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Abstract: In this paper, three-step Taylor expansion, which is equivalent to third-order Taylor
expansion, is used as a mathematical base of the new descent method. At each iteration of this method,
three steps are performed. Each step has a similar structure to the steepest descent method, except
that the generalized search direction, step length, and next iterative point are applied. Compared
with the steepest descent method, it is shown that the proposed algorithm has higher convergence
speed and lower computational cost and storage.

Keywords: unconstrained optimization; line search; three-step discretization method; steepest
descent method

1. Introduction

We start our discussion by considering the unconstrained minimization problem:

Find: x∗ = [x∗1 , x∗2 , · · · , x∗n]T that minimizes f (x1, x2, . . . , xn) ≡ f (x).

where f is an n-dimensional continuously differentiable function.
Most effective optimization procedures include some basic steps. At iteration k, where the current

x is xk, they do the following:

1. Specify the initial starting vector x0 = [x0
1, x0

2, · · · , x0
n]

T ,
2. Find an appropriate search direction dk,
3. Specify the convergence criteria for termination,
4. Minimize along the direction dk to find a new point xk+1 from the following equation

xk+1 = xk + αkdk. (1)

where αk is a positive scalar called the step size. The step size is usually determined by an optimization
process called a line search (usually inexactly) such as Wolfe-line search, Goldstein-line search or
Armijo-line search

f (xk + αdk) < f (xk) + αc∇ f (xk).dk. (2)

where c ∈ (0, 1) is a constant control parameter. For more information on the line search strategy,
readers can refer to [1–7]. In addition, some researchers have introduced suitable algorithms which
defined αk without a line search method that can be seen in the literature [8–10]. Appropriate choices
for an initial starting point have a positive effect on computational cost and speed of convergence.
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The numerical optimization of general multivariable objective functions differs mainly in how
they generate the search directions. A good search direction should reduce the objective function’s
value so that

f (xk+1) < f (xk).

Such a direction dk is a descent direction and satisfies the following requirement at any point

∇ f (xk).dk < 0 (3)

where the dot indicates the inner product of two vectors ∇ f (xk) and dk.
The choice of search direction dk is typically based on some approximate model of the objective

function f which is obtained by the Taylor series [11]

f (x + ∆x) = f (x) +∇ f (x).∆x +
1
2!
∇[∇ f .∆x].∆x

+
1
3!
∇[∇[∇ f .∆x].∆x].∆x + · · · . (4)

where x and ∆x are replaced with xk and αdk, respectively.
For instance, a linear approximation (first order Taylor expansion) of the objective function

f (xk + αdk) ≈ f (xk) + α∇ f (xk).dk

can be used which concludes the following direction

dk = −∇ f (xk).

This is referred to as the steepest descent method [4]. The overall results on the convergence of the
steepest descent method can be found in [4,12,13]. More practical applications of the steepest descent
method are discussed in [10,14–16].

Unlike gradient methods which use first order Taylor expansion, Newton method uses a second
order Taylor expansion of the function about the current design point; i.e., a quadratic model

f (xk + dk) ≈ f (xk) +∇ f (xk).dk +
1
2
∇[∇ f (xk).dk].dk.

which yields Newton direction
dk = −(∇2 f (xk)

−1∇ f (xk).

Although the Newton method is below the quadratic rate of convergence, it requires the
computation and storage of some matrices associated with the Hessian of the objective function.
Moreover, the Newton method can only be utilized if the Hessian matrix is positive definite [4].

The purpose of this paper is to provide a descent algorithm which can exploit more information
about the objective function without the need to store large matrices such as the Hessian matrix.
In order to construct a desired model of the objective function, we propose a three-step discretization
method based on three-step Taylor expansion that is used in [17–19] as follows

f (x +
∆x
3
) ' f (x) +

1
3
∇ f (x).∆x

f (x +
∆x
2
) ' f (x) +

1
2
∇ f (x +

∆x
3
).∆x

f (x + ∆x) ' f (x) +∇ f (x +
∆x
2
).∆x.

(5)
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Formula (5) is equivalent to Equation (4) truncated at three terms, i.e.,

f (x + ∆x) = f (x) +∇ f (x).∆x +
1
2!
∇[∇ f .∆x].∆x

+
1
3!
∇[∇[∇ f .∆x].∆x].∆x + O[(∆x)4]. (6)

Hence, using these steps of Formula (5) in the approximation of a function around x gives a
third-order accuracy with O[(∆x)4].

On the other hand, we can say that these steps of Formula (5) are derived by applying a
factorization process to the right side of Equation (6) as follows

f (x)
[
I +∇.∆x

[
I +

1
2
∇.∆x[I +

1
3
∇.∆x]

]]
(7)

=
[

f (x) +∇.∆x
[

f (x) +
1
2
∇.∆x[ f (x) +

1
3
∇ f (x).∆x]

]]
+ O[(∆x)4].

where the symbol I is the identity operator. Now, by removing the terms appearing in O[(∆x)4] and
using the Taylor series properties, the first internal bracket in Equation (7) shows f (x + ∆x

3 ), the second
internal bracket shows f (x + ∆x

2 ) and the last one shows f (x + ∆x).
Jiang and Kawahara [17] are the pioneers who used this formula to solve unsteady incompressible

flows governed by the Navier-Stokes equations. In their method, the discretization in time is performed
before the spatial approximation by means of Formula (5) with respect to the time. In comparison
with the Equation (6), Formula (5) does not contain any new higher-order derivatives. Moreover, it
reduces the demand of smoothness of the function, gives the superior approximation of the function
and presents some stability advantages in multidimensional problems [17]. The Formula (5) is useful
in solving non-linear partial differential equations, hyperbolic problems, multi-dimensional and
coupled equations.

