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Abstract: The objective of this manuscript is to present a novel information measure for measuring
the degree of fuzziness in intuitionistic fuzzy sets (IFSs). To achieve it, we define an (R, S)-norm-based
information measure called the entropy to measure the degree of fuzziness of the set. Then, we prove
that the proposed entropy measure is a valid measure and satisfies certain properties. An illustrative
example related to a linguistic variable is given to demonstrate it. Then, we utilized it to propose
two decision-making approaches to solve the multi-attribute decision-making (MADM) problem in
the IFS environment by considering the attribute weights as either partially known or completely
unknown. Finally, a practical example is provided to illustrate the decision-making process.
The results corresponding to different pairs of (R, S) give different choices to the decision-maker to
assess their results.

Keywords: entropy measure; (R, S)-norm; multi attribute decision-making; information measures;
attribute weight; intuitionistic fuzzy sets

1. Introduction

Multi-attribute decision-making (MADM) problems are an important part of decision theory in
which we choose the best one from the set of finite alternatives based on the collective information.
Traditionally, it has been assumed that the information regarding accessing the alternatives is taken
in the form of real numbers. However, uncertainty and fuzziness are big issues in real-world
problems nowadays and can be found everywhere as in our discussion or the way we process
information. To deal with such a situation, the theory of fuzzy sets (FSs) [1] or extended fuzzy sets
such as an intuitionistic fuzzy set (IFS) [2] or interval-valued IFS (IVIFS) [3] are the most successful
ones, which characterize the attribute values in terms of membership degrees. During the last few
decades, researchers has been paying more attention to these theories and successfully applied them
to various situations in the decision-making process. The two important aspects of solving the MADM
problem are, first, to design an appropriate function that aggregates the different preferences of
the decision-makers into collective ones and, second, to design appropriate measures to rank the
alternatives. For the former part, an aggregation operator is an important part of the decision-making,
which usually takes the form of a mathematical function to aggregate all the individual input
data into a single one. Over the last decade, numerable attempts have been made by different
researchers in processing the information values using different aggregation operators under IFS and
IVIFS environments. For instance, Xu and Yager [4], Xu [5] presented some weighted averaging and
geometric aggregation operators to aggregate the different intuitionistic fuzzy numbers (IFNs). Garg [6]
and Garg [7] presented some interactive improved aggregation operators for IFNs using Einstein
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norm operations. Wang and Wang [8] characterized the preference of the decision-makers in terms of
interval-numbers, and then, an MADM was presented corresponding to it with completely unknown
weight vectors. Wei [9] presented some induced geometric aggregation operators with intuitionistic
fuzzy information. Arora and Garg [10] and Arora and Garg [11] presented some aggregation operators
by considering the different parameterization factors in the analysis in the intuitionistic fuzzy soft set
environment. Zhou and Xu [12] presented some extreme weighted averaging aggregation operators for
solving decision-making problems in terms of the optimism and pessimism points of view. Garg [13]
presented some improved geometric aggregation operators for IVIFS. A complete overview about the
aggregation operators in the IVIFSs was summarized by Xu and Guo in [14]. Jamkhaneh and Garg [15]
presented some new operations for the generalized IFSs and applied them to solve decision-making
problems. Garg and Singh [16] presented a new triangular interval Type-2 IFS and its corresponding
aggregation operators.

With regard to the information measure, the entropy measure is basically known as the measure
for information originating from the fundamental paper “The Mathematical theory of communication”
in 1948 by C.E.Shannon [17]. Information theory is one of the trusted areas to measure the degree
of uncertainty in the data. However, classical information measures deal with information that is
precise in nature. In order to overcome this, Deluca and Termini [18] proposed a set of axioms for
fuzzy entropy. Later on, Szmidt and Kacprzyk [19] extended the axioms of Deluca and Termini [18]
to the IFS environment. Vlachos and Sergiadis [20] extended their measure to the IFS environment.
Burillo and Bustince [21] introduced the entropy of IFSs as a tool to measure the degree of intuitionism
associated with an IFS. Garg et al. [22] presented a generalized intuitionistic fuzzy entropy measure
of order α and degree β to solve decision-making problems. Wei et al. [23] presented an entropy
measure based on the trigonometric functions. Garg et al. [24] presented an entropy-based method for
solving decision-making problems. Zhang and Jiang [25] presented an intuitionistic fuzzy entropy by
generalizing the measure of Deluca and Termini [18]. Verma and Sharma [26] presented an exponential
order measure between IFSs.

In contrast to the entropy measures, the distance or similarity measures are also used by
researchers to measure the similarity between two IFSs. In that direction, Taneja [27] presented a theory
on the generalized information measures in the fuzzy environment. Boekee and Van der Lubbe [28]
presented the R-norm information measure. Hung and Yang [29] presented the similarity measures
between the two different IFSs based on the Hausdorff distance. Garg [30], Garg and Arora [31]
presented a series of distance and similarity measures in the different sets of the environment to
solve decision-making problems. Joshi and Kumar [32] presented an (R, S)-norm fuzzy information
measures to solve decision-making problems. Garg and Kumar [33,34] presented some similarity and
distance measures of IFSs by using the set pair analysis theory. Meanwhile, decision-making methods
based on some measures (such as distance, similarity degree, correlation coefficient and entropy) were
proposed to deal with fuzzy IF and interval-valued IF MADM problems [35–38].

In [39–43], emphasis was given by the researchers to the attribute weights during ranking of the
alternatives. It is quite obvious that the final ranking order of the alternatives highly depends on the
attribute weights, because the variation of weight values may result in a different final ranking order of
alternatives [39,44–47]. Now, based on the characteristics of the attribute weights, the decision-making
problem can be classified into three types: (a) the decision-making situation where the attribute weights
are completely known; (b) the decision-making situation where the attribute weights are completely
unknown; (c) the decision-making situation where the attribute weights are partially known. Thus,
based on these types, the attribute weights in MADM can be classified as subjective and objective
attribute weights based on the information acquisition approach. If the decision-maker gives weights
to the attributes, then such information is called subjective. The classical approaches to determine
the subjective attribute weights are the analytic hierarchy process (AHP) method [48] and the Delphi
method [49]. On the other hand, the objective attribute weights are determined by the decision-making
matrix, and one of the most important approaches is the Shannon entropy method [17], which
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expresses the relative intensities of the attributes’ importance to signify the average intrinsic information
transmitted to the decision-maker. In the literature, several authors [39,44,50–52] have addressed
the MADM problem with subjective weight information. However, some researchers formulated
a nonlinear programming model to determine the attribute weights. For instance, Chen and Li [44]
presented an approach to assess the attribute weights by utilizing IF entropy in the IFS environment.
Garg [53] presented a generalized intuitionistic fuzzy entropy measure to determine the completely
unknown attribute weight to solve the decision-making problems. Although some researchers put some
efforts into determining the unknown attribute weights [45,46,54,55] under different environments,
still it remains an open problem.

