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Abstract: The systems of reaction-diffusion equations coupled with moving boundaries defined by
Stefan condition have been widely used to describe the dynamics of spreading population and with
competition of two species. To solve these systems numerically, new numerical challenges arise
from the competition of two species due to the interaction of their free boundaries. On the one
hand, extremely small time steps are usually needed due to the stiffness of the system. On the other
hand, it is always difficult to efficiently and accurately handle the moving boundaries especially with
competition of two species. To overcome these numerical difficulties, we introduce a front tracking
method coupled with an implicit solver for the 1D model. For the general 2D model, we use a level
set approach to handle the moving boundaries to efficiently treat complicated topological changes.
Several numerical examples are examined to illustrate the efficiency, accuracy and consistency for
different approaches.

Keywords: competition-diffusion model; stefan problems; level set method; front-tracking method;
front-fixing method

1. Introduction

The reaction-diffusion equations over a changing domain to describe the dynamics of a
two-species competition-diffusion model usually take the following form,

∂U
∂t
− D1∆U = f1(U, V) for x ∈ Ω1(t), t > 0; U = 0 for x ∈ ∂Ω1(t), t > 0. (1)

∂V
∂t
− D2∆V = f2(U, V) for x ∈ Ω2(t), t > 0; U = 0 for x ∈ ∂Ω2(t), t > 0. (2)

The nonlinear functions f1(U, V) and f2(U, V) are assumed to be C1 functions satisfying
fi(0) = 0 , i = 1,2, and in the literature they are often taken to be two-species Lotka-Volterra type
competition functions. In the rest of this paper, we will take two-species Lotka-Volterra type
competition functions as an example to demonstrate the numerical methods.

The evolution of the moving domains Ωi(t) ⊂ RN , i = 1, 2, or rather their boundaries
∂Ωi(t), i = 1,2 is determined by the one phase Stefan condition which, in the case ∂Ωi(t), i = 1, 2 are
C1 manifolds in RN . For example, the evolution of species U can be described as follows:

For any point x ∈ ∂Ω1(t), it moves with velocity µ1|∇xU(t, x)|n(x), where n(x)
is the unit outward normal of Ω1(t) at x, and µ is a given positive constant.

The moving boundaries ∂Ω1(t), i = 1, 2 is generally called the “free boundary”, and it is well
known that, in general, their smoothness is not guaranteed, even if the initial function U(0, x), V(0, x)
and initial domain Ωi(0), i = 1, 2 are both smooth.
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Mathematically, the two-species competition-diffusion model with two free boundaries has been
intensively studied for 1D [1–4] and for high dimensions with radial symmetry [5,6] through profound
mathematical analysis. For instance, the existence of the positive traveling wave solutions connecting
different constant equilibria has been addressed in [7–9]. The asymptotic spreading speed associated
with the Cauchy problem has been studied in [10–12]. Many other theoretical results for general
models have been achieved in [13–17] and references cited therein.

In contrast, very few numerical methods have been developed to solve such free boundary
problems. Most recently, some efficient numerical methods have been introduced to solve the single
species model [18]. In general, extremely small time steps are required due to the stiffness of the system.
On the other hand, it is always difficult to efficiently and accurately handle the moving boundaries
especially for two species. To efficiently handle the moving boundaries, level set methods [19–24] and
front tracking methods [25–28] are two popular numerical approaches. One distinct feature of front
tracking [29–34] is using a pure Lagrangian approach to explicitly track locations of interfaces, but it is
difficult to handle topological bifurcations in high dimensions with interaction of two free boundaries,
while the level set method can efficiently overcome such difficulties. In this paper, we will introduce a
front tracking framework to solve the system for the one-dimensional case, and a level set approach is
employed for two dimensions.

The rest of paper is organized as follows. In Section 2, we introduce two approaches for
one-dimensional two-species competition system , i.e., a front tracking approach and a front
fixing approach. In Section 3, a level set method is discussed for a more general two-dimensional case.
In Section 4, numerical examples are performed to show the efficiency, accuracy and consistency for
these different approaches. Finally, a brief conclusion is drawn in Section 5.

2. Numerical Methods for 1D Two-Species Competition-Diffusion Model

A two-species competition-diffusion model with two free boundaries for the density of population
of the competing species U and V depending on time t and spatial variable x states as follows:

Ut − D1Uxx = γ1U(1−U − K1V), t > 0, 0 < x < S1(t), (3)

Vt − D2Vxx = γ2V(1−V − K2U), t > 0, 0 < x < S2(t), (4)

Ux(t, 0) = Vx(t, 0) = 0, t ≥ 0, (5)

S′1(t) = −µ1Ux(t, S1(t)), S′2(t) = −µ2Vx(t, S2(t)), t ≥ 0, (6)

U(x, t) = 0 f or x ≥ S1(t), V(x, t) = 0 f or x ≥ S2(t), t ≥ 0, (7)

U(x, 0) = U0(x), V(x, 0) = V0(x), f or x ∈ [0, ∞), (8)

S1(0) = S0
1 > 0, S2(0) = S0

2 > 0. (9)

where U(x, t) and V(x, t) represent the population densities of the two species at the position x and
time t. D1 and D2 are the diffusion rates of species U and V. γ1 and γ2 are net birth rates of species
U and V. K1 and K2 are the competition coefficients of species U and V. The parameters µ1 and µ2

measure the intention to spread into the new territories of u and v. Here, the two free boundaries S1(t)
and S2(t) describe the spreading fronts of two competing species U(t, x) and V(t, x). We envision that
the two species initially occupy the interval [0, S1(0)] and [0, S2(t)], respectively, at time t.

2.1. Method 1: Front-Tracking Method for 1D Two-Species Competition-Diffusion Model

The problem lies in solving the nonlinear parabolic partial differential Equations (3)–(9)
in the unbounded fixed domain (0, ∞) × (0, L) for the variables (t, x). Let us consider the
step size discretization k = 4t, h = 4x = L/M, and the mesh points (tn, xj), with
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tn = kn, n ≥ 0, xj = jh, 0 ≤ j ≤ M and M positive integer. Let us denote the approximate value
of U(tn, xj) and the approximate value of V(tn, xj) at the mesh point (tn, xj) ,

un
j ≈ U(tn, xj), vn

j ≈ V(tn, xj)

Step1: Track the position of the moving front S1(t).

According to the Stefan condition

S′1(t) = −µ1Ux(t, S1(t)), t ≥ 0, (10)

we consider using the central approximation of the spatial derivatives to approximate ∂U
∂x (t, S1(t)),

which can be divided into the following four cases.

1 When xi ≤ Sn
1 < xi+1, i = 2, 3...M − 1 as depicted in Figure 1, denoting d =

Sn
1−xi

h . Let
us first consider the symmetric point of xi−1 respect to the position Sn

1 , which is denoted by
x̃i−1. In particular, when Sn

1 = xi, x̃i−1 = xi+1. We use the Lagrange interpolation to construct
polynomial PL from the value of d, h, un

i−2, un
i−1, un

i and Sn
1 , thus at x̃i−1, we use the value of PL at

x̃i−1 instead of u(x̃i−1),

∂U
∂x

(tn, Sn
1 ) ≈

PL(x̃i−1)− un
i−1

2(1 + d)h
, i = 2, 3, . . . , M− 1.
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Figure 1. case 1: xi ≤ Sn
1 < xi+1.

2 When 0 = x0 < Sn
1 ≤ x1, the central scheme approximation of the spatial derivatives to

approximate ∂U
∂x (t, S1(t)) involves the fictitious value un

−1 at the point (tn,−h). The value un
−1 can

be estimated from the second-order discretization of the boundary condition (10),

un
1 − un

−1
2h

= 0 (11)

which implies that un
−1 = un

1 = 0. It is obvious that all the values of un
i on the grid points are

equal to 0 except un
0 . Numerically, we take S′1(t) = 0, and this can be explained by the fact the

species is only located inside one grid mesh. The simulation should stop here indicating that a
more refined mesh is needed.