In this article, we utilize Formula (5) to obtain a descent direction that satisfies the inequality of
Equation (3) and then modify the Armijo-rule in the line search method to achieve an appropriate step
size. Finally, Equation (1) is utilized to obtain a sequence that reduces the value of the function. Since all
equations of the three-step discretization process involve only the first order derivative of the function,
the proposed method is a member of gradient methods such as the steepest descent method. However,
numerical results demonstrate that the current method works better than the steepest descent method.

The organization of the paper is as follows. In Section 2, there is a brief review of the gradient-type
algorithms and their applications. In Section 3, the three-step discretization algorithm and its
fundamental properties are described. In Section 4, we show how the proposed algorithm converges
globally. Some noteworthy numerical examples are presented in Section 5. Finally, Section 6 provides
conclusions of the study.

2. Related Work

This section provides an overview of previous research on the gradient-type methods.

2.1. Steepest Descent Method

Gradient descent is among the most popular algorithms to perform optimization. The steepest
descent method, which can be traced back to Cauchy in 1847 [20], has a rich history and is regarded
as the simplest and best-known gradient method. Despite its simplicity, the steepest descent method
has played a major role in the development of the theory of optimization. Unfortunately, the classical
steepest descent method which uses the exact line search procedure in determining the step size
is known for being quite slow in most real-world problems and is therefore not widely used.
Recently, several modifications to the steepest descent method have been presented to overcome its
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weakness. Mostly, these modifications propose effective trends in choosing the step length. Barzilai and
Borwein (BB method) [21] presented a new choice of step length through the two-point step size

αk =
sT

k−1yk−1

‖yT
k−1‖

2
2

, αk =
‖sT

k−1‖
2
2

sT
k−1yk−1

.

where sk−1 = xk − xk−1 and yk−1 = ∇fk −∇fk−1.
Although their method did not guarantee the monotonic descent of the residual norms, the

BB method was capable of performing quite well for high dimensional problems. The results of
Barzilai and Borwein have encouraged many researchers to modify the steepest descent method. For
instance, Dai and Fletcher in 2005 [22] used a new gradient projection method for box-constrained
quadratic problems with the step length

αk =
‖sT

k−m‖
2
2

sT
k−myk−m

.

where m = min(m, k− 1) and m ≥ 1 is some prefixed integer.
Hassan et al. in 2009 [23] were motivated by the BB method and presented a Monotone gradient

method via the Quasi-Cauchy relation. They discover a step length formula that approximates the
inverse of Hessian using the Quasi-Cauchy equation which retains the monotonic property for every
repetition. Leong et al. in 2010 [24] suggested a fixed step gradient type method to improve the BB
method and it is recognized as the Monotone gradient method via the weak secant equation. In the
Leong method, the approximation is stored using a diagonal matrix depending on the modified weak
secant equation. Recently, Tan et al. in 2016 [25] applied the Barzilai and Borwein step length to the
stochastic gradient descent and stochastic variance gradient algorithms.

Plenty of attention has also been paid to the theoretical properties of the BB method. Barzilai and
Borwein [21] proved that the BB method has an R-superlinear convergence when the dimension is just
two. For the general n-dimensional strong convex quadratic function, this method is also convergent
and the convergence rate is R-linear [26,27]. Recently, Dai [28] presented a novel analysis of the BB
method for two-dimensional strictly convex quadratic functions and showed that there is a superlinear
convergence step in at most three consecutive steps.

Another modification method that implemented the choice of an efficient step length was
proposed by Yuan [29]. He has suggested a new step size for the steepest descent method. The desired
formula for the new αk was obtained through an analysis of two-dimensional problems. In his proposed
algorithm, this new step size was used in even iterations and the exact line search was used in odd
iterations. Unlike the BB method, Yuan’s method possesses the monotonic property. For a constant k
Yuan’s step size is defined as follows

α2k =
2√

(1/α∗2k−1 − 1/α∗2k)
2 + 4‖∇f2k‖2

2/‖s2k−1‖2
2 + 1/α∗2k−1 + 1/α∗2k

.

where α∗2k−1 and α∗2k are computed through the exact line search.
In addition to these mentioned modification algorithms, there is various literature which used

different improvement style for the steepest descent method. For example, Manton [30] derived
algorithms which minimize a cost function with the constraint condition by reducing the dimension
of the optimization problem by reformulating the optimization problem as an unconstrained one
on the Grassmann manifold. Zhou and Feng [10] proposed the steepest descent algorithm without
the line search for the p-Laplacian problem. In their method, the search direction is the weighted
preconditioned steepest descent one, and, with the exception of the first iteration, the step length is
measured by a formula.
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2.2. Newton Method

The steepest descent method lacks second derivative information, causing inaccuracy.
Thus, some researchers have used a more effective method which is identified as the Newton method.
Newton’s work was done in the year 1669, but it was published a few years later. For each iteration
of the Newton method, we will need to compute the second derivative called the Hessian of a
given function. It is difficult to calculate Hessian manually, especially when differentiation gets
complicated. This will need a lot of computing effort and, in some cases, the second derivation cannot
be computed analytically. Even for some simpler differentiation, it may be time-consuming. In addition,
considerable storage space is needed to store the computed Hessian and this is computationally
expensive. For example, if we have a Hessian with n dimensions, we will have O(n2) storage space to
store the Hessian [31].

