theorem 6. Assume that M is a nonempty compact of complete metric space Z and γ ∈ Γ Assume that
H : M×M −→ R is a real valued function such that:

(E1) H(u, w) ≤ H(u, v) + H(v, w) for each u, v, w ∈ M,
(E2) For all u ∈ M, H(u, ·) : M −→ R is an Lsca and bounded below function,
(E3) For all v ∈ M, H(·, v) : M −→ R is a lower semicontinuous function.

Then, ū ∈ M is a solution of EP.

Proof. By using Corollary 2, for all n ∈ N, there is un ∈ M such that

H(un, v) +
1
n

γ(un, v, v) ≥ 0

for every v ∈ M.
On the other hand, for n ∈ N, un ∈ M is a σ-solution of EP for σ = 1

n . M is compact. Therefore,
there is subsequence {unk} of {un} such that unk −→ ū. Since H(·, v) is upper semicontinuous, then

F(ū, v) ≥ lim sup
n−→∞

(H(un, v) +
1
nk

γ(unk , v, v)) ≥ 0

ū is a solution of EP.

Definition 9. Assume that (Z, G) is a complete q-G-m space and γ is a γ-function on Z. We said that
u0 ∈ Z is satisfied in condition Ξ if and only if every sequence {un} in Z, H(u0, un) ≤ 1

n for each n ∈ N and
H(un, u) + 1

n γ(un, u, u) ≥ 0 for all u ∈ Z and n ∈ N has a convergent subsequence.

Theorem 7. Assume that (Z, G) be a complete q-G-m space. Suppose γ ∈ Γ and H : Z× Z −→ R satisfied
in conditions (E1) and (E2) of Corollary 2. In addition, H will be upper semicontinuous in first argument,
if u0 ∈ Z be satisfied in condition Ξ. Then, there is a solution ū ∈ Z of EP.

Proof. Put σ = 1
n in Corollary 2, then for each n ∈ N and for every u0 ∈ X, there is un ∈ Z such that

H(u0, un) +
1
n

γ(u0, un, un) ≤ 0 (18)

and
H(un, u) +

1
n

γ(un, u, u) > 0, (19)

for all u ∈ Z. Since γ(u0, un, un) ≥ 0, by Equation (18), we have, H(u0, un) ≤ 0 for all n ∈ N.

By using condition Ξ, there is subsequence {un} that is convergent to point ū ∈ Z. On the other
hand, by using semicontinuous h(·, u) and Equation (19), we find that ū is a solution of EP.
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