3 When x1 < Sn
1 < x2 as shown in Figure 2, denoting d =

Sn
1−x1

h . Let us first consider the symmetric
point of x0 with respect to the position Sn

1 , which is denoted by x̃0. Then we consider the value of
un
−1 = un

1 , and use the Lagrange interpolation to construct polynomial PL from the value of h, d,
un
−1, un

0 , un
1 and Sn

1 . Then at x̃0, we use the value of PL at x̃0 instead of u(x̃0).



Mathematics 2018, 6, 72 4 of 24

Mathematics 2018, xx, 1 3 of 26

tn = kn, n ≥ 0, xj = jh, 0 ≤ j ≤ M and M positive integer. Let us denote the approximate value
of U(tn, xj) and the approximate value of V(tn, xj) at the mesh point (tn, xj) ,

un
j ≈ U(tn, xj), vn

j ≈ V(tn, xj)

Step1: Track the position of the moving front S1(t).

According to the Stefan condition

S′1(t) = −µ1Ux(t, S1(t)), t ≥ 0, (10)

we consider using the central approximation of the spatial derivatives to approximate ∂U
∂x (t, S1(t)),

which can be divided into the following four cases.

1 When xi ≤ Sn
1 < xi+1, i = 2, 3...M− 1, denoting d =

Sn
1−xi

h . Let us first consider the symmetric
point of xi−1 respect to the position Sn

1 , which is denoted by x̃i−1. In particular, when Sn
1 = xi,

x̃i−1 = xi+1. We use the Lagrange interpolation to construct polynomial PL from the value of d, h,
un

i−2, un
i−1, un

i and Sn
1 , thus at x̃i−1, we use the value of PL at x̃i−1 instead of u(x̃i−1),

∂U
∂x

(tn, Sn
1 ) ≈

PL(x̃i−1)− un
i−1

2(1 + d)h
, i = 2, 3, . . . , M− 1.

x0
0

xi−2 xi−1 xi Sn
1 x̃i−1 xM

L︸ ︷︷ ︸
(1+d)h

︸ ︷︷ ︸
(1+d)h

Figure 1. case 1: xi ≤ Sn
1 < xi+1

2 When 0 = x0 < Sn
1 ≤ x1, the central scheme approximation of the spatial derivatives to

approximate ∂U
∂x (t, S1(t)) involves the fictitious value un

−1 at the point (tn,−h). The value un
−1 can

be estimated from the second-order discretization of the boundary condition (10),

un
1 − un

−1
2h

= 0 (11)

which implies that un
−1 = un

1 = 0. It is obvious that all the values of un
i on the grid points are

equal to 0 except un
0 . Numerically, we take S′1(t) = 0, and it can be explained that the species is

only located inside one grid mesh. The simulation should stop here indicating that a more refined
mesh is needed.

3 When x1 < Sn
1 < x2, denoting d =

Sn
1−x1

h . Let us first consider the symmetric point of x0 respect
to the position Sn

1 , which is denoted by x̃0. Then we consider the value of un
−1 = un

1 , and use
the Lagrange interpolation to construct polynomial PL from the value of h, d, un

−1, un
0 , un

1 and Sn
1 .

Then at x̃0, we use the value of PL at x̃0 instead of u(x̃0).

x−1
0
x0 x1 x2Sn

1 x̃0 xM
L︸ ︷︷ ︸

(1+d)h
︸ ︷︷ ︸

(1+d)h

Figure 2. case 3: x1 < Sn
1 < x2Figure 2. case 3: x1 < Sn

1 < x2.

4 When Sn
1 = xM, it implies that the spreading of the populations already goes out of the

computational domain [0, L], and the simulation should stop here.

Step2: Track the position of the moving front of S2(t).

Repeat step1 to S2(t).

Step3: Update the value of U(tn+1, xi) and V(tn+1, xi).

1 When xi = Sn+1
1 and xj = Sn+1

2 , then we know that U(tn+1, xi) = 0. Let un+1
i = 0, un+1

l = 0,
for l = i + 1, i + 2...M and vn+1

j = 0, vn+1
m = 0, for m = j + 1, j + 2...M. We consider the

central approximation of the spatial derivatives Uxx at xl , for l = 0, 1, 2, ..., i− 1, and the central
approximation of the spatial derivatives Vxx at xm, for m = 0, 1, 2, ..., j− 1, where U and V are
updated by the backward Euler




un+l
l − un

l
k

= D1
un+1

l−1 − 2un+1
l + un+1

l+1
h2 + γ1un+1

l (1− un+1
l − K1vn+1

l ), l = 0, 1, ...i− 1.

vn+l
m − vn

m
k

= D2
vn+1

m−1 − 2vn+1
m + vn+1

m+1
h2 + γ2vn+1

m (1− vn+1
m − K2un+1

m ), m = 0, 1, ...j− 1.

(12)

Then use the Picard Iteration (or Newton Iteration) to solve the nonlinear system (12).

2 When xi < Sn+1
1 < xi+1 and xj < Sn+1

2 < xj+1, denoting R1 =
Sn+1

1 −xi
h and R2 =

Sn+1
2 −xi

h , we use
the Lagrange interpolation to construct polynomial PL

1 from the value of h, R1, un+1
i−2 , un+1

i−1 , un+1
i

and Sn+1
1 and polynomial PL

2 from the value of h, R2, vn+1
j−2 , vn+1

j−1 , vn+1
j and Sn+1

2 . Then at xi+1 and

xj+1, we use the value of PL
1 at xi+1 instead of un+1

i+1 and the value of PL
2 at xj+1 instead of vn+1

j+1 .
For the solution u at xl , for l = 0, 1, 2, ..., i− 1, a standard central approximation in space with
backward Euler in time will be employed. un+1

l = 0, for l = i + 1, ...M. For the solution v at xl , for
l = 0, 1, 2, ..., j− 1, a standard central approximation in space with backward Euler in time will be
employed. vn+1

l = 0, for l = j + 1, ...M. U and V is updated by the backward Euler in time





un+l
l − un

l
k

= D1
un+1

l−1 − 2un+1
l + un+1

l+1
h2 + γ1un+1

l (1− un+1
l − K1vn+1

l ), l = 0, 1, ...i− 1.

un+1
i − un

i
k

= D1
un+1

i−1 − 2un+1
i + PL

1 (xi+1)

h2 + γ1un+1
i (1− un+1

i − K1vn+1
i ).

vn+l
m − vn

m
k

= D2
vn+1

m−1 − 2vn+1
m + vn+1

m+1
h2 + γ2vn+1

m (1− vn+1
m − K2un+1

m ), m = 0, 1, ...j− 1.

vn+1
j − vn

j

k
= D2

vn+1
j−1 − 2vn+1

j + PL
2 (xj+1)

h2 + γ2vn+1
j (1− vn+1

j − K2un+1
j ).

(13)

Picard Iteration (or Newton Iteration) will be applied to solve the nonlinear system (13).
3 When xi = Sn+1

1 and xj < Sn+1
2 < xj+1, then we know that U(tn+1, xi) = 0. Let un+1

i = 0,
un+1

l = 0, for l = i + 1, ...M. We consider the central approximation of the spatial derivatives

Uxx at xl , for l = 0, 1, 2, ..., i− 1. Denoting R2 =
Sn+1

2 −xi
h , we use the Lagrange interpolation to

construct polynomial PL
2 from the value of h, R2, vn+1

j−2 , vn+1
j−1 , vn+1

j and Sn+1
2 . Then at xj+1, we use

the value of PL
2 at xj+1 instead of vn+1

j+1 , where U and V is updated by the backward Euler in time
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



un+l
l − un

l
k

= D1
un+1

l−1 − 2un+1
l + un+1

l+1
h2 + γ1un+1

l (1− un+1
l − K1vn+1

l ), l = 0, 1, ...i− 1.

vn+l
m − vn

m
k

= D2
vn+1

m−1 − 2vn+1
m + vn+1

m+1
h2 + γ2vn+1

m (1− vn+1
m − K2un+1

m ), m = 0, 1, ...j− 1.

vn+1
j − vn

j

k
= D2

vn+1
j−1 − 2vn+1

j + PL
2 (xj+1)

h2 + γ2vn+1
j (1− vn+1

j − K2un+1
j ).

(14)

Then use the Picard Iteration (or Newton Iteration) to solve the nonlinear system (14).