2.3. Conjugate Gradient Methods

Another gradient descent method is the conjugate gradient method. The conjugate gradient
method has been considered an effective numerical method for solving large-scale unconstrained
optimization problems because it does not need the storage of any matrices. The search direction of
the conjugate gradient method is defined by

dk =

{
−∇fk, k = 0,
−∇fk + βk∇fk−1, k ≥ 0,

where βk is a parameter which characterizes the conjugate gradient method. There are many articles on
how to get βk. The Hestenes-Stiefel (HS) [32] and Fletcher-Reeves (FR) [33] are well-known formulas
for obtaining this parameter which is respectively given by

βHS
k =

∇fT
k yk−1

dT
k−1yk−1

, βFR
k =

‖∇fT
k ‖

2
2

‖∇fT
K−1‖2

2
.

The global convergence properties of these methods have been shown in many research papers;
for example, [34]. The classical conjugate gradient methods only include the first derivative of the
function. In this decade, in order to incorporate the second-order information about the objective
function into conjugate gradient methods, many researchers have proposed conjugate gradient
methods based on secant conditions. Dai and Liao [35] proposed a conjugate gradient method
based on the secant condition and proved its global convergence property. Kobayashi et al. [36]
proposed conjugate gradient methods based on structured secant conditions for solving nonlinear least
squares problems. Although numerical experiments of the previous research show the effectiveness
of these methods for solving large-scale unconstrained optimization problems, these methods do
not necessarily satisfy the descent condition. In order to overcome this deficiency, various authors
present modifications of the conjugate gradient methods. For example, Zhang et al. [37] presented a
modification to the FR method such that the direction generated by the modified method provides
a descent direction. Sugiki et al. [38] proposed three-term conjugate gradient methods based on the
secant conditions which always satisfy the sufficient descent condition.

3. New Descent Algorithm

In this section, we show how equations in Formula (5) can be used to propose the three-step
discretization method and give its pseudo-code. The following regularity of f (x) is assumed in
the following:
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Assumption 1. We assume f ∈ C1(Rn) with Lipschitz continuous gradient, i.e., there exists L > 0 such that

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

The substitution αd for ∆x in Formula (5) yields:

f (x +
αd
3
) ' f (x) +

α

3
∇ f (x).d

f (x +
αd
2
) ' f (x) +

α

2
∇ f (x +

αd
3
).d

f (x + αd) ' f (x) + α∇ f (x +
αd
2
).d.

(8)

3.1. Three-Step Discretization Algorithm

Three steps are performed throughout this algorithm. Actually, in the steepest descent method,
there is not an intermediate step between the computation of xk and xk+1. However, in the proposed
method, we impose an intermediate step between xk and xk+1. In other words, xk is computed from
the first step and xk+1 is computed from the third step. The second step is an intermediate step that
uses xk as the starting point and produces the new point such as x∗. The x∗ forms the starting point for
the last step which results in xk+1. The structure of the proposed algorithm is characterized as follows.

The main goal of this algorithm is that the value of the objective function declines during all three
steps. If the same direction is applied to all three steps, it will be a non-descent direction in at least one
of the steps. Therefore, we need to consider each of the steps separately. Moreover, if the point xk is
employed in the first step of Formula (8), the point xk+1 will be achieved by the third step of Formula (8).

To determine which step of Formula (8) is performing, we use the super-index j. At each upgrading
index k, the index j adopts only values (0), (1) and (2), respectively. During the kth iteration of the
main algorithm, directions d(0)

k , d(1)
k , and d(2)

k are used in the first, second and third step, respectively.

The points x(0)k , x(1)k , and x(2)k are used as starting points in the first, second and third step, respectively.

The proper steps size α
(0)
k , α

(1)
k , and α

(2)
k are obtained from the first, second and last step, respectively.

Details are explained as follows.
The first step of Formula (8) can be rewritten in the following form

f (x(0)k +
αd(0)

k
3

) ' f (x(0)k ) +
α

3
∇ f (x(0)k ).d(0)

k .

The direction d(0)
k should be chosen in such a way that ∇ f (x(0)k ).d(0)

k provides the greatest

reduction in f (x(0)k ) so that

f (x(0)k +
αd(0)

k
3

) < f (x(0)k ).

Hence, the direction of the first step is calculated similarly to the process of finding steepest
descent direction [4]. So, in the first step of Formula (8), we choose

d(0)
k = −∇ f (x(0)k ).

Next, we must determine a proper step size for the first step. In this article, to find the step size,
we use the backtracking algorithm with an Armijo-line search. Considering the first step of Formula (8),
the general Armijo condition of Equation (2) can be modified as follows

f (x(0)k +
α

3
d(0)

k ) < f (x(0)k ) +
α

3
c∇ f (x(0)k ).d(0)

k . (9)
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Therefore, the implementation of the backtracking algorithm with Equation (9) provides the
proper step size, α

(0)
k , and the following point

x(1)k = x(0)k +
α
(0)
k d(0)

k
3

. (10)

We use x(1)k as a starting point for the second step of Formula (8).
We can rewrite the second step as follows:

f (x(1)k +
αd(1)

k
2

) ' f (x(1)k ) +
α

2
∇ f (x(0)k +

α
(0)
k d(0)

k
3

).d(1)
k .