Therefore, in an attempt to address such problems and motivated by the characteristics of
the IFSs to describe the uncertainties in the data, this paper addresses a new entropy measure to
quantify the degree of fuzziness of a set in the IFS environment. The aim of this entropy is to
determine the attribute weights under the characteristics of the attribute weights that they are either
partially known or completely unknown. For this, we propose a novel entropy measure named
the (R, S)-norm-based information measure, which makes the decision more flexible and reliable
corresponding to different values of the parameters R and S. Some of the desirable properties of the
proposed measures are investigated, and some of their correlations are dreived. From the proposed
entropy measures, some of the existing measures are considered as a special case. Furthermore,
we propose two approaches for solving the MADM approach based on the proposed entropy measures
by considering the characteristics of the attribute weights being either partially known or completely
unknown. Two illustrative examples are considered to demonstrate the approach and compare the
results with some of the existing approaches’ results.

The rest of this paper is organized as follows. In Section 2, we present some basic concepts of IFSs
and the existing entropy measures. In Section 3, we propose a new (R, S)-norm-based information
measure in the IFS environment. Various desirable relations among the approaches are also investigated
in detail. Section 4 describes two approaches for solving the MADM problem with the condition that
attribute weights are either partially known or completely unknown. The developed approaches have
been illustrated with a numerical example. Finally, a concrete conclusion and discussion are presented
in Section 5.

2. Preliminaries

Some basic concepts related to IFSs and the aggregation operators are highlighted, over the
universal set X, in this section.

Definition 1. [2] An IFS A defined in X is an ordered pair given by:

A = {〈x, ζA(x), ϑA(x)〉 | x ∈ X} (1)

where ζA, ϑA : X −→ [0, 1] represent, respectively, the membership and non-membership degrees of the element
x such that ζA, ϑA ∈ [0, 1] and ζA + ϑA ≤ 1 for all x. For convenience, this pair is denoted by A = 〈ζA, ϑA〉
and called an intuitionistic fuzzy number (IFN) [4,5].

Definition 2. [4,5] Let the family of all intuitionistic fuzzy sets of universal set X be denoted by FS(X). Let A,
B ∈ FS(X) be such that then some operations can be defined as follows:

1. A ⊆ B if ζA(x) ≤ ζB(x) and ϑA(x) ≥ ϑB(x), for all x ∈ X;
2. A ⊇ B if ζA(x) ≥ ζB(x) and ϑA(x) ≤ ϑB(x), for all x ∈ X;
3. A = B iff ζA(x) = ζB(x) and ϑA(x) = ϑB(x), for all x ∈ X;
4. A ∪ B = {〈x, max(ζA(x), ζB(x)), min(ϑA(x), ϑB(x))〉: x ∈ X};
5. A ∩ B = {〈x, min(ζA(x), ζB(x)), max(ϑA(x), ϑB(x))〉: x ∈ X};
6. Ac = {〈x, ϑA(x), ζA(x)〉: x ∈ X}.
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Definition 3. [19] An entropy E: IFS(X) −→ R+ on IFS(X) is a real-valued functional satisfying the
following four axioms for A, B ∈ IFS(X)

(P1) E(A) = 0 if and only if A is a crisp set, i.e., either ζA(x) = 1, ϑA(x) = 0 or ζA(x) = 0, ϑA(x) = 1 for
all x ∈ X.

(P2) E(A) = 1 if and only if ζA(x) = ϑA(x) for all x ∈ X.
(P3) E(A) = E(Ac).
(P4) If A ⊆ B, that is, if ζA(x) ≤ ζB(x) and ϑA(x) ≥ ϑB(x) for any x ∈ X, then E(A) ≤ E(B).

Vlachos and Sergiadis [20] proposed the measure of intuitionistic fuzzy entropy in the IFS
environment as follows:

E(A) = − 1
n ln 2

n

∑
i=1

[
ζA(xi) ln ζA(xi) + ϑA(xi) ln ϑA(xi)− (1− πA(xi)) ln(1− πA(xi))− πA(xi) ln 2

]
(2)

Zhang and Jiang [25] presented a measure of intuitionistic fuzzy entropy based on a generalization
of measure of Deluca and Termini [18] as:

E(A) = − 1
n

n

∑
i=1


(

ζA(xi) + 1− ϑA(xi)

2

)
log
(

ζA(xi) + 1− ϑA(xi)

2

)
+(

ϑA(xi) + 1− ζA(xi)

2

)
log
(

ϑA(xi) + 1− ζA(xi)

2

)
 (3)

Verma and Sharma [26] proposed an exponential order entropy in the IFS environment as:

E(A) =
1

n(
√

e− 1)

n

∑
i=1


ζA(xi) + 1− ϑA(xi)

2
e1− ζA(xi)+1−ϑA(xi)

2

+
ϑA(xi) + 1− ζA(xi)

2
e1− ϑA(xi)+1−ζA(xi)

2 − 1

 (4)

Garg et al. [22] generalized entropy measure Eβ
α (A) of order α and degree β as:

Eβ
α (A) =

2− β

n(2− β− α)

n

∑
i=1

log


(

ζ
α

2−β

A (xi) + ϑ
α

2−β

A (xi)

)
(ζA(xi) + ϑA(xi))

1− α
2−β

+ 21− α
2−β (1− ζA(xi)− ϑA(xi))

 (5)

where log is to the base two, α > 0, β ∈ [0, 1], α + β 6= 2.

3. Proposed (R, S)-Norm Intuitionistic Fuzzy Information Measure

In this section, we define a new (R, S)-norm information measure, denoted by HS
R, in the IFS

environment. For it, let Ω be the collection of all IFSs.

Definition 4. For a collection of IFSs A = {(x, ζA(x), ϑA(x)) | x ∈ X}, an information measure HS
R : Ωn → R;

n ≥ 2 is defined as follows:

HS
R(A) =



R×S
n(R−S)

n
∑

i=1


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S

−
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

 ; either R > 1, 0 < S < 1 or 0 < R < 1, S > 1

R
n(R−1)

n
∑

i=1

[
1−

(
ζR

A(xi) + ϑR
A(xi) + πR

A(xi)
) 1

R

]
; when S = 1; 0 < R < 1

S
n(1−S)

n
∑

i=1

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S − 1
]

; when R = 1; 0 < S < 1

−1
n

n
∑

i=1

ζA(xi) log ζA(xi) + ϑA(xi) log ϑA(xi)

+ πA(xi) log πA(xi)

 ; R = 1 = S.