4 When xi < Sn+1
1 < xi+1 and xj = Sn+1

2 , denoting R1 =
Sn+1

1 −xi
h , we use the Lagrange interpolation

to construct polynomial PL
1 from the value of h, R1, un+1

i−2 , un+1
i−1 , un+1

i Then at xi+1, we use the
value of PL

1 at xi+1 instead of un+1
i+1 . For the solution u at xl , for l = 0, 1, 2, ..., i − 1, a standard

central approximation in space with backward Euler in time will be employed. un+1
l = 0, for

l = i + 1, ...M. For the solution v at xl , for l = 0, 1, 2, ..., j− 1, a standard central approximation in
space with backward Euler in time will be employed. vn+1

l = 0, for l = j + 1, ...M, where U and V
is updated by the backward Euler in time





un+l
l − un

l
k

= D1
un+1

l−1 − 2un+1
l + un+1

l+1
h2 + γ1un+1

l (1− un+1
l − K1vn+1

l ), l = 0, 1, ...i− 1.

un+1
i − un

i
k

= D1
un+1

i−1 − 2un+1
i + PL

1 (xi+1)

h2 + γ1un+1
i (1− un+1

i − K1vn+1
i ).

vn+l
m − vn

m
k

= D2
vn+1

m−1 − 2vn+1
m + vn+1

m+1
h2 + γ2vn+1

m (1− vn+1
m − K2un+1

m ), m = 0, 1, ...j− 1.

(15)

Picard Iteration (or Newton Iteration) will be applied to solve the nonlinear system (15).

2.2. Method 2: Front-Fixing Method for 1D Two-Species Competition-Diffusion Model

Here we consider transforming Equation (3) and Equation (4) into problems with a fixed domain
[0, 1] separately.

Step1. Update the front of S1(t) and the value of U by front fixing method.

Let us transform Equation (3) into a problem with a fixed domain [0, 1] using the Landau
transformation [35,36]

y(t, x) =
x

S1(t)
, M(t, y) = U(t, x), WtoM(t, y) = V(t, x). (16)

Then Equation (3) turns into the form:

H(t)
∂M
∂t
− H′(t)

y
2

∂M
∂y
− D1

∂2M
∂y2 = H(t)γ1M(1−M− K1WtoM), t > 0, 0 < y < 1, (17)

where:
H(t) = S2

1(t), t ≥ 0. (18)

Boundary conditions (5) and Stefan condition (6) take the form:

∂M
∂y

(t, 0) = 0, M(t, 1) = 0, t > 0, (19)
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and
H′(t) = −2µ1

∂M
∂y

(t, 1), t > 0, (20)

respectively, while the initial conditions (9) become:

H(0) = (S0
1)

2, M(0, y) = M0(y) = U0(yS0
1), 0 ≤ y ≤ 1. (21)

Conditions (8) for the initial function U0(x) are translated to W0(z) as follows:

M0(y) ∈ C2([0, 1]), M′0(0) = M0(1) = 0, M0(y) > 0, 0 ≤ y < 1. (22)

After the transformation, the new problem has been changed to solve the nonlinear parabolic
partial differential equations (17) in the unbounded fixed domain (0, ∞)× (0, 1) for the variables (t, y).
Let us consider the step size discretization k = 4t, h = 4y = 1/M, and the mesh points (tn, yj),
with tn = kn, n ≥ 0, yj = jh, 0 ≤ j ≤ M and M positive integer. Let us denote the approximate value
of M(tn, yj) at the mesh point (tn, yj),

mn
j ≈ M(tn, yj), wtoMn

j ≈WtoM(tn, yj). (23)

and let Hn be the approximation of H(tn). Let us consider the forward approximation of the
time derivatives,

mn+1
j −mn

j

k
≈ ∂M

∂t
(tn, yj),

Hn+1 − Hn

k
≈ H′(tn), (24)

and the central approximation of the spatial derivatives,

mn
j+1 −mn

j−1

2h
≈ ∂M

∂y
(tn, yj),

mn
j−1 − 2mn

j + mn
j+1

h2 ≈ ∂2M
∂y2 (tn, yj). (25)

From (24) and (25), Equation (17) is approximated by:

Hn
mn+1

j −mn
j

k
− yj

2

mn
j+1 −mn

j−1

2h
(

Hn+1 − Hn

k
)− D1

mn
j−1 − 2mn

j + mn
j+1

h2 (26)

= Hnγ1mn
j (1−mn

j − wtoMn
j ), n ≥ 0, 0 ≤ j ≤ M− 1.

As usual, we assume that the Equation (26) can be also approximated at j = 0. Equation (26)
written for j = 0 involves the fictitious value mn

−1 at the point (tn,−h). The value mn
−1 is eliminated

from the discretization of the boundary and initial condition (21) and (22),

mn
1 −mn

−1
2h

= 0, mn
M = 0, n ≥ 0. (27)

Transformed Stefan condition (20) is discretized using first order forward approximation for H′(t)
and three points backward spatial approximation of ∂M

∂y (t, 1):

Hn+1 − Hn

k
= −µ1

h
(3mn

M − 4mn
M−1 + mn

M−2), n ≥ 0. (28)

Hn+1 = Hn − µ1k
h

(3mn
M − 4mn

M−1 + mn
M−2), n ≥ 0.

to preserve accuracy of order O(k) + O(h2).
Finally, we have
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



mn+1
0 = (1− 2D1k

Hnh2 + kγ1(1−mn
0 − K1wn

0 ))m
n
0 + 2

D1k
Hnh2 mn

1 .

mn+1
j = an

j mn
j−1 + bn

j mn
j + cn

j mn
j+1, n ≥ 0, 0 < j ≤ M− 1.

mn+1
M = 0.

(29)

where the coefficients are given by:

an
j =

D1k
Hnh2 −

yjµ1k(4mn
M−1 −mn

M−2)

4h2Hn ,

bn
j = 1− 2D1k

Hnh2 + kγ1(1−mn
j − K1wtoMn

j ),

cn
j =

D1k
Hnh2 +

yjµ1k(4mn
M−1 −mn

M−2)

4h2Hn .

Step2. Update the front S2(t) and the value of V by front fixing method.

Let us transform Equation (4) into a problem with a fixed domain [0, 1] using the Landau
transformation [35,36]

z(t, x) =
x

S2(t)
, W(t, z) = V(t, x), MtoW(t, z) = U(t, x). (30)

Then Equation (4) turns into the form:

G(t)
∂W
∂t
− G′(t)

z
2

∂W
∂z
− D2

∂2W
∂z2 = G(t)γ2W(1−W − K2MtoW), t > 0, 0 < z < 1, (31)

where:
G(t) = S2

2(t), t ≥ 0. (32)

Boundary conditions (5) and Stefan condition (6) take the form:

∂W
∂z

(t, 0) = 0, W(t, 1) = 0, t > 0, (33)

and
G′(t) = −2µ2

∂W
∂z

(t, 1), t > 0, (34)

respectively, while the initial conditions (9) become:

G(0) = (S0
2)

2, W(0, z) = W0(z) = V0(zS0
2), 0 ≤ z ≤ 1. (35)

Conditions (8) for the initial function U0(x) are translated to W0(z) as follows:

W0(z) ∈ C2([0, 1]), W ′0(0) = W0(1) = 0, W0(z) > 0, 0 ≤ z < 1. (36)

After the transformation, the new problem lies in solving the nonlinear parabolic partial
differential equations (31) in the unbounded fixed domain (0, ∞) × (0, 1) for the variables (t, z).
Let us consider the step size discretization k = 4t, h = 4z = 1/M, and the mesh points (tn, zj),
with tn = kn, n ≥ 0, zj = jh, 0 ≤ j ≤ M and M positive integer. Let us denote the approximate value
of W(tn, zj) at the mesh point (tn, zj),

wn
j ≈W(tn, zj), mtoWn

j ≈ MtoW(tn, zj). (37)
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and let Gn be the approximation of G(tn). Let us consider the forward approximation of the
time derivatives,

wn+1
j − wn

j

k
≈ ∂W

∂t
(tn, zj),

Gn+1 − Gn

k
≈ G′(tn), (38)

and the central approximation of the spatial derivatives,

wn
j+1 − wn

j−1

2h
≈ ∂W

∂z
(tn, zj),

wn
j−1 − 2wn

j + wn
j+1

h2 ≈ ∂2W
∂z2 (tn, zj). (39)

From (38) and (39), Equation (31) is approximated by:

Gn
wn+1

j − wn
j

k
− zj

2

wn
j+1 − wn

j−1

2h
(

Gn+1 − Gn

k
)− D2

wn
j−1 − 2wn

j + wn
j+1

h2 (40)

= Gnγ2wn
j (1− wn

j − K2mtoWn
j ), n ≥ 0, 0 ≤ j ≤ M− 1.