Now the direction d(1)
k should satisfy the descent requirement of Equation (3) at the point,

x(0)k +
α
(0)
k d(0)

k
3

, i.e.,

∇ f (x(0)k +
α
(0)
k d(0)

k
3

).d(1)
k < 0.

By using a similar analysis for finding the steepest descent direction and using Equation (10)
we have

d(1)
k = −∇ f (x(0)k +

α
(0)
k d(0)

k
3

) = −∇ f (x(1)k ). (11)

After determining the direction d(1)
k , we should find a proper step size. In the second step,

we modify general Armijo condition of Equation (2) as follows

f (x(1)k +
α

2
d(1)

k ) < f (x(1)k ) +
α

2
c∇ f (x(1)k ).d(1)

k . (12)

We use Equation (12) in the backtracking algorithm to find the proper step size, α
(1)
k , and the

following point

x(2)k = x(1)k +
α
(1)
k d(1)

k
2

. (13)

We use the point x(2)k as a starting point in the last step of Formula (8).
Now, we have the following result in the third step

f (x(2)k + αd(2)
k ) ' f (x(2)k ) + α∇ f (x(1)k +

α
(1)
k d(1)

k
2

).dk
(2).

where the Equation (11) gives d(1)
k . The direction d(2)

k is obtained from

d(2)
k = −∇ f (x(1)k +

α
(1)
k d(1)

k
2

) = −∇ f (x(2)k ).

Also, according to the last step of Formula (8), the last step of the presented algorithm uses the
general Armijo condition of Equation (2). With replacement d(2)

k and x(2)k we have

f (x(2)k + αd(2)
k ) < f (x(2)k ) + αc∇ f (x(2)k ).d(2)

k . (14)

Utilization of the Equation (14) in the backtracking algorithm gives the proper step size, α
(2)
k ,

and the following point

xk+1 = x(2)k + α
(2)
k d(2)

k . (15)
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After obtaining xk+1, we go back to the first step of Formula (8). In fact, xk+1 forms a starting
point in the first step of Formula (8), i.e.,

xk+1 = x(0)k+1. (16)

This process will continue until the stop condition is attained.
The ensuing result is achieved by considering the fact that each step in the presented method

deals with a descent direction. 
f (x(1)k ) < f (x(0)k ) = f (xk),

f (x(2)k ) < f (x(1)k ),

f (xk+1) = f (x(0)k+1) < f (x(2)k ).

Therefore, implementation of this method concludes that f (xk+1) < f (xk).
The pseudo-code of the three-step discretization method with backtracking Armijo line-search is

provided in the Algorithm 1.

Algorithm 1 Pseudo-code of the three-step discretization method

1: Initialize x(0)0 and αinitial , choose c, ρ ∈ (0 , 1) and tolerance ε > 0 sufficiently
small, set k = 0, j = 0 and step = 3

2: Evaluate f (x(0)0 ) and ∇ f (0)0 = ∇ f (x(0)0 )

3: Set d(0)
0 = −∇ f (x(0)0 )

4: if ‖∇ f (0)k ‖2 < ε

5: stop algorithm

6: end
7: while step > 0 do

8: Set α ← αinitial

9: Evaluate xnew = x(j)
k + α

step (d
(j)
k )

10: if f (x(j)
k + α

step d(j)
k ) < f (x(j)

k ) + α
step cd(j)

k ∇ f (j)
k then

11: Set j ← j + 1

12: Set x(j)
k ← xnew

13: Set d(j)
k ← (−∇ f (j)

k = −∇ f (x(j)
k ))

14: Set step ← (step− 1) and go to step (7)

15: else

16: update α = ρα and go to step (9)

17: end(if)
18: end(while)

19: Set x(0)k+1 ← x(j)
k

20: Set k ← k + 1
21: Set j ← 0

22: Evaluate ∇ f (0)k and go to step (4).



Mathematics 2018, 6, 63 9 of 18

3.2. Theoretical Analysis of the Three-Step Discretization Algorithm

As mentioned above, the steepest descent method uses only the gradient of the function and the
Newton method uses the second order derivatives of the objective function. In this section, we explain
about the objective function information included in the proposed algorithm.

Let 
ξ1 =

α
(0)
k d(0)

k
3 ,

ξ2 =
α
(1)
k d(1)

k
2 ,

ξ3 = α
(2)
k d(2)

k .

After implementation of the three-step discretization algorithm at xk = x(0)k and using Equations (10)
and (13), the following form of Formula (8) will be obtained

f (xk + ξ1) ' f (xk) +∇ f (xk).ξ1,

f ((xk + ξ1) + ξ2) ' f (xk + ξ1) +∇ f (xk + ξ1).ξ2,

f ((xk + ξ1 + ξ2) + ξ3) ' f (xk + ξ1 + ξ2) +∇ f (xk + ξ1 + ξ1).ξ3.