(6)



Mathematics 2018, 6, 92 5 of 19

Theorem 1. An intuitionistic fuzzy entropy measure HS
R(A) defined in Equation (6) for IFSs is a valid measure,

i.e., it satisfies the following properties.

(P1) HS
R(A) = 0 if and only if A is a crisp set, i.e., ζA(xi) = 1, ϑA(xi) = 0 or ζA(xi) = 0, ϑA(xi) = 1 for

all xi ∈ X.
(P2) HS

R(A) = 1 if and only if ζA(xi) = ϑA(xi) for all xi ∈ X.
(P3) HS

R(A) ≤ HS
R(B) if A is crisper than B, i.e., if ζA(xi) ≤ ζB(xi) & ϑA(xi) ≤ ϑB(xi),

for max{ζB(xi), ϑB(xi)} ≤ 1
3 and ζA(xi) ≥ ζB(xi) & ϑA(xi) ≥ ϑB(xi), for min{ζB(xi), ϑB(xi)} ≤ 1

3
for all xi ∈ X.

(P4) HS
R(A) = HS

R(Ac) for all A ∈ IFS(X).

Proof. To prove that the measure defined by Equation (6) is a valid information measure, we will
have to prove that it satisfies the four properties defined in the definition of the intuitionistic fuzzy
information measure.

1. Sharpness: In order to prove (P1), we need to show that HS
R(A) = 0 if and only if A is a crisp set,

i.e., either ζA(x) = 1, ϑA(x) = 0 or ζA(x) = 0, ϑA(x) = 1 for all x ∈ X.

Firstly, we assume that HS
R(A) = 0 for R, S > 0 and R 6= S. Therefore, from Equation (6), we have:

R× S
n(R− S)

n

∑
i=1


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S

−
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

 = 0

⇒
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S −

(
ζR

A(xi) + ϑR
A(xi) + πR

A(xi)
) 1

R
= 0 for all i = 1, 2, . . . , n.

i.e.,
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S
=
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R for all i = 1, 2, . . . , n.

Since R, S > 0 and R 6= S, therefore, the above equation is satisfied only if ζA(xi) = 0, ϑA(xi) = 1
or ζA(xi) = 1, ϑA(xi) = 0 for all i = 1, 2, . . . , n.

Conversely, we assume that set A = (ζA, ϑA) is a crisp set i.e., either ζA(xi) = 0 or 1. Now,
for R, S > 0 and R 6= S, we can obtain that:

(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R
= 0

for all i = 1, 2, . . . , n, which gives that HS
R(A) = 0.

Hence, HS
R(A) = 0 iff A is a crisp set.

2. Maximality: We will find maxima of the function HS
R(A); for this purpose, we will differentiate

Equation (6) with respect to ζA(xi) and ϑA(xi). We get,

∂HS
R(A)

∂ζA(xi)
=

R× S
n(R− S)

n

∑
i=1


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−S
S
(

ζS−1
A (xi)− πS−1

A (xi)
)

−
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−R
R
(

ζR−1
A (xi)− πR−1

A (xi)
)
 (7)

and:

∂HS
R(A)

∂ϑA(xi)
=

R× S
n(R− S)

n

∑
i=1


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−S
S
(

ϑS−1
A (xi)− πS−1

A (xi)
)

−
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−R
R
(

ϑR−1
A (xi)− πR−1

A (xi)
)
 (8)
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In order to check the convexity of the function, we calculate its second order derivatives as follows:

∂2 HS
R(A)

∂2ζA(xi)
=

R× S
n(R− S)

n

∑
i=1



(1− S)
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−2S
S
(

ζS−1
A (xi)− πS−1

A (xi)
)2

+ (S− 1)
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−S
S
(

ζS−2
A (xi) + πS−2

A (xi)
)

− (1− R)
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−2R
R
(

ζR−1
A (xi)− πR−1

A (xi)
)2

− (R− 1)
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−R
R
(

ζR−2
A (xi) + πR−2

A (xi)
)



∂2 HS
R(A)

∂2ϑA(xi)
=

R× S
n(R− S)

n

∑
i=1



(1− S)
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−2S
S
(

ϑS−1
A (xi)− πS−1

A (xi)
)2

+ (S− 1)
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−S
S
(

ϑS−2
A (xi) + πS−2

A (xi)
)

− (1− R)
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−2R
R
(

ϑR−1
A (xi)− πR−1

A (xi)
)2

− (R− 1)
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−R
R
(

ϑR−2
A (xi) + πR−2

A (xi)
)


and

∂2 HS
R(A)

∂ϑA(xi)∂ζA(xi)
=

R× S
n(R− S)

n

∑
i=1



(1− S)
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1−2S
S ×

×
(

ϑS−1
A (xi)− πS−1

A (xi)
) (

ζS−1
A (xi)− πS−1

A (xi)
)

− (1− R)
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1−2R
R ×

×
(

ϑR−1
A (xi)− πR−1

A (xi)
) (

ζR−1
A (xi)− πR−1

A (xi)
)


To find the maximum/minimum point, we set ∂HS

R(A)
∂ζA(xi)

= 0 and ∂HS
R(A)

∂ϑA(xi)
= 0, which gives that

ζA(xi) = ϑA(xi) = πA(xi) =
1
3 for all i and hence called the critical point of the function HS

R.

(a) When R < 1, S > 1, then at the critical point ζA(xi) = ϑA(xi) = πA(xi) = 1
3 , we

compute that:

∂2HS
R(A)

∂2ζA(xi)
< 0

and
∂2HS

R(A)

∂2ζA(xi)
·

∂2HS
R(A)

∂2ϑA(xi)
−
(

∂2HS
R(A)

∂ϑA(xi)∂ζA(xi)

)2

> 0

Therefore, the Hessian matrix of HS
R(A) is negative semi-definite, and hence, HS

R(A) is a
concave function. As the critical point of HS

R is ζA = ϑA = 1
3 and by the concavity, we get

that HS
R(A) has a relative maximum value at ζA = ϑA = 1

3 .
(b) When R > 1, S < 1, then at the critical point, we can again easily obtain that:

∂2HS
R(A)

∂2ζA(xi)
< 0

and
∂2HS

R(A)

∂2ζA(xi)
·

∂2HS
R(A)

∂2ϑA(xi)
−
(

∂2HS
R(A)

∂ϑA(xi)ζA(xi)

)2

> 0

This proves that HS
R(A) is a concave function and its global maximum at ζA(xi) = ϑA(xi) =

1
3 .