As usual, we again assume that Equation (40) can be also approximated at j = 0.
Equation (40) written for j = 0 involves the fictitious value wn

−1 at the point (tn,−h). The value
wn
−1 is eliminated from the discretization of the boundary and initial condition (35) and (36),

wn
1 − wn

−1
2h

= 0, wn
M = 0, n ≥ 0. (41)

Transformed Stefan condition (34) is discretized using first order forward approximation for G′(t)
and three points backward spatial approximation of ∂W

∂z (t, 1):

Gn+1 − Gn

k
= −µ2

h
(3wn

M − 4wn
M−1 + wn

M−2), n ≥ 0. (42)

Gn+1 = Gn − µ2k
h

(3wn
M − 4wn

M−1 + wn
M−2), n ≥ 0.

to preserve accuracy of order O(k) + O(h2).
Finally, we have





wn+1
0 = (1− 2D2k

Gnh2 + kγ2(1− wn
0 − K2mtoWn

0 ))w
n
0 + 2

D2k
Gnh2 wn

1 .

wn+1
j = An

j wn
j−1 + Bn

j wn
j + Cn

j wn
j+1, n ≥ 0, 0 < j ≤ M− 1.

wn+1
M = 0.

(43)

where the coefficients are given by:

An
j =

D2k
Gnh2 −

zjµ2k(4wn
M−1 − wn

M−2)

4h2Gn ,

Bn
j = 1− 2D2k

Gnh2 + kγ2(1− wn
j − K2wtoMn

j ),

Cn
j =

D2k
Gnh2 +

zjµ2k(4wn
M−1 − wn

M−2)

4h2Gn .

Step3. Update the value of WtoM(tn, yi) with the front information Gn+1 and Hn+1.
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1 When yi =
√

Gn+1

Hn+1 , then we know that WtoM(tn+1, yi) = 0. Let wtoMn+1
i = 0, wtoMn+1

l = 0,

for l = i + 1, ...M. We consider the central approximation of the spatial derivatives ∂2WtoM
∂y2 at yj,

for j = 0, 1, 2, ..., i− 1, where WtoM is updated by the backward Euler




wtoMn+1
0 = (1− 2D1k

Hnh2 + kγ1(1− wtoMn
0 − K1mn

0 ))wtoMn
0 + 2

D1k
Hnh2 wtoMn

1 .

wtoMn+1
j = an

j wtoMn
j−1 + bn

j wtoMn
j + cn

j wtoMn
j+1, n ≥ 0, 0 < j ≤ i− 1.

wtoMn+1
j = 0, j = i, i + 1, ...M.

(44)

2 When yi <
√

Gn+1

Hn+1 < yi+1, denoting R =

√
Gn+1/Hn+1−yi

h , we use the Lagrange interpolation

to construct polynomial PL from the value of h, R, wtoMn+1
i−2 , wtoMn+1

i−1 , wtoMn+1
i and

√
Gn+1

Hn+1 ,

We consider to use the value of PL at yi+1 instead of wtoMn+1
j+1 .





wtoMn+1
0 = (1− 2D1k

Hnh2 + kγ1(1− wtoMn
0 − K1mn

0 ))wtoMn
0 + 2

D1k
Hnh2 wtoMn

1 .

wtoMn+1
j = an

j wtoMn
j−1 + bn

j wtoMn
j + cn

j wtoMn
j+1, n ≥ 0, 0 < j ≤ i− 1.

wtoMn+1
i = an

i wtoMn
i−1 + bn

i wtoMn
i + cn

i PL(yi+1).

wtoMn+1
j = 0, j = i + 1, ...M.

(45)

3 When
√

Gn+1

Hn+1 ≥ 1 as shown in Figure 3, we consider the central approximation of the

spatial derivatives ∂2WtoM
∂y2 at yj, for j = 0, 1, 2, ..., M − 1, for WtoM(tn+1, yM), we know

that W(tn+1,
√

Hn+1

Gn+1 ) = WtoM(tn+1, yM), let us approximate W(tn+1,
√

Hn+1

Gn+1 ) instead of

approximating WtoM(tn+1, yM). Suppose zi <
√

Hn+1

Gn+1 ≤ zi+1, we use the Lagrange interpolation
to construct polynomial P from the value of zi, zi−1, zi+1, Wn

i−1, Wn
i , and Wn

i+1, then

WtoM(tn+1, yM) = W(tn+1,
√

Hn+1

Gn+1 ) ≈ P(
√

Hn+1

Gn+1 ).
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An
j =

D2k
Gnh2 −

zjµ2k(4wn
M−1 − wn

M−2)

4h2Gn ,

Bn
j = 1− 2D2k

Gnh2 + kγ2(1− wn
j − K2wtoMn

j ),

Cn
j =

D2k
Gnh2 +

zjµ2k(4wn
M−1 − wn

M−2)

4h2Gn .

Step3. Update the value of WtoM(tn, yi) with the front information Gn+1 and Hn+1.

1 When yi =
√

Gn+1

Hn+1 , then we know that WtoM(tn+1, yi) = 0. Let wtoMn+1
i = 0, wtoMn+1

l = 0,

for l = i + 1, ...M. We consider the central approximation of the spatial derivatives ∂2WtoM
∂y2 at yj,

for j = 0, 1, 2, ..., i− 1, where WtoM is updated by the backward Euler




wtoMn+1
0 = (1− 2D1k

Hnh2 + kγ1(1− wtoMn
0 − K1mn

0 ))wtoMn
0 + 2

D1k
Hnh2 wtoMn

1 .

wtoMn+1
j = an

j wtoMn
j−1 + bn

j wtoMn
j + cn

j wtoMn
j+1, n ≥ 0, 0 < j ≤ i− 1.

wtoMn+1
j = 0, j = i, i + 1, ...M.

(44)

2 When yi <
√

Gn+1

Hn+1 < yi+1, denoting R =

√
Gn+1/Hn+1−yi

h , we use the Lagrange interpolation

to construct polynomial PL from the value of h, R, wtoMn+1
i−2 , wtoMn+1

i−1 , wtoMn+1
i and

√
Gn+1

Hn+1 ,

We consider to use the value of PL at yi+1 instead of wtoMn+1
j+1 .





wtoMn+1
0 = (1− 2D1k

Hnh2 + kγ1(1− wtoMn
0 − K1mn

0 ))wtoMn
0 + 2

D1k
Hnh2 wtoMn

1 .

wtoMn+1
j = an

j wtoMn
j−1 + bn

j wtoMn
j + cn

j wtoMn
j+1, n ≥ 0, 0 < j ≤ i− 1.

wtoMn+1
i = an

i wtoMn
i−1 + bn

i wtoMn
i + cn

i PL(yi+1).

wtoMn+1
j = 0, j = i + 1, ...M.

(45)

3 When
√

Gn+1

Hn+1 ≥ 1, we consider the central approximation of the spatial derivatives ∂2WtoM
∂y2 at yj, for

j = 0, 1, 2, ..., M − 1, for WtoM(tn+1, yM), we know that W(tn+1,
√

Hn+1

Gn+1 ) = WtoM(tn+1, yM),

let’s approximate W(tn+1,
√

Hn+1

Gn+1 ) instead of approximating WtoM(tn+1, yM).