(17)

Now consider the third order Taylor series expansion of f (xk + ξ1 + ξ2 + ξ3) at xk, i.e.,

f (xk + ξ1 + ξ2 + ξ3) ' f (xk) +∇ f (xk).(ξ1 + ξ2 + ξ3) +
1
2!
∇[∇ f (xk).(ξ1 + ξ2 + ξ3)].(ξ1 + ξ2 + ξ3)

+
1
3!
∇[∇[∇ f (xk).(ξ1 + ξ2 + ξ3)].(ξ1 + ξ2 + ξ3)].(ξ1 + ξ2 + ξ3). (18)

According to the first equation of Formula (17), we have

∇ f (xk + ξ1) ' ∇ f (xk) +∇[∇ f (xk).ξ1]. (19)

By considering the first and second equation of Formula (17) and Equation (19), we have

f ((xk + ξ1) + ξ2) ' f (xk + ξ1) +∇ f (xk + ξ1).ξ2

' ( f (xk) +∇ f (xk).ξ1) + (∇ f (xk).ξ2 +∇[∇ f (xk).ξ1].ξ2). (20)

Now if we take the gradient of the Equation (20), the following equation is achieved.

∇ f ((xk + ξ1) + ξ2) ' ∇ f (xk) +∇[∇ f (xk).ξ1] +∇[∇ f (xk).ξ2] +∇
[
∇[∇ f (xk).ξ1].ξ2

]
. (21)

Finally, from the last equation of Formula (17) and Equations (20) and (21), we have

f (xk + ξ1 + ξ2 + ξ3) ' f (xk + ξ1 + ξ2) +∇ f (xk + ξ1 + ξ2).ξ3

' f (xk) +∇ f (xk).ξ1 +∇ f (xk).ξ2 +∇ f (xk).ξ3

+∇[∇ f (xk).ξ1].ξ2 +∇[∇ f (xk).ξ1].ξ3 +∇[∇ f (xk).ξ2].ξ3

+∇
[
∇[∇ f (xk).ξ1].ξ2

]
.ξ3. (22)

A comparison between Equations (18) and (22) implies that in terms of Taylor expansion,
which includes second order derivatives, Equation (22) does not consist of the following statement

1
2

(
∇[∇ f (xk).ξ1].ξ1 +∇[∇ f (xk).ξ2].ξ2 +∇[∇ f (xk).ξ3].ξ3

)
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and in terms of Taylor expansion, which includes third order derivatives, the Equation (22)
only includes

∇
[
∇[∇ f (xk).ξ1].ξ2

]
.ξ3.

The above analysis concludes that the three-step discretization algorithm includes information
about the value of the objective function, gradient of the function, second order and third order
derivatives of the objective function. However, it does not contain all the information of the second
and third order derivatives of the objective function.

4. Convergence

In this section, we prove the convergence of this method. The following theorem shows that the
modified Armijo-line search at the first step of Formula (8) stops after a finite number of steps.

Theorem 1. Suppose that the function f satisfies in Assumption 1 and let d(0)
k be a descent direction at x(0)k .

Then, for fixed c ∈ (0, 1)

(i) the modified Armijo condition

f (x(0)k +
α

3
d(0)

k ) < f (x(0)k ) +
α

3
c∇ f (x(0)k ).d(0)

k

is satisfied for all α ∈ [0, α
(0)
max], where

α
(0)
max =

6(c− 1)∇ f (x(0)k ).d(0)
k

L‖d(0)
k ‖2

(ii) for fixed ρ ∈ (0, 1) the step size generated by the backtracking algorithm with modified Armijo condition (9)
terminates with

α
(0)
k ≥ min{αinitial , ρα

(0)
max}.

Proof of Theorem 1. First, we prove the first part of the theorem. Since ∇ f is a Lipschitz continuous
function and according to Taylor expansion:

f (x(0)k +
αd(0)

k
3

) = f (x(0)k ) +
α

3
∇ f (x(0)k ).d(0)

k + E. (23)

where |E| ≤ L
18 α2‖d(0)

k ‖
2.

If α ≤ α
(0)
max we have

αL‖d(0)
k ‖

2 ≤ 6(c− 1)∇ f (x(0)k ).d(0)
k

and by using Equation (23)

f (x(0)k +
αd(0)

k
3

) ≤ f (x(0)k ) +
α

3
∇ f (x(0)k ).d(0)

k +
L
18

α2‖d(0)
k ‖

2

≤ f (x(0)k ) +
α

3
∇ f (x(0)k ).d(0)

k +
α

3
(c− 1)∇ f (x(0)k ).d(0)

k

≤ f (x(0)k ) +
α

3
c∇ f (x(0)k ).d(0)

k .

To prove the second part we use α
(0)
f inal to show α

(0)
k , i.e.,

α
(0)
f inal = α

(0)
k .



Mathematics 2018, 6, 63 11 of 18

Now, we know from the first part that the modified Armijo-line search will stop as soon as
α ≤ α

(0)
max. If αinitial satisfies Equation (9) then αinitial = α

(0)
k . Otherwise, in the last line search iteration,

we have:
α
(0)
f inal−1 > α

(0)
max, α

(0)
k = α

(0)
f inal = ρα

(0)
f inal−1 > ρα

(0)
max.

The combination of these two cases will present the main result.