Thus, for all R, S > 0; R < 1, S < 1 or R > 1, S < 1, the global maximum value of HS
R(A) attains

at the point ζA(xi) = ϑA(xi) =
1
3 , i.e., HS

R(A) is maximum if and only if A is the most fuzzy set.
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3. Resolution: In order to prove that our proposed entropy function is monotonically increasing
and monotonically decreasing with respect to ζA(xi) and ϑA(xi), respectively, for convince,
let ζA(xi) = x, ϑA(xi) = y and πA(xi) = 1− x− y, then it is sufficient to prove that for R, S > 0,
R 6= S, the entropy function:

f (x, y) =
R× S

n(R− S)

[
(xS + yS + (1− x− u)S)

1
S − (xR + yR + (1− x− y)R)

1
R

]
(9)

where x, y ∈ [0, 1] is an increasing function w.r.t. x and decreasing w.r.t. y.

Taking the partial derivative of f with respect to x and y respectively, we get:

∂ f
∂x

=
R× S

n(R− S)


(

xS(xi) + yS(xi) + (1− x− y)S(xi)
) 1−S

S
(

xS−1(xi)− (1− x− y)S−1
)

−
(

xR(xi) + yR(xi) + (1− x− y)R(xi)
) 1−R

R
(

xR−1(xi)− (1− x− y)R−1
)
 (10)

and:

∂ f
∂y

=
R× S

n(R− S)


(

xS(xi) + yS(xi) + (1− x− y)S(xi)
) 1−S

S
(

yS−1(xi)− (1− x− y)S−1
)

−
(

xR(xi) + yR(xi) + (1− x− y)R(xi)
) 1−R

R
(

yR−1(xi)− (1− x− y)R−1
)
 (11)

For the extreme point of f , we set ∂ f
∂x = 0 and ∂ f

∂y = 0 and get x = y = 1
3 .

Furthermore, ∂ f
∂x ≥ 0, when x ≤ y such that R, S > 0, R 6= S, i.e., f (x, y) is increasing with x ≤ y,

and ∂ f
∂x ≤ 0 is decreasing with respect to x, when x ≥ y. On the other hand, ∂ f

∂y ≥ 0 and ∂ f
∂y ≤ 0

when x ≥ y and x ≤ y, respectively.

Further, since HS
R(A) is a concave function on the IFS A, therefore, if max{ζA(x), ϑA(x)} ≤ 1

3 ,
then ζA(xi) ≤ ζ(xi) and ϑA(xi) ≤ ϑB(xi), which implies that:

ζA(xi) ≤ ζB(xi) ≤
1
3

; ϑA(xi) ≤ ϑB(xi) ≤
1
3

; πA(xi) ≥ πB(xi) ≥
1
3

Thus, we observe that (ζB(xi), ϑB(xi), πB(xi)) is more around ( 1
3 , 1

3 , 1
3 ) than

(ζA(xi), ϑA(xi), πA(xi)). Hence, HS
R(A) ≤ HB

R(B).

Similarly, if min{ζA(xi), ϑA(xi)} ≥ 1
3 , then we get HS

R(A) ≤ HB
R(B).

4. Symmetry: By the definition of HS
R(A), we can easily obtain that HS

R(Ac) = HS
R(A).

Hence HS
R(A) satisfies all the properties of the intuitionistic fuzzy information measure and,

therefore, is a valid measure of intuitionistic fuzzy entropy.

Consider two IFSs A and B defined over X = {x1, x2, . . . , xn}. Take the disjoint partition of X as:

X1 = {xi ∈ X | A ⊆ B},
= {xi ∈ X | ζA(x) ≤ ζB(x); ϑA(x) ≥ ϑB(x)}

and:

X2 = {xi ∈ X | A ⊇ B}
= {xi ∈ X | ζA(x) ≥ ζB(x); ϑA(x) ≤ ϑB(x)}

Next, we define the joint and conditional entropies between IFSs A and B as follows:
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1. Joint entropy:

HS
R(A ∪ B) =

R× S
n(R− S)

n

∑
i=1


(

ζS
A∪B(xi) + ϑS

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
S
) 1

S

−
(

ζR
A∪B(xi) + ϑR

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
R
) 1

R



=
R× S

n(R− S) ∑
xi∈X1


(

ζS
B(xi) + ϑS

B(xi) + (1− ζB(xi)− ϑB(xi))
S
) 1

S

−
(

ζR
B (xi) + ϑR

B (xi) + (1− ζB(xi)− ϑB(xi))
R
) 1

R



+
R× S

n(R− S) ∑
xi∈X2


(

ζS
A(xi) + ϑS

A(xi) + (1− ζA(xi)− ϑA(xi))
S
) 1

S

−
(

ζR
A(xi) + ϑR

A(xi) + (1− ζA(xi)− ϑA(xi))
R
) 1

R


2. Conditional entropy:

HS
R(A|B) =

R× S
n(R− S) ∑

xi∈X2


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S −

(
ζR

A(xi) + ϑR
A(xi) + πR

A(xi)
) 1

R

−
(

ζS
B(xi) + ϑS

B(xi) + πS
B(xi)

) 1
S
+
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R


and:

HS
R(B|A) =

R× S
n(R− S) ∑

xi∈X1


(

ζS
B(xi) + ϑS

B(xi) + πS
B(xi)

) 1
S −

(
ζR

B (xi) + ϑR
B (xi) + πR

B (xi)
) 1

R

−
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S
+
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R



Theorem 2. Let A and B be the two IFSs defined on universal set X = {x1, x2, . . . , xn}, where,
A = {〈xi, ζA(xi), ϑA(xi)〉 | xi ∈ X} and B = {〈xi, ζB(xi), ϑB(xi)〉 | xi ∈ X}, such that either A ⊆ B or
A ⊇ B ∀ xi ∈ X, then:

HS
R(A ∪ B) + HS

R(A ∩ B) = HS
R(A) + HS

R(B)

Proof. Let X1 and X2 be the two disjoint sets of X, where,

X1 = {x ∈ X : A ⊆ B}, X2 = {x ∈ X : A ⊇ B}

i.e., for xi ∈ X1, we have ζA(xi) ≤ ζB(xi), ϑA(xi) ≥ ϑB(xi) and xi ∈ X2, implying that ζA(xi) ≥
ζB(xi), ϑA(xi) ≤ ϑB(xi). Therefore,

HS
R(A ∪ B) + HS

R(A ∩ B) =
R× S

n(R− S)

n

∑
i=1


(

ζS
A∪B(xi) + ϑS

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
S
) 1

S

−
(

ζR
A∪B(xi) + ϑR

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
R
) 1

R



+
R× S

n(R− S)

n

∑
i=1


(

ζS
A∩B(xi) + ϑS

A∩B(xi) + (1− ζA∩B(xi)− ϑA∩B(xi))
S
) 1

S

−
(

ζR
A∩B(xi) + ϑR

A∩B(xi) + (1− ζA∩B(xi)− ϑA∩B(xi))
R
) 1

R


=

R× S
n(R− S) ∑

xi∈X1

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]

+
R× S

n(R− S) ∑
xi∈X2

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]

+
R× S

n(R− S) ∑
xi∈X1

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]

+
R× S

n(R− S) ∑
xi∈X2

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζB(xi)
R + ϑB(xi)

R + πR
B (xi)

) 1
R

]
= HS

R(A) + HS
R(B)
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Theorem 3. The maximum and minimum values of the entropy HS
R (A) are independent of the parameters R

and S.