Suppose zi <
√

Hn+1

Gn+1 ≤ zi+1, we use the Lagrange interpolation to construct polynomial P from

the value of zi, zi−1, zi+1, Wn
i−1, Wn

i , and Wn
i+1, then WtoM(tn+1, yM) = W(tn+1,

√
Hn+1

Gn+1 ) ≈
P(

√
Hn+1

Gn+1 ).

y0
0

y1 yi−1 yi yi+1 yM
1

√
Gn+1

Hn+1

z0
0

z1 zi−1 zi zi+1

√
Hn+1

Gn+1 zM
1

Figure 3. when
√

Gn+1

Hn+1 ≥ 1, WtoM(tn+1, yM) = W(tn+1,
√

Hn+1

Gn+1 ).
Figure 3. when

√
Gn+1

Hn+1 ≥ 1, WtoM(tn+1, yM) = W(tn+1,
√

Hn+1

Gn+1 ).

Step4. Update the value of MtoW(tn, zi) with the front information Gn+1 and Hn+1.

1 When zi =
√

Hn+1

Gn+1 , then we know that MtoW(tn+1, zi) = 0. Let mtoWn+1
i = 0, mtoWn+1

l = 0,

for l = i + 1, ...M. We consider the central approximation of the spatial derivatives ∂2 MtoW
∂z2 at zj,

for j = 0, 1, 2, ..., i− 1, where M is updated by the backward Euler




mtoWn+1
0 = (1− 2D2k

Gnh2 + kγ2(1−mtoWn
0 − K2wn

0 ))mtoWn
0 + 2

D2k
Gnh2 mtoWn

1 .

mtoWn+1
j = An

j mtoWn
j−1 + Bn

j mtoWn
j + Cn

j mtoWn
j+1, n ≥ 0, 0 < j ≤ i− 1.

mtoWn+1
j = 0.j = i, i + 1, ..M.

(46)
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2 When zi <
√

Hn+1

Gn+1 < zi+1, denoting R =

√
Hn+1/Gn+1−xi

h , we use the Lagrange interpolation

to construct polynomial PL from the value of h, R, mtoWn+1
i−2 , mtoWn+1

i−1 , mtoWn+1
i and

√
Hn+1

Gn+1 ,

We consider to use the value of PL at zi+1 instead of mtoWn+1
i+1 .





mtoWn+1
0 = (1− 2D2k

Gnh2 + kγ2(1−mtoWn
0 − K2wn

0 ))mtoWn
0 + 2

D2k
Gnh2 mtoWn

1 .

mtoWn+1
j = An

j mtoWn
j−1 + Bn

j mtoWn
j + Cn

j mtoWn
j+1, n ≥ 0, 0 < j ≤ i− 1.

mtoWn+1
i = An

i mtoWn
i−1 + Bn

i mtoWn
i + Cn

i PL(zi+1).

mtoWn+1
j = 0.j = i + 1, ..M.

(47)

3 When
√

Hn+1

Gn+1 ≥ 1 as illustrated in Figure 4, we consider the central approximation of

the spatial derivatives ∂2 MtoW
∂z2 at zj, for j = 0, 1, 2, ..., M − 1, for MtoW(tn+1, zM), we know

that M(tn+1,
√

Gn+1

Hn+1 ) = MtoW(tn+1, zM), let us approximate M(tn+1,
√

Gn+1

Hn+1 ) instead of

approximating MtoW(tn+1, zM). Suppose yi <
√

Gn+1

Hn+1 ≤ yi+1, we use the Lagrange interpolation
to construct polynomial P from the value of yi, yi−1, yi+1, Mn

i−1, Mn
i , and Mn

i+1, then

MtoW(tn+1, zM) = M(tn+1,
√

Gn+1

Hn+1 ) ≈ P(
√

Gn+1

Hn+1 ).
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Step4. Update the value of MtoW(tn, zi) with the front information Gn+1 and Hn+1.

1 When zi =
√

Hn+1

Gn+1 , then we know that MtoW(tn+1, zi) = 0. Let mtoWn+1
i = 0, mtoWn+1

l = 0,

for l = i + 1, ...M. We consider the central approximation of the spatial derivatives ∂2 MtoW
∂z2 at zj,

for j = 0, 1, 2, ..., i− 1, where M is updated by the backward Euler





mtoWn+1
0 = (1− 2D2k

Gnh2 + kγ2(1−mtoWn
0 − K2wn

0 ))mtoWn
0 + 2

D2k
Gnh2 mtoWn

1 .

mtoWn+1
j = An

j mtoWn
j−1 + Bn

j mtoWn
j + Cn

j mtoWn
j+1, n ≥ 0, 0 < j ≤ i− 1.

mtoWn+1
j = 0.j = i, i + 1, ..M.

(46)

2 When zi <
√

Hn+1

Gn+1 < zi+1, denoting R =

√
Hn+1/Gn+1−xi

h , we use the Lagrange interpolation

to construct polynomial PL from the value of h, R, mtoWn+1
i−2 , mtoWn+1

i−1 , mtoWn+1
i and

√
Hn+1

Gn+1 ,

We consider to use the value of PL at zi+1 instead of mtoWn+1
i+1 .





mtoWn+1
0 = (1− 2D2k

Gnh2 + kγ2(1−mtoWn
0 − K2wn

0 ))mtoWn
0 + 2

D2k
Gnh2 mtoWn

1 .

mtoWn+1
j = An

j mtoWn
j−1 + Bn

j mtoWn
j + Cn

j mtoWn
j+1, n ≥ 0, 0 < j ≤ i− 1.

mtoWn+1
i = An

i mtoWn
i−1 + Bn

i mtoWn
i + Cn

i PL(zi+1).

mtoWn+1
j = 0.j = i + 1, ..M.

(47)

3 When
√

Hn+1

Gn+1 ≥ 1, we consider the central approximation of the spatial derivatives ∂2 MtoW
∂z2 at zj,

for j = 0, 1, 2, ..., M− 1, for MtoW(tn+1, zM), we know that M(tn+1,
√

Gn+1

Hn+1 ) = MtoW(tn+1, zM),

let’s approximate M(tn+1,
√

Gn+1

Hn+1 ) instead of approximating MtoW(tn+1, zM).

Suppose yi <
√

Gn+1

Hn+1 ≤ yi+1, we use the Lagrange interpolation to construct polynomial P from

the value of yi, yi−1, yi+1, Mn
i−1, Mn

i , and Mn
i+1, then MtoW(tn+1, zM) = M(tn+1,

√
Gn+1

Hn+1 ) ≈
P(

√
Gn+1

Hn+1 ).

y0
0

y1 yi−1 yi

√
Gn+1

Hn+1yi+1 yM
1

z0
0

z1 zi−1 zi zi+1 zM
1

√
Hn+1

Gn+1

Figure 4. when
√

Hn+1

Gn+1 ≥ 1, MtoW(tn+1, ZM) = M(tn+1,
√

Gn+1

Hn+1 ).

3. Level Set Method for 2D Two-Species Competition-Diffusion Model

A general 2D two-species competition-diffusive model for the densities of population of the
species U(t, x, y) and V(t, x, y) depending on time t and spatial variable (x, y) states as follows:

∂U
∂t
− D1(

∂2U
∂x2 +

∂2U
∂y2 ) = γ1U(1−U − K1V), t > 0, (x, y) ∈ Ω1(t)\τ1(t), (48)

∂V
∂t
− D2(

∂2V
∂x2 +

∂2V
∂y2 ) = γ2V(1−V − K2U), t > 0, (x, y) ∈ Ω2(t)\τ2(t), (49)
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3. Level Set Method for 2D Two-Species Competition-Diffusion Model

A general 2D two-species competition-diffusive model for the densities of population of the
species U(t, x, y) and V(t, x, y) depending on time t and spatial variable (x, y) states as follows:

∂U
∂t
− D1(

∂2U
∂x2 +

∂2U
∂y2 ) = γ1U(1−U − K1V), t > 0, (x, y) ∈ Ω1(t)\τ1(t), (48)