There is a similar analysis of Theorem 1 which says that the backtracking algorithm with modified
Armijo-line search in the second and third step of Formula (8) ends in a finite number of steps.

Theorem 2. Let the function f satisfy Assumption 1 and d(1)
k be a descent direction at x(1)k . Then, for fixed

c ∈ (0, 1)

(i) the modified Armijo condition

f (x(1)k +
α

2
d(1)

k ) < f (x(1)k ) +
α

2
c∇ f (x(1)k ).d(1)

k

is satisfied for all α ∈ [0, α
(1)
max], where

α
(1)
max =

4(c− 1)∇ f (x(1)k ).d(1)
k

L‖d(1)
k ‖2

.

(ii) for fixed ρ ∈ (0, 1) the step size generated by the backtracking algorithm with modified Armijo condition of
Equation (12) terminates with

α
(1)
k ≥ min{αinitial , ρα

(1)
max}.

Proof of Theorem 2. The proof process is similar to the Theorem 1.

Theorem 3. Let the function f satisfy Assumption 1 and d(2)
k be a descent direction at x(2)k . Then, for fixed

c ∈ (0, 1)

(i) the Armijo condition
f (x(2)k + αd(2)

k ) ≤ f (x(2)k ) + αc∇ f (x(2)k ).d(2)
k

is satisfied for all α ∈ [0, α
(2)
max], where

α
(2)
max =

2(c− 1)∇ f (x(2)k ).d(2)
k

L‖d(2)
k ‖2

.

(ii) for fixed ρ ∈ (0, 1) the step size generated by the backtracking algorithm with Armijo condition of
Equation (14) terminates with

α
(2)
k ≥ min{αinitial , ρα

(2)
max}.

Proof of Theorem 3. Proof process is similar to the Theorem 1.

Theorem 4. (Global convergence of the three-step discretization algorithm)
Suppose that the function f satisfies Assumption 1 and d(j)

k is a descent direction at x(j)
k for j = 0, 1, 2. Then,

for the iterates generated by the three-step discretization algorithm, one of the following situations occurs,

(i) ∇ f (x(j)
k ) = 0, for some k ≥ 0 and j ∈ {0, 1, 2},

(ii) limk−→∞ f (x(j)
k ) = −∞, ∀j ∈ {0, 1, 2},

(iii) limk−→∞∇ f (x(j)
k ) = 0 , ∀j ∈ {0, 1, 2}.
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Proof of Theorem 4. Assume (i) and (ii) are not satisfied, then the third case should be proved.
At first, according to Equations (10), (13), (15) and (16) and by considering modified Armijo

conditions we have

f (x(0)k+1)− f (x(0)0 ) =
k

∑
l=0

f (x(0)l+1)− f (x(0)l ) =
k

∑
l=0

f (x(2)l + α
(2)
l d(2)

l )−
k

∑
l=0

f (x(0)l )

≤
k

∑
l=0

(
f (x(2)l ) + α

(2)
l c∇ f (x(2)l ).d(2)

l

)
−

k

∑
l=0

f (x(0)l )

≤
k

∑
l=0

(
f (x(1)l ) +

α
(1)
l
2

c∇ f (x(1)l ).d(1)
l

)
−

k

∑
l=0

f (x(0)l ) +
k

∑
l=0

α
(2)
l c∇ f (x(2)l ).d(2)

l (24)

≤
k

∑
l=0

(
f (x(0)l ) +

α
(0)
l
3

c∇ f (x(0)l ).d(0)
l

)
−

k

∑
l=0

f (x(0)l ) +
k

∑
l=0

α
(1)
l
2

c∇ f (x(1)l ).d(1)
l +

k

∑
l=0

α
(2)
l c∇ f (x(2)l ).d(2)

l

≤
k

∑
l=0

α
(0)
l
3

c∇ f (x(0)l ).d(0)
l +

k

∑
l=0

α
(1)
l
2

c∇ f (x(1)l ).d(1)
l +

k

∑
l=0

α
(2)
l c∇ f (x(2)l ).d(2)

l .

where α
(0)
l , α

(1)
l and α

(2)
l for l = 0, 1, . . . , k are obtained through the backtracking algorithm with

modified Armijo conditions in the first, second and third step of Formula (8), respectively. Since d(0)
l is

a descent direction at x(0)l , d(1)
l is a descent direction at x(1)l and d(2)

l is a descent direction at x(2)l for
l = 0, 1, . . . , k, from Equations (3) and (24) we have

∞

∑
l=0

α
(0)
l
3
|∇ f (x(0)l ).d(0)

l |+
∞

∑
l=0

α
(1)
l
2
|∇ f (x(1)l ).d(1)

l |+
∞

∑
l=0

α
(2)
l |∇ f (x(2)l ).d(2)

l | 6 c−1 lim
k−→∞

| f (x(0)0 )− f (x(0)k+1)| < ∞

and then
lim

l−→∞
α
(j)
l |∇ f (x(j)

l ).d(j)
l | = 0, j = 0, 1, 2. (25)

According to Theorems 1–3, backtracking algorithm with modified Armijo conditions terminates with

α
(j)
k ≥ min{αinitial , ρα

(j)
max}, j = 0, 1, 2.

Let j = 0. If
αinitial = min{αinitial , ρα

(0)
max},

then from the Theorem 1 we have
α
(0)
k = αinitial

and
α
(0)
k |∇ f (x(0)k ).d(0)

k | = αinitial |∇ f (x(0)k ).d(0)
k |.