Proof. As from the above theorem, we conclude that the entropy is maximum if and only if A is
the most IFS and minimum when A is a crisp set. Therefore, it is enough to show that the value of
HS

R(A) in these conditions is independent of R and S. When A is the most IFS, i.e., ζA(xi) = ϑA(xi),
for all xi ∈ X, then HS

R(A) = 1, and when A is a crisp set, i.e., either ζA(xi) = 0, ϑA(xi) = 1 or
ζA(xi) = 1, ϑA(xi) = 0 for all xi ∈ X, then HS

R(A) = 0. Hence, in both cases, HS
R(A) is independent of

the parameters R and S.

Remark 1. From the proposed measure, it is observed that some of the existing measures can be obtained from it
by assigning particular cases to R and S. For instance,

1. When πA(xi) = 0 for all xi ∈ X, then the proposed measures reduce to the entropy measure of Joshi and
Kumar [32].

2. When R = S and S > 0, then the proposed measures are reduced by the measure of Taneja [27].
3. When R = 1 and R 6= S, then the measure is equivalent to the R-norm entropy presented by Boekee and

Van der Lubbe [28].
4. When R = S = 1, then the proposed measure is the well-known Shannon’s entropy.
5. When S = 1 and R 6= S, then the proposed measure becomes the measure of Bajaj et al. [37].

Theorem 4. Let A and B be two IFSs defined over the set X such that either A ⊆ B or B ⊆ A, then the
following statements hold:

1. HS
R(A ∪ B) = HS

R(A) + HS
R(B|A);

2. HS
R(A ∪ B) = HS

R(B) + HS
R(A|B);

3. HS
R(A ∪ B) = HS

R(A) + HS
R(B|A) = HS

R(B) + HS
R(A|B).

Proof. For two IFSs A and B and by using the definitions of joint, conditional and the proposed
entropy measures, we get:

1. Consider:

HS
R(A ∪ B)− HS

R(A)− HS
R(B|A)

=
R× S

n(R− S)

n

∑
i=1


(

ζS
A∪B(xi) + ϑS

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
S
) 1

S

−
(

ζR
A∪B(xi) + ϑR

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
R
) 1

R


− R× S

n(R− S)

n

∑
i=1

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]

− R× S
n(R− S) ∑

xi∈X1


(

ζS
B(xi)

+ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

−
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S
+
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R


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=
R× S

n(R− S) ∑
xi∈X1

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]
+

R× S
n(R− S) ∑

xi∈X2

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]
− R× S

n(R− S) ∑
xi∈X1

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]
+

R× S
n(R− S) ∑

xi∈X2

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]

− R× S
n(R− S) ∑

xi∈X1


(

ζS
B(xi)

+ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

−
(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S
+
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R


= 0

2. Consider:

HS
R(A ∪ B)− HS

R(B)− HS
R(A|B)

=
R× S

n(R− S)

n

∑
i=1


(

ζS
A∪B(xi) + ϑS

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
S
) 1

S

−
(

ζR
A∪B(xi) + ϑR

A∪B(xi) + (1− ζA∪B(xi)− ϑA∪B(xi))
R
) 1

R


− R× S

n(R− S)

n

∑
i=1

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]

− R× S
n(R− S) ∑

xi∈X2


(

ζS
A(xi)

+ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

−
(

ζS
B(xi) + ϑS

B(xi) + πS
B(xi)

) 1
S
+
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R


=

R× S
n(R− S) ∑

xi∈X1

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]
+

R× S
n(R− S) ∑

xi∈X2

[(
ζS

A(xi) + ϑS
A(xi) + πS

A(xi)
) 1

S −
(

ζR
A(xi) + ϑR

A(xi) + πR
A(xi)

) 1
R

]
− R× S

n(R− S) ∑
xi∈X1

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]
+

R× S
n(R− S) ∑

xi∈X2

[(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R

]

− R× S
n(R− S) ∑

xi∈X2


(

ζS
A(xi) + ϑS

A(xi) + πS
A(xi)

) 1
S −

(
ζR

A(xi) + ϑR
A(xi) + πR

A(xi)
) 1

R

(
ζS

B(xi) + ϑS
B(xi) + πS

B(xi)
) 1

S −
(

ζR
B (xi) + ϑR

B (xi) + πR
B (xi)

) 1
R


= 0

3. This can be deduced from Parts (1) and (2).

Before elaborating on the comparison between the proposed entropy function and other entropy
functions, we state a definition [56] for an IFS of the form A = 〈x, ζA(xi), ϑA(xi) | x ∈ X〉 defined on
universal set X, which is as follows:

An = {〈x, [ζA(xi)]
n, 1− [1− ϑA(xi)]

n〉 | x ∈ X} (12)
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Definition 5. The concentration of an IFS A of the universe X is denoted by CON(A) and is defined by:

CON(A) = {〈x, ζCON(A)(x), ϑCON(A)(x)〉 | x ∈ X}

where ζ(CON(A))(x) = [ζA(x)]2, ϑCON(A)(x)) = 1− [1− ϑA(x)]2, i.e., the operation of the concentration of
an IFS is defined by CON(A) = A2.