∂V
∂t
− D2(

∂2V
∂x2 +

∂2V
∂y2 ) = γ2V(1−V − K2U), t > 0, (x, y) ∈ Ω2(t)\τ2(t), (49)

together with the boundary conditions

U(t, τ1(t)) = 0, V(t, τ2(t)) = 0, t > 0, (50)

the Stefan conditions

v1(t, x, y) = µ1|∇U(t, x, y)| n1(t, x, y) = −µ∇U(t, x, y), t > 0, (x, y) ∈ ∂Ω1(t), (51)

v2(t, x, y) = µ2|∇V(t, x, y)| n2(t, x, y) = −µ∇V(t, x, y), t > 0, (x, y) ∈ ∂Ω2(t), (52)

where v1(t, x, y) and n1(t, x, y) are, respectively, the velocity vector of the boundary point
(x, y) ∈ ∂Ω1(t), and the unit outward normal of Ω1(t) at (x, y) ∈ ∂Ω1(t), v2(t, x, y) and n2(t, x, y)
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are, respectively, the velocity vector of the boundary point (x, y) ∈ ∂Ω2(t), and the unit outward
normal of Ω2(t) at (x, y) ∈ ∂Ω2(t), and the initial conditions

U(0, x, y) = U0(x, y), (x, y) ∈ Ω1(0), (53)

V(0, x, y) = V0(x, y), (x, y) ∈ Ω2(0), (54)

The initial functions U0(x, y) and V0(x, y) satisfies the following properties:

U0(x, y) ∈ C2(Ω1(0)), U′0(0) = U0(τ1(0)) = 0, U0(x, y) > 0, (x, y) ∈ Ω1(0). (55)

V0(x, y) ∈ C2(Ω2(0)), U′0(0) = V0(τ2(0)) = 0, V0(x, y) > 0, (x, y) ∈ Ω2(0). (56)

Here τ1(t) and τ2(t) are the unknown moving boundaries of two species U(t, x, y) and V(t, x, y)
such that the population are distributed in the domain Ω1(t) and Ω2(t) separately. D1 > 0 and
D2 > 0 are the dispersal rates. The parameters µ1 > 0 and µ2 > 0 involved in the Stefan
conditions (51) and (52) are the proportionality constant between the population gradient at the
front and the speed of the moving boundary of two species U(t, x, y) and V(t, x, y) respectively.
Following the ideas of [19], here we use a level set approach to effectively capture the front at each
new time step and a finite difference scheme to solve the heat equation everywhere away from
the front. The idea behind the level set method is to construct a level set function φ, then move
φ with the correct speed v at the front and followed by updating u(t, x, y). The new position of
the front is stored implicitly in φ. With this approach, we avoid the difficulties that arise from
explicitly tracking the front and thus increase the efficiency to deal with complex interfacial geometries.

Step1. Initialize U(t, x, y) and φ1(t, x, y).

We construct a level set function φ1, such that at any time t, the front τ1(t) is equal to the zero
level set of φ1, i.e.,

τ1(t) = {(x, y) ∈ Ω1 : φ1(t, x, y) = 0}

Initially, U(0, x, y) = U0(x, y) and φ1 is set equal to the signed distance function from the front of
species U such that φ1 is negative in Ω1(0) and positive in Ωc

1(0),

φ1(0, x, y) =





+d, x ∈ Ωc
1(0),

0, x ∈ τ1(0),
−d x ∈ Ω1(0).

(57)

where d is the distance from the front τ1(t).
Given the normal speed, v1, at which the front τ1(t) moves, we would construct a speed

function, F1(t, x, y), which is a continuous extension of |v1(t, x, y)| from the front τ1(t) over the
whole computational domain. The governing equation of φ1 is then given by

∂φ1

∂t
+ F1|∇φ1| = 0. (58)

This equation will move φ1 with the correct speed at the front by assuring that τ1(t) will always
coincide with the zero level set of φ1 at time t.

We also use φ1 to define the outward normal vector n1 corresponding to τ1 by

n1 = ∇φ1/|∇φ1|. (59)
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From Equations (51) and (59), we can rewrite the expression for τ′1(t) as

v1(t) = −µ1|∇U|n1 = −µ1|∇U| ∇φ1

|∇φ1|
. (60)

Since F1 is equal to |v1(t)| along the interface, we can combine Equations (58) and (60) to get the
following equation, which of course is only valid on the zero level set of φ1:

∂φ1

∂t
= µ1|∇U||∇φ1|, (x, y) ∈ τ1(t). (61)

Next, we need to extend the velocity function V1 to a neighborhood of τ1(t).
Therefore, we get the velocity function over the computational domain

F1(t, x, y) = µ1|∇U(t, x, y)|. (62)

which is of course only valid on the zero level set of φ.

Step2. Compute the velocity filed F1(x, y, t) of U .

By introducing F1 defined as an extension of |v1(t, x, y)| = µ1|∇U(t, x, y)| from (x, y) ∈ τ1(t),
we can avoid unnecessary numerical difficulties when we solve Equations (60) and (61).

According to (58), (59) and (62), the level set equation turns into

∂φ1

∂t
= −F1|∇φ1|

= −µ1|∇U(t, x, y)||∇φ1|
= −µ1|∇U(t, x, y)|n1 · ∇φ1

= µ1∇U(t, x, y) · ∇φ1

(63)

One issue in computing ∇U arises from the fact that its approximation is usually in the order
O(1) at points close to or on the front.

The approximation to ∇U at τ1(t) is based upon approximations to the derivatives of U in four
coordinate directions to cut down on grid orientation effects (please see Figure 5 for illustration).
Each approximation to a derivative of U can be continuously extended away from the front by the
advection equations

u1
t + S(φ1

∂φ1

∂x
)u1

x = 0, (64)

u2
t + S(φ1

∂φ1

∂y
)u2

y = 0, (65)

u3
t + S(φ1

∂φ1

∂η
)u3

η = 0, (66)

u4
t + S(φ1

∂φ1

∂ζ
)u4

ζ = 0, (67)

where u1 = ∂U/∂x, u2 = ∂U/∂y, u3 = ∂U/∂η and u4 = ∂U/∂ζ on τ1(t). Here S is equal to the
sign function. Equation (64) through Equation (67) have the effect of continuously extending
u1, u2, u3, u4 away from the front by advecting these fields in the proper upwind direction. Note that
these equations will not degrade the value of V1 on the front because φ1 is zero on τ1(t), hence, so are
S(φ1

∂φ1
∂x ), S(φ1

∂φ1
∂y ), S(φ1

∂φ1
∂η ) and S(φ1

∂φ1
∂ζ ).
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From (63), we end up solving for the right hand side of the equation
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i,j(φ1x)i,j + u2
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i,j(φ1η)i,j + u4
i,j(φ1ζ)i,j) (68)

The spatial first derivatives of φ1 are approximated by a second-order ENO scheme. We update
φ1 by solving (68) with a third-order Runge-Kutta scheme.

Step3: Update φ1 to be a signed distance function for one time step.

From Equation (58) and (59), it is clear that the computation of the normal velocity, and normal
vector at the front are all dependent upon the level set function φ1. However, by Equation (58), the
level set function will cease to be an exact distance function even after one time step. In order to keep
the accuracy of n1, and F1, we need to avoid having steep or flat gradients developed in φ1. One way to
avoid these numerical difficulties is to reinitialize φ1 to be an exact distance function from the evolving
front τ1(t) at each time step.

In order to reinitialize the level set function, we use the reinitialization scheme of Sussman [37]
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From (63), we end up solving for the right hand side of the equation

∂φ1

∂t
=

µ1

2
(u1

i,j(φ1x)i,j + u2
i,j(φ1y)i,j + u3

i,j(φ1η)i,j + u4
i,j(φ1ζ)i,j) (68)

The spatial first derivatives of φ1 are approximated by a second-order ENO scheme. We update
φ1 by solving (68) with a third-order Runge-Kutta scheme.

Step3: Update φ1 to be a signed distance function for one time step.

From Equation (58) and (59), it is clear that the computation of the normal velocity, and normal
vector at the front are all dependent upon the level set function φ1. However, by Equation (58), the level
set function will cease to be an exact distance function even after one time step. In order to keep the
accuracy of n1, and F1, we need to avoid having steep or flat gradients developed in φ1. One way to
avoid these numerical difficulties is to reinitialize φ1 to be an exact distance function from the evolving
front τ1(t) at each time step.