Thus, from the Equation (25) it follows

lim
k−→∞

|∇ f (x(0)k ).d(0)
k | = 0.

Since d(0)k = −∇ f (x(0)k ), the following equation is achieved.

lim
k−→∞

‖∇ f (x(0)k )‖ = 0

In another case, if
ρα

(0)
max = min{αinitial , ρα

(0)
max},

according to Theorem 1 we have
ρα

(0)
max ≤ α

(0)
k ≤ α

(0)
max.
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Thus

α
(0)
k |∇ f (x(0)k ).d(0)

k | ≥ ρα
(0)
max|∇ f (x(0)k ).d(0)

k | ≥
6ρ(1− c)|∇ f (x(0)k ).d(0)

k |
2

L‖d(0)
k ‖2

,

and from Equation (25) we have

lim
k−→∞

|∇ f (x(0)k ).d(0)
k |

‖d(0)
k ‖

= 0. (26)

The following equation is obtained by replacement (−∇ f (x(0)k )) with d(0)
k in the Equation (26).

lim
k−→∞

‖∇ f (x(0)k )‖ = 0.

There is a similar analysis for j = 1 and j = 2. Generally, we obtain

lim
k−→∞

‖∇ f (x(j)
k )‖ = 0, j = 0, 1, 2. (27)

Finally, the Equation (27) is equivalent to

lim
k−→∞

∇ f (x(j)
k ) = 0, j = 0, 1, 2.

In the Theorem 4, in the first case, a stationary point is found during a finite number of steps.
In the second case, the function f (x) is unbounded below and a minimum does not exist. In the
third case, then ∇ f (x(j)

k )→ 0 for j = 0, 1, 2, which means the implementation of all three steps in the
three-step discretization method get closer to the stationary point.

5. Numerical Experiments

In this section, we consider some numerical results for the three-step discretization method.
We use MATLAB 2016 (R2016b, MathWorks, Natick, MA, USA). The stopping rule for the Algorithm 1
is designed to decrease the gradient norm to 10−3. Parameters c and ρ are fixed 10−3 and 0.5,
respectively. We set up the parameter αinitial = 1 throughout the entire algorithm. The numerical
comparisons include:

1. Iterative numbers (denote by NI) for attaining the same stopping criterion ‖∇ f ‖2 < 10−3.
2. Evaluation numbers of f (denote by Nf)
3. Evaluation numbers of ∇ f (denote by Ng)
4. Difference between the value of the function at the optimal point and the value of the function at

the last calculated point as the accuracy of the method; i.e., error = ‖ f (xoptimal)− f (x f inal)‖2 .

We tested 45 problems from the [39–42]. Table 1 shows function names and their dimension.

Table 1. Test problems of general objective functions.

Function1 2 Freudenstein and Roth 2 Rosenbrock 2 Powell Badly Scaled 2 Brown Badly Scaled 2
Helical Valley 3 Bard 3 Gaussian 3 Meyer 3 Powell Singular 4

Wood 4 Kowalik and Osborne 4 Brown and Dennis 4 Biggs EXP6 6 Variably Dimensioned 10
Function28 10 Function33 10 Function34 10 Broyden Banded 10 Penalty I 10
Zakharov 10 Qing 10 Extended Rosenbrock 16 Zakharov 40 Alpine N. 1 40

Trigonometric 50 Extended Rosenbrock 100 Extended Powell Singular 100 Penalty I 100 Discrete Integral Equation 100
Broyden Tridiagonal 100 Broyden Banded 100 Zakharov 100 Dixon-Price 100 Penalty I 1000

Rotated Hyper-ellipsoid 1000 Rastrigin 1000 Exponential function 1000 Sum-Squares 1000 Periodic function 1000
Ackley 1000 Griewank 1000 Sphere 1000 Shubert 1000 Quartic 1000

In Table 1 Function1 is the following function:

f (x, y) = log
(

1− log
(
x(1− x)y(1− y)

))
.
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where the optimal solution is x∗ = (0.5, 0.5) and f (x∗) = 1.32776143 [41] . Also, Function28, Function33

and Function34 are the test functions 28, 33 and 34 in the [42], respectively.
The numerical results of some of the functions in the Table 1 are reported in the following tables.

Table 2 shows iterative numbers (NI), Table 3 compares the Nf, Table 4 compares the Ng and Table 5
presents the error. We compare our method with the steepest descent method, the FR method and
the conjugate gradient method in [37] which we refer to as the Zhang method. The letter “F” in the
tables shows that the corresponding method did not succeed in approaching the optimal point. The FR
method has the most failure modes since it did not produce a descent direction. In comparison with the
steepest descent method, the proposed method has fewer iterations and fewer function and gradient
evaluations. Also, the proposed method shows good agreement with the conjugate gradient method
in [37].

Table 2. Iteration numbers (NI) for different methods.