Definition 6. The dilation of an IFS A of the universe X is denoted by DIL(A) and is defined by:

DIL(A) = {〈x, ζDIL(A)(x), ϑDIL(A)(x)〉 | x ∈ X}

where ζDIL(A)(x) = [ζA(x)]1/2 and ϑDIL(A)(x) = 1− [1− ϑA(x)]1/2, i.e., the operation of the dilation of an
IFS is defined by DIL(A) = A1/2

Example 1. Consider a universe of the discourse X = {x1, x2, x3, x4, x5}, and an IFS A “LARGE” of X may
be defined by:

LARGE = {(x1, 0.1, 0.8), (x2, 0.3, 0.5), (x3, 0.5, 0.4), (x4, 0.9, 0), (x5, 1, 0)}

Using the operations as defined in Equation (12), we have generated the following IFSs

A1/2, A2, A3, A4,

which are defined as follows:

A1/2 may be treated as “More or less LARGE”

A2 may be treated as “very LARGE”

A3 may be treated as “quite very LARGE”

A4 may be treated as “very very LARGE”

and their corresponding sets are computed as:

A
1
2 = {(x1, 0.3162, 0.5528), (x2, 0.5477, 0.2929), (x3, 0.7071, 0.2254), (x4, 0.9487, 0), (x5, 1, 0)}

A2 = {(x1, 0.01, 0.96), (x2, 0.09, 0.75), (x3, 0.25, 0.64), (x4, 0.81, 0), (x5, 1, 0)}
A3 = {(x1, 0.001, 0.9920), (x2, 0.0270, 0.8750), (x3, 0.1250, 0.7840), (x4, 0.7290, 0), (x5, 1, 0)}
A4 = {(x1, 0.0001, 0.9984), (x2, 0.0081, 0.9375), (x3, 0.0625, 0.8704), (x4, 0.6561, 0), (x5, 1, 0)}

From the viewpoint of mathematical operations, the entropy values of the above defined IFSs,
A1/2, A, A2, A3 and A4, have the following requirement:

E(A1/2) > E(A) > E(A2) > E(A3) > E(A4) (13)

Based on the dataset given in the above, we compute the entropy measure for them at different
values of R and S. The result corresponding to these different pairs of values is summarized in Table 1
along with the existing approaches’ results. From these computed values, it is observed that the
ranking order of the linguistic variable by the proposed entropy follows the pattern as described in
Equation (13) for some suitable pairs of (R, S), while the performance order pattern corresponding
to [19,21,57] and [58] is E(A) > E(A1/2) > E(A2) > E(A3) > E(A4), which does not satisfy the
requirement given in Equation (13). Hence, the proposed entropy measure is a good alternative and
performs better than the existing measures. Furthermore, for different pairs of (R, S), a decision-maker
may have more choices to access the alternatives from the viewpoint of structured linguistic variables.
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Table 1. Entropy measures values corresponding to existing approaches, as well as the proposed approach.

Entropy Measure A
1
2 A A2 A3 A4

E{BB} [21] 0.0818 0.1000 0.0980 0.0934 0.0934
E{SK} [19] 0.3446 0.3740 0.1970 0.1309 0.1094
E{ZL} [57] 0.4156 0.4200 0.2380 0.1546 0.1217
E{HY} [58] 0.3416 0.3440 0.2610 0.1993 0.1613
E{ZJ} [25] 0.2851 0.3050 0.1042 0.0383 0.0161
E0.2

0.4 [22] 0.5995 0.5981 0.5335 0.4631 0.4039

HS
R (proposed measure)

R = 0.3, S = 2 2.3615 2.3589 1.8624 1.4312 1.1246
R = 0.5, S = 2 0.8723 0.8783 0.6945 0.5392 0.4323
R = 0.7, S = 2 0.5721 0.5769 0.4432 0.3390 0.2725
R = 2.5, S = 0.3 2.2882 2.2858 1.8028 1.3851 1.0890
R = 2.5, S = 0.5 0.8309 0.8368 0.6583 0.5104 0.4103
R = 2.5, S = 0.7 0.5369 0.5415 0.4113 0.3138 0.2538

4. MADM Problem Based on the Proposed Entropy Measure

In this section, we present a method for solving the MADM problem based on the proposed
entropy measure.

4.1. Approach I: When the Attribute Weight Is Completely Unknown

In this section, we present a decision-making approach for solving the multi-attribute
decision-making problem in the intuitionistic fuzzy set environment. For this, consider a set of ‘n’
different alternatives, denoted by A1, A2, . . . , An, which are evaluated by a decision-maker under the
‘m’ different attributes G1, G2, . . . , Gm. Assume that a decision-maker has evaluated these alternatives in
the intuitionistic fuzzy environment and noted their rating values in the form of the IFNs αij = 〈ζij, ϑij〉
where ζij denotes that the degree of the alternative Ai satisfies under the attribute Gj, while ϑij denotes
the dissatisfactory degree of an alternative Ai under Gj such that ζij, ϑij ∈ [0, 1] and ζij + ϑij ≤ 1 for
i = 1, 2, . . . , m and j = 1, 2, . . . , n. Further assume that the weight vector ωj(j = 1, 2, . . . , m) of each
attribute is completely unknown. Hence, based on the decision-maker preferences αij, the collective
values are summarized in the form of the decision matrix D as follows:

D =

G1 G2 . . . Gm


A1 〈ζ11, ϑ11〉 〈ζ12, ϑ12〉 . . . 〈ζ1m, ϑ1m〉
A2 〈ζ21, ϑ21〉 〈ζ22, ϑ22〉 . . . 〈ζ2m, ϑ2m〉
...

...
...

. . .
...

An 〈ζn1, ϑn1〉 〈ζn2, ϑn2〉 . . . 〈ζnm, ϑnm〉

(14)

Then, the following steps of the proposed approach are summarized to find the best alternative(s).

Step 1: Normalize the rating values of the decision-maker, if required, by converting the rating
values corresponding to the cost type attribute into the benefit type. For this, the following
normalization formula is used:

rij =

{
〈ζij, ϑij〉 ; if the benefit type attribute

〈ϑij, ζij〉 ; if the cost type attribute
(15)

and hence, we obtain the normalized IF decision matrix R = (rij)n×m.
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Step 2: Based on the matrix R, the information entropy of attribute Gj(j = 1, 2, . . . , m) is computed as:

(HS
R)j =

R× S
n(R− S)

n

∑
i=1

[(
ζS

ij + ϑS
ij + πS

ij

) 1
S −

(
ζR

ij + ϑR
ij + πR

ij

) 1
R

]
(16)

where R, S > 0 and R 6= S.
Step 3: Based on the entropy matrix, HS

R(αij) defined in Equation (16), the degree of divergence (dj)

of the average intrinsic information provided by the correspondence on the attribute Gj can be

defined as dj = 1− κj where κj =
n
∑

i=1
HS

R(αij), j = 1, 2, . . . , m. Here, the value of dj represents

the inherent contrast intensity of attribute Gj, and hence, based on this, the attributes weight
ωj(j = 1, 2, . . . , n) is given as:

ωj =
dj

m
∑

j=1
dj

=
1− κj

m
∑

j=1
(1− κj)

=
1− κj

m−
m
∑

j=1
κj

(17)

Step 4: Construct the weighted sum of each alternative by multiplying the score function of each
criterion by its assigned weight as:

Q(Ai) =
m

∑
j=1

ωj(ζij − ϑij); i = 1, 2, . . . , n (18)

Step 5: Rank all the alternatives Ai(i = 1, 2, . . . , n) according to the highest value of Q(Ai) and, hence,
choose the best alternative.