In order to reinitialize the level set function, we use the reinitialization scheme of Sussman [37]

∂φ1

∂t
= S(φ0

1)(1− |∇φ1|), (69)

where φ1(0, x, y) = φ0
1 and S again denotes the sign function. As in [37], the sign function S is smoothed

by the equation.
The basic idea behind this method is that given a function φ0 that is not a distance function,

one can evolve it into a function φ that is an exact signed distance function from the zero level set
of φ0. This can be accomplished by iterating (69) to a steady state. As in [37], the sign function S is
smoothed by the equation

Sε(φ
0
1) =

φ0
1√

(φ0
1)

2 + ε2
(70)

to avoid numerical difficulties while implemented.
By using this approach, we avoid having to explicitly find the contour φ0

1 = 0 and then resetting
values of the front φ0

1 at grid points. From Equation (69), it is clear that the original position of the front
will not change, but at points away from τ1(t), φ1 will be evolved into a distance function.
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Step4: Update U(t, x, y).

After moving φ1 by the correct velocity at the front and then reinitializing φ1 to be an exact signed
distance function from τ1(t) in Step 3, next we update U(t, x, y). Updating U(t, x, y) essentially boils
down to solving the nonlinear parabolic partial difference equation (48) over the whole computational
domain in the following three cases:

• At points away from the front, which means the nearby four grid points are all inside the domain
Ω1(t), we solve the nonlinear parabolic partial difference equation (53) by combining the forward
Euler method and the five-point stencil scheme.

For example, we use the scheme (71) to update U(t, x, y) at the grid point (i + 1, j) in Figure 6.

un+1
i+1,j−un

i+1,j
4t − D1

un
i,j+un

i+2,j−4un
i+1,j+un

i+1,j−1+un
i+1,j+1

h2 = γ1un
i+1,j(1− un

i+1,j − K1vn
i+1,j) (71)
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front using the level set function φ1. We can use one-sided different sign of φ1 to incorporate
the distances between a point on the front and grid points neighboring it in either the vertical or
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• For points near the front τ1(t), some special care should be taken. We effectively capture the front
using the level set function φ1. We can use the one-sided different sign of φ1 to incorporate the
distances between a point on the front and grid points neighboring it in either the vertical or
horizontal direction. For example, Yf = (− L

2 + (i− 1)h, y f ) ∈ τ1(t), we consider two grid points
(i, j + 1) and (i, j) which border Yf . In y-direction, we have yj ≤ y f ≤ yj+1. We introduce

y f − yj = rh = −
φ1ij

φ1i,j+1 − φ1i,j
h

and use un
i,j, un

i,j−1, un
i,j−2, r and U(n4t,− L

2 + (i − 1)h, y f ) = 0 to construct interpolating

polynomial P. When updating un+1
i,j , we use a standard five-point stencil combing forward

Euler method by employing P(− L
2 + jh) instead of un

i,j+1, i.e.,

un+1
i,j − un

i,j

4t
− D1

un
i−1,j + un

i,j−1 − 4un
i,j + P(− L

2 + jh) + un
i+1,j

h2 = γ1un
i,j(1− un

i,j − K1vn
i,j) (72)

For the case when front interacts with x-axis, we use the same process in x-direction. In the
special case where we cannot find enough grid points inside the domain to construct interpolating
polynomial P, we employ the nearby grid points and intersect points of the front and x and y-axis
to construct quadratic polynomial or straight line as the interpolating polynomial P to update U.
For the extreme configuration, where there are only intersect points of the front and x and y-axis
near the grid point, we update U = 0 at the grid point.
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• If a grid point lies on the front, we set the value U = 0 at that point (in view of (53)). For example,
we set Un+1

i−1,j=0 for the grid point (i− 1, j).

Step5. Repeat Step 2 through Step 4 to φ2 and F2.

Step6. Repeat Step 2 through Step 6 to update φ1 , φ2 , U and V for the next time step.

4. Numerical Experiments

4.1. Numerical Tests of 1D Problem: Front-Fixing Method and Front-Tracking Method

Convergence test of front-fixing method

In the 1D two-species competition-diffusion model (3)–(9) with parameters values
(D1, µ1, γ1, K1, S0

1) = (0.4, 5, 2, 1, 0.4) , (D2, µ2, γ2, K2, S0
2) = (0.4, 10, 1, 2, 1), U0 = 2cos(πx

2 ), and
V0 = 4cos(πx

2 ). Here we test the order of convergence in space with very refined temporal step size.
In Tables 1 and 2 the error (both L2 and L∞) and the convergence to the solution of front-fixing

method is examined, with final time tend = 0.01. The error is computed by the difference of the
numerical solution with the exact solution. For all the examples below when the exact solution is
not given, the solution with a very fine resolution will be considered as reference or “exact" solution.
As expected, a second-order convergence in space for both u and v can be observed.

Table 1. Convergence analysis of the value of U and the front of U using the front-fixing method.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of U of front-fixing method

101 × 106 1.195× 10−4 2.119× 10−4

201 × 106 3.142 × 10−5 1.93 5.424 × 10−5 1.97

401 × 106 8.233 × 10−6 1.93 1.314 × 10−5 2.05

801 × 106 1.956 × 10−6 2.07 3.983 × 10−6 1.72

1601 × 106 Reference

Accuracy test of the front of U of front-fixing method

101 × 106 3.178 × 10−6 9.366 × 10−5

201 × 106 7.880 × 10−7 2.01 2.424 × 10−5 1.95

401 × 106 1.880 × 10−7 2.07 5.927 × 10−6 2.03

801 × 106 3.800 × 10−8 2.32 1.202 × 10−6 2.30

1601 × 106 Reference

Table 2. Convergence analysis of the value of V and the front of V using the front-fixing method.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of V of front-fixing method

101 × 106 1.038 × 10−3 2.115 × 10−3

201 × 106 2.776 × 10−4 1.90 5.609 × 10−4 1.91

401 × 106 6.861× 10−5 2.02 1.381 × 10−4 2.02

801 × 106 1.398 × 10−5 2.30 2.807 × 10−5 2.30

1601 × 106 Reference
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Table 2. Cont.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of the front of V of front-fixing method

101 × 106 2.890 × 10−5 7.595 × 10−4

201 × 106 7.700 × 10−6 1.91 2.123 × 10−4 1.84

401 × 106 1.910 × 10−6 2.01 5.454 × 10−5 1.96

801 × 106 3.900 × 10−7 2.29 1.141 × 10−5 2.26

1601 × 106 Reference

Convergence test of front-tracking method

In the 1D two-species competition-diffusion model (3)–(9) with parameters values
(D1, µ1, γ1, K1, S0

1) = (0.4, 5, 2, 1, 0.4) , (D2, µ2, γ2, K2, S0
2) = (0.4, 10, 1, 2, 1), L = 1.2, U0 = 2cos(πx

2 ),
and V0 = 4cos(πx

2 ). Here we test the order of convergence in space with very refined temporal step size.
In Tables 3 and 4 the error (both L2 and L∞) and the convergence to the solution of front-tracking

method is examined, with final time tend = 0.01. The error is computed by the difference of the
numerical solution with the exact solution. For all the examples below, when the exact solution
is not given, the solution with a fine resolution will be considered as reference or “exact” solution.
As expected, a second-order convergence in space for both u and v can be observed.

Table 3. Convergence analysis of the value of U and the front of U using the front-tracking method.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of U of front-tracking method

61 × 105 5.637 × 10−4 1.699 × 10−3

121 × 105 1.035 × 10−4 2.45 3.260 × 10−4 2.38

241 × 105 1.850 × 10−5 2.48 6.019 × 10−5 2.44

481 × 105 2.987 × 10−6 2.63 9.833 × 10−6 2.61

961 × 105 Reference

Accuracy test of the front of U of front-tracking method

61 × 105 1.222 × 10−4 2.233 × 10−3

121 × 105 2.280 × 10−5 2.42 5.672 × 10−4 1.98

241 × 105 4.300 × 10−6 2.39 1.296 × 10−4 2.13

481 × 105 8.000 × 10−7 2.50 2.494 × 10−5 2.38

961 × 105 Reference

Table 4. Convergence analysis of the value of V and the front of V using the front-tracking method.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of V of front-tracking method

61 × 105 4.443 × 10−4 1.373 × 10−3

121 × 105 7.882 × 10−5 2.49 2.493 × 10−4 2.46

241 × 105 1.396 × 10−5 2.50 4.254 × 10−5 2.55

481 × 105 2.378 × 10−6 2.55 9.871 × 10−6 2.11

961 × 105 Reference
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Table 4. Cont.