Function Dimension Steepest Descent FR Zhang Method Proposed Method

Function1 2 F F F 2
Bard 3 10,381 F F 3600

Kowalik and Osborne 4 123 F 24 23
Brown and Dennis 4 F F 90 117

Function34 10 66 17 66 8
Extended Rosenbrock 16 6504 27 42 663

Zakharov 40 F F F 2
Alpine N. 1 40 F F F 2

Trigonometric 50 33 F 22 10
Penalty I 100 12 5 28 2

Discrete Integral Equation 100 21 9 21 3
Broyden Banded 100 100 F F 7

Rotated Hyper-ellipsoid 1000 60 28 24 18
Rastrigin 1000 7 4 28 2

Periodic function 1000 163 8 163 8

Table 3. The number of function evaluations (Nf) for different methods.

Function Dimension Steepest Descent FR Zhang Method Proposed Method

Function1 2 F F F 9
Bard 3 49,479 F F 44,354

Kowalik and Osborne 4 360 F 68 152
Brown and Dennis 4 F F 1468 5521

Function34 10 1123 283 1123 393
Extended Rosenbrock 16 64,567 232 384 17,876

Zakharov 40 F F F 73
Alpine N. 1 40 F F F 7

Trigonometric 50 42 F 43 31
Penalty I 100 69 32 84 25

Discrete Integral Equation 100 43 15 43 13
Broyden Banded 100 700 F F 133

Rotated Hyper-ellipsoid 1000 351 164 163 285
Rastrigin 1000 64 47 29 37

Periodic function 1000 334 23 334 46
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Table 4. The number of gradient evaluations (Ng) for different methods.

Function Dimension Steepest Descent FR Zhang Method Proposed Method

Function1 2 F F F 7
Bard 3 10,382 F F 9354

Kowalik and Osborne 4 124 F 25 70
Brown and Dennis 4 F F 91 352

Function34 10 67 18 67 25
Extended Rosenbrock 16 6505 28 43 1987

Zakharov 40 F F F 7
Alpine N. 1 40 F F F 7

Trigonometric 50 34 F 23 31
Penalty I 100 13 6 29 7

Discrete Integral Equation 100 22 10 22 10
Broyden Banded 100 101 F F 22

Rotated Hyper-ellipsoid 1000 61 29 25 55
Rastrigin 1000 8 5 29 7

Periodic function 1000 164 9 164 25

Table 5. Accuracy (error) for different methods.

Function Dimension Steepest Descent FR Zhang Method Proposed Method

Function1 2 F F F 7.68× 10−13

Bard 3 7.65× 10−5 F F 2.31× 10−5

Kowalik and Osborne 4 3.70× 10−5 F 2.18× 10−6 2.14× 10−5

Brown and Dennis 4 F F 1.62× 10−3 1.62× 10−3

Function34 10 2.72× 10−12 1.05× 10−12 2.71× 10−12 8.47× 10−13

Extended Rosenbrock 16 6.31× 10−7 9.13× 10−7 1.92× 10−10 5.64× 10−7

Zakharov 40 F F F 9.62× 10−5

Alpine N. 1 40 F F F 1.34× 10−5

Trigonometric 50 1.11× 10−5 F 2.23× 10−6 2.56× 10−5

Penalty I 100 3.50× 10−7 1.28× 10−6 5.10× 10−7 4.10× 10−7

Discrete Integral Equation 100 1.09× 10−7 1.59× 10−7 1.081× 10−7 7.93× 10−8

Broyden Banded 100 1.59× 10−7 F F 3.42× 10−9

Rotated Hyper-ellipsoid 1000 1.44× 10−4 7.19× 10−5 8.27× 10−5 1.39× 10−4

Rastrigin 1000 6.72× 10−5 1.19× 10−4 3.87× 10−4 1.37× 10−5

Periodic function 1000 6.80× 10−8 1.12× 10−9 6.80× 10−8 1.32× 10−8

Also, we use the performance profiles in [43] to compare the performance of the considered
methods. If the performance profile of a method is higher than the performance profiles of the other
methods, then this method performed better than the other methods.

Figures 1a,b and 2a,b show the performance profiles measured in accordance with CPU time,
NI, Nf and Ng, respectively. From the viewpoint of CPU time and the number of iterations (NI),
we observe in Figure 1 that the three-step discretization method is successful. The proposed method
works better than the steepest descent method. Although the FR method is rapid and accurate, it has
not led to descent direction in many cases. Therefore, the graph of FR method placed lower than the
graph of the steepest descent method for τ ≥ 4.

From the viewpoint of the number of function evaluations (Nf) and the number of gradient
evaluations (Ng), Figure 2 shows that the Zhang method needs fewer computational costs. In this
figure the proposed method almost comparable with the Zhang method. Also, for τ ≥ 5 the proposed
method is superior to other methods.
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(a) (b)

Figure 1. Performance profiles based on CPU time (a) and the number of iterations (NI) (b) for
45 functions in the Table 1.

(a) (b)

Figure 2. Performance profiles based on the number of function evaluations (Nf) (a) and the number of
gradient evaluations (Ng) (b) for 45 functions in the Table 1.

6. Conclusions

Based on three-step Taylor expansion and Armijo-line search, we propose the three-step
discretization algorithm for unconstrained optimization problems. The presented method uses some
information of the objective function which exists in the third-order Taylor series while there is no
requirement to calculate higher order derivatives. The global convergence of the proposed algorithm
is proved. Some numerical experiments are conducted on the proposed algorithm. In comparison with
the steepest descent method, the numerical performance of the proposed method is superior.

Author Contributions: All authors contributed significantly to the study and preparation of the article. They have
read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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