The above-mentioned approach has been illustrated with a practical example of the decision-maker,
which can be read as:

Example 2. Consider a decision-making problem from the field of the recruitment sector. Assume that
a pharmaceutical company wants to select a lab technician for a micro-bio laboratory. For this, the company
has published a notification in a newspaper and considered the four attributes required for technician selection,
namely academic record (G1), personal interview evaluation (G2), experience (G3) and technical capability
(G4). On the basis of the notification conditions, only five candidates A1, A2, A3, A4 and A5 as alternatives are
interested and selected to be presented to the panel of experts for this post. Then, the main object of the company
is to choose the best candidate among them for the task. In order to describe the ambiguity and uncertainties in
the data, the preferences related to each alternative are represented in the IFS environment. The preferences of
each alternative are represented in the form of IFNs as follows:

D =

G1 G2 G3 G4


A1 〈0.7, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.2〉 〈0.6, 0.3〉
A2 〈0.7, 0.1〉 〈0.5, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.5〉
A3 〈0.6, 0.3〉 〈0.5, 0.1〉 〈0.5, 0.3〉 〈0.6, 0.2〉
A4 〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.3, 0.7〉 〈0.6, 0.3〉
A5 〈0.6, 0.3〉 〈0.4, 0.6〉 〈0.7, 0.2〉 〈0.5, 0.4〉

(19)

Then, the steps of the proposed approach are followed to find the best alternative(s) as below:

Step 1: Since all the attributes are of the same type, so there is no need for the normalization process.
Step 2: Without loss of generality, we take R = 0.3 and S = 2 and, hence, compute the entropy

measurement value for each attribute by using Equation (16). The results corresponding to it
are HS

R(G1) = 3.4064, HS
R(G2) = 3.372, HS

R(G3) = 3.2491 and HS
R(G4) = 3.7564.
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Step 3: Based on these entropy values, the weight of each criterion is calculated as ω = (0.2459, 0.2425,
0.2298, 0.2817)T .

Step 4: The overall weighted score values of the alternative corresponding to R = 0.3, S = 2 and
ω = (0.2459, 0.2425, 0.2298, 0.2817)T obtained by using Equation (18) are Q(A1) = 0.3237,
Q(A2) = 0.3071, Q(A3) = 0.3294, Q(A4) = 0.2375 and Q(A5) = 0.1684.

Step 5: Since Q(A3) > Q(A1) > Q(A2) > Q(A4) > Q(A5), hence the ranking order of the
alternatives is A3 � A1 � A2 � A4 � A5. Thus, the best alternative is A3.

However, in order to analyze the influence of the parameters R and S on the final ranking order
of the alternatives, the steps of the proposed approach are executed by varying the values of R from
0.1 to 1.0 and S from 1.0 to 5.0. The overall score values of each alternative along with the ranking
order are summarized in Table 2. From this analysis, we conclude that the decision-maker can plan to
choose the values of R and S and, hence, their respective alternatives according to his goal. Therefore,
the proposed measures give various choices to the decision-maker to reach the target.

Table 2. Effect of R and S on the entropy measure HS
R by using Approach I.

S R HS
R(A1) HS

R(A2) HS
R(A3) HS

R(A4) HS
R(A5) Ranking Order

1.2

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3241 0.3081 0.3292 0.2374 0.1690 A3 � A1 � A2 � A4 � A5
0.5 0.3165 0.2894 0.3337 0.2368 0.1570 A3 � A1 � A2 � A4 � A5
0.7 0.1688 -0.0988 0.4296 0.2506 -0.0879 A3 � A4 � A1 � A5 � A2
0.9 0.3589 0.3992 0.3065 0.2328 0.2272 A2 � A1 � A3 � A4 � A5

1.5

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3239 0.3076 0.3293 0.2374 0.1688 A3 � A1 � A2 � A4 � A5
0.5 0.3132 0.2811 0.3359 0.2371 0.1515 A3 � A1 � A2 � A4 � A5
0.7 0.4139 0.5404 0.2712 0.2272 0.3185 A2 � A1 � A5 � A3 � A2
0.9 0.3498 0.3741 0.3125 0.2334 0.2121 A2 � A1 � A3 � A4 � A5

2.0

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3237 0.3071 0.3294 0.2375 0.1684 A3 � A1 � A2 � A4 � A5
0.5 0.3072 0.2666 0.3396 0.2381 0.1415 A3 � A1 � A2 � A4 � A5
0.7 0.3660 0.4140 0.3022 0.2308 0.2393 A2 � A1 � A3 � A5 � A4
0.9 0.3461 0.3631 0.3150 0.2331 0.2062 A2 � A1 � A3 � A4 � A5

2.5

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3235 0.3067 0.3295 0.2376 0.1681 A3 � A1 � A2 � A4 � A5
0.5 0.3010 0.2517 0.3436 0.2396 0.1308 A3 � A1 � A2 � A4 � A5
0.7 0.3578 0.3920 0.3074 0.2304 0.2261 A2 � A1 � A3 � A4 � A5
0.9 0.3449 0.3591 0.3158 0.2322 0.2045 A2 � A1 � A3 � A4 � A5

3.0

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3234 0.3064 0.3296 0.2376 0.1678 A3 � A1 � A2 � A4 � A5
0.5 0.2946 0.2368 0.3476 0.2417 0.1199 A3 � A1 � A4 � A2 � A5
0.7 0.3545 0.3829 0.3095 0.2298 0.2209 A2 � A1 � A3 � A4 � A5
0.9 0.3442 0.3570 0.3161 0.2314 0.2037 A2 � A1 � A3 � A4 � A5

5.0

0.1 0.3268 0.3084 0.3291 0.2429 0.1715 A3 � A1 � A2 � A4 � A5
0.3 0.3231 0.3058 0.3298 0.2379 0.1674 A3 � A1 � A2 � A4 � A5
0.5 0.2701 0.1778 0.3638 0.2520 0.0767 A3 � A1 � A4 � A2 � A5
0.7 0.3496 0.3706 0.3123 0.2277 0.2137 A2 � A1 � A3 � A4 � A5
0.9 0.3428 0.3532 0.3168 0.2293 0.2020 A2 � A1 � A3 � A4 � A5

4.2. Approach II: When the Attribute Weight Is Partially Known

In this section, we present an approach for solving the multi-attribute decision-making problem
in the IFS environment where the information about the attribute weight is partially known.
The description of the MADM problem is mentioned in Section 4.1.