Nx × Nt L2Error Order L∞Error Order

Accuracy test of the front of V of front-tracking method

61 × 105 1.385 × 10−4 3.268 × 10−3

121 × 105 2.721 × 10−5 2.35 8.504 × 10−4 1.94

241 × 105 6.000 × 10−6 2.19 1.922 × 10−4 2.15

481 × 105 1.200 × 10−6 2.30 3.788 × 10−5 2.34

961 × 105 Reference

The Comparison of Front-fixing with Front-tracking for 1D model
In Figures 7 and 8, we use the front-fixing method and front-tracking method to

simulate the 1D two-species competition-diffusion model (3)–(9) with parameters values
(D1, µ1, γ1, K1, S0

1) = (0.4, 5, 2, 1, 0.4), (D2, µ2, γ2, K2, S0
2) = (0.4, 10, 1, 2, 1), U0 = 2cos(πx

2 ), and
V0 = 4cos(πx

2 ) and spatial size h = 0.00125. It shows that the results of front-tracking method and the
results of front-fixing method are consistent with each other.
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Figure 7. u(x,t=0.01) and uH(t):Front-tracking method vs. front-fixing method for 1D model.
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Figure 8. v(x,t=0.01) and vH(t):Front-tracking method vs. front-fixing method for 1D model.

4.2. Numerical Tests of Level Set Methods for 2D Model With Different Initial Configuration

Example 1. In the 2D two-species competition-diffusion model (48)–(56) with parameters
values(D1, µ1, γ1, K1) = (4, 10, 1, 0.6), (D2, µ2, γ2, K2) = (0.4, 5, 3, 0.5), the initial boundary of species U
is set to be an equilateral triangle which centers at the origin point (0, 0) with side length 1, while the initial
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boundary of species V is set to be a circle which centers at the origin point (0, 0) with radius = 1.5. The initial
values U0(x, y), V0 (x,y) and the initial level set functions φ0

1(x, y), φ0
2 (x,y) are set as follows

U0(x, y) =

{
40(
√

3
2 − 1√

3
+ y)(

√
3x− y + 1√

3
)(−
√

3x− y + 1√
3
), (x, y) ∈ Ω1(0),

0 (x, y) ∈ Ωc
1(0).

(73)

V0(x, y) =

{
45cos(

√
x2+y2π

2 ), (x, y) ∈ Ω2(0),
0 (x, y) ∈ Ωc

2(0).
(74)

φ0
1(x, y) =





−min(
√

3
2 − 1√

3
+ y, (

√
3x− y + 1√

3
)/2, (−

√
3x− y + 1√

3
)/2), (x, y) ∈ Ω1(0),

0 (x, y) ∈ ∂Ω1(0),

min(|
√

3
2 − 1√

3
+ y|, |

√
3x− y + 1√

3
|/2, |−

√
3x− y + 1√

3
|/2), (x, y) ∈ Ωc

1(0).

(75)

φ0
2(x, y) = −(1.5−

√
x2 + y2). (76)

Figure 9 shows the simulation of the evolvement of two species and their moving boundaries
along time with an equilateral triangle as the initial boundary of U and a circle as the initial boundary
of V. In the figure of boundary line, the red curves represent the initial boundaries, and the blue curves
simulate the evolvement of free boundaries.

From Figure 9, we can see that the triangle evolves into a circle during the simulation.

Example 2. In the 2D two-species competition-diffusion model (48)–(56) with parameters
values(D1, µ1, γ1, K1) = (4, 20, 1, 0.6), (D2, µ2, γ2, K2) = (1, 5, 2, 0.5), the initial boundary of species U is set
to be a square with side length = 1, centered at (0,0), while the initial boundary of species V is set to be a circle
which centers at the origin point (0, 0) with radius = 2. The initial values U0(x, y), V0 (x,y) and the initial level
set functions φ0

1(x, y), φ0
2 (x,y)are set as following

U0(x, y) =

{
10(1− x)(1 + x)(1− y)(1 + y), (x, y) ∈ Ω1(0),
0 (x, y) ∈ Ωc

1(0).
(77)

V0(x, y) =

{
50cos(

√
x2+y2π

4 ), (x, y) ∈ Ω2(0),
0 (x, y) ∈ Ωc

2(0).
(78)

φ0
1(x, y) =





−min(1− |x|, 1− |y|), (x, y) ∈ Ω1(0),
0 (x, y) ∈ ∂Ω1(0),
min(|1− |x||, |1− |y||) (x, y) ∈ Ωc

1(0),
(79)

φ0
2(x, y) = −(2−

√
x2 + y2). (80)

Figure 10 shows the simulation of the evolvement of two species and their moving boundaries
along time with a square as the initial boundary of U and a circle as the initial boundary of V. In the
figure of boundary line, the red curves represent the initial boundaries, and the blue curves simulate
the evolvement of free boundaries.

From Figure 10, we can see that the square evolves into a circle during the simulation.
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Figure 9. The simulated dynamics where initial boundary of U is an equilateral triangle and initial
boundary of V is a circle. The snapshots are taken at the times t = 0, 0.01, 0.04, respectively.
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Figure 10. The simulated dynamics where initial boundary of U is a square and initial boundary of V
is a circle. The snapshots are taken at the times t = 0, 0.05, 0.1, respectively.
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Example 3. In the 2D two-species competition-diffusion model (48)–(56) with parameters values
(D1, µ1, γ1, K1) = (1, 15, 1, 0.4), (D2, µ2, γ2, K2) = (2, 5, 1, 0.5), the initial boundary of species U is set to be a
circle which centers at (0, 0) with radius = 2.5, while the initial boundary of species V is set to be a circle which
centers at the origin point (0, 0) with radius = 3.2. The initial values U0(x, y), V0 (x,y) and the initial level set
functions φ0

1(x, y), φ0
2 (x,y)are set as follows

U0(x, y) =

{
40cos(

√
x2+y2π

5 ), (x, y) ∈ Ω1(0),
0 (x, y) ∈ Ωc

1(0).
(81)

V0(x, y) =

{
20cos(

√
x2+y2π

6.4 ), (x, y) ∈ Ω2(0),
0 (x, y) ∈ Ωc

2(0).
(82)

φ0
1(x, y) = −(2.5−

√
x2 + y2). (83)

φ0
2(x, y) = −(3.2−

√
x2 + y2). (84)

Figure 11 shows the simulation of the evolvement of two species and their moving boundaries
along time with circles as the initial boundary of U and V. In the figure of boundary line, the red curves
represent the initial boundaries, and the blue curves simulate the evolvement of free boundaries.

From Figure 11, we can see that the circles propagate as circles during the simulation.
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Figure 11. Cont.
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Figure 11. The simulated dynamics where initial boundaries of U and V are circles. The snapshots are
taken at the times t = 0, 0.01, 0.05, respectively.

5. Conclusions

The system of reaction-diffusion equations with moving boundaries has been intensively studied
analytically in recent years, however, very little numerical work has been done in this field due to
numerical challenges in tracking free boundaries. In this paper, we first introduce a front tracking
framework for 1D model, and compare it with a front-fixing method. Numerical experiments
demonstrate that these two methods are consistent with each other. For 2D models, to overcome the
difficulty of handling complicated topologically changes, we apply a level set approach to handle the
moving boundaries. Numerical examples with different initial configurations demonstrate that the
level set approach is able to robustly and efficiently capture different complicated geometries.

Although the level set method is very robust in handling topological changes, sometimes it is
very hard to achieve high order accuracy, especially near the fronts. Currently we are extending the
front tracking method to more accurately deal with topological changes for general 2D models, and to
the systems of two competing species in which each species has its own moving boundary. The front
will become more complicated and more challenging once two moving fronts are tangled together,
and we would apply the reconstruction strategy to overcome these difficulties.
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