Since decision-making during a real-life situation is highly complex due to a large number of
constraints, human thinking is inherently subjective, and the importance of the attribute weight
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vector is incompletely known. In order to represent this incomplete information about the weights,
the following relationship has been defined for i 6= j:

1. A weak ranking: ωi ≥ ωj;
2. A strict ranking: ωi −ωj ≥ σi; (σi > 0).
3. A ranking with multiples: ωi ≥ σiωj, (0 ≤ σi ≤ 1);
4. An interval form: λi ≤ ωi ≤ λi + δi, (0 ≤ λi ≤ λi + δi ≤ 1);
5. A ranking of differences: ωi −ωj ≥ ωk −ωl , (j 6= k 6= l).

The set of this known weight information is denoted by ∆ in this paper.
Then, the proposed approach is summarized in the following steps to obtain the most desirable

alternative(s).

Step 1: Similar to Approach I.
Step 2: similar to Approach I.
Step 3: The overall entropy of the alternative Ai(i = 1, 2, . . . , n) for the attribute Gj is given by:

H(Ai) =
m

∑
j=1

HS
R(αij)

=
R× S

n(R− S)

m

∑
j=1

{
n

∑
i=1

(
(ζS

ij + ϑS
ij + πS

ij)
1
S − (ζR

ij + ϑR
ij + πR

ij )
1
R

)}
(20)

where R, S > 0 and R 6= S.

By considering the importance of each attribute in terms of weight vector ω =

(ω1, ω2, . . . , ωm)T , we formulate a linear programming model to determine the weight vector
as follows:

min H =
n

∑
i=1

H(Ai) =
n

∑
i=1

{
m

∑
j=1

ωjHS
R(αij)

}

=
R× S

n(R− S)

m

∑
j=1

ωj

{
n

∑
i=1

(
(ζS

ij + ϑS
ij + πS

ij)
1
S − (ζR

ij + ϑR
ij + πR

ij )
1
R

)}

s.t.
m

∑
j=1

ωj = 1

ωj ≥ 0; ω ∈ ∆

After solving this model, we get the optimal weight vector ω = (ω1, ω2, . . . , ωm)T .
Step 4: Construct the weighted sum of each alternative by multiplying the score function of each

criterion by its assigned weight as:

Q(Ai) =
m

∑
j=1

ωj(ζij − ϑij); i = 1, 2, . . . , n (21)

Step 5: Rank all the alternative Ai(i = 1, 2, . . . , n) according to the highest value of Q(Ai) and, hence,
choose the best alternative.

To demonstrate the above-mentioned approach, a numerical example has been taken, which is
stated as below.

Example 3. Consider an MADM problem, which was stated and described in Example 2, where the five
alternatives A1, A2, . . . , A5 are assessed under the four attributes G1, G2, G3, G4 in the IFS environment. Here,
we assume that the information about the attribute weight is partially known and is given by the decision-maker
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as ∆ = {0.15 ≤ ω1 ≤ 0.45, 0.2 ≤ ω2 ≤ 0.5, 0.1 ≤ ω3 ≤ 0.3, 0.1 ≤ ω4 ≤ 0.2, ω1 ≥ ω4,
4
∑

j=1
ωj = 1}. Then,

based on the rating values as mentioned in Equation (19), the following steps of the Approach II are executed as
below:

Step 1: All the attributes are te same types, so there is no need for normalization.
Step 2: Without loss of generality, we take R = 0.3 and S = 2 and, hence, compute the entropy measurement

value for each attribute by using Equation (20). The results corresponding to it are HS
R(G1) = 3.4064,

HS
R(G2) = 3.372, HS

R(G3) = 3.2491 and HS
R(G4) = 3.7564.

Step 3: Formulate the optimization model by utilizing the information of rating values and the partial
information of the weight vector ∆ = {0.15 ≤ ω1 ≤ 0.45, 0.2 ≤ ω2 ≤ 0.5, 0.1 ≤ ω3 ≤ 0.3, 0.1 ≤

ω4 ≤ 0.2, ω1 ≥ ω4,
4
∑

j=1
ωj = 1} as:

min H = 3.4064ω1 + 3.372ω2 + 3.2491ω3 + 3.7564ω4

subject to 0.15 ≤ ω1 ≤ 0.45,

0.2 ≤ ω2 ≤ 0.5,

0.1 ≤ ω3 ≤ 0.3,

0.1 ≤ ω4 ≤ 0.2,

ω1 ≥ ω4,

and ω1 + ω2 + ω3 + ω4 = 1.

Hence, we solve the model with the help of MATLAB software, and we can obtain the weight vector as
ω = (0.15, 0.45, 0.30, 0.10)T .

Step 4: The overall weighted score values of the alternative corresponding to R = 0.3, S = 2 and ω =

(0.15, 0.45, 0.30, 0.10)T obtained by using Equation (21) are Q(A1) = 0.2700, Q(A2) = 0.3650,
Q(A3) = 0.3250 and Q(A4) = 0.1500 and Q(A5) = 0.1150.

Step 5: Since Q(A2) > Q(A3) > Q(A1) > Q(A4) > Q(A5), hence the ranking order of the alternatives is
A2 � A3 � A1 � A4 � A5. Thus, the best alternative is A2.

5. Conclusions

In this paper, we propose an entropy measure based on the (R, S)-norm in the IFS environment.
Since the uncertainties present in the data play a crucial role during the decision-making process,
in order to measure the degree of fuzziness of a set and maintaining the advantages of it, in the
present paper, we addressed a novel (R, S)-norm-based information measure. Various desirable
relations, as well as some of its properties, were investigated in detail. From the proposed measures,
it was observed that some of the existing measures were the special cases of the proposed measures.
Furthermore, based on the different parametric values of R and S, the decision-maker(s) may have
different choices to make a decision according to his/her choice. In addition to these and to explore the
structural characteristics and functioning of the proposed measures, two decision-making approaches
were presented to solve the MADM problems in the IFS environment under the characteristics that
attribute weights are either partially known or completely unknown. The presented approaches were
illustrated with numerical examples. The major advantages of the proposed measure are that it gives
various choices to select the best alternatives, according to the decision-makers’ desired goals, and
hence, it makes the decision-makers more flexible and reliable. From the studies, it is concluded
that the proposed work provides a new and easy way to handle the uncertainty and vagueness in
the data and, hence, provides an alternative way to solve the decision-making problem in the IFS
environment. In the future, the result of this paper can be extended to some other uncertain and fuzzy
environments [59–62].
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