
mathematics

Article

Asynchronous Iterations of Parareal Algorithm for
Option Pricing Models

Frédéric Magoulès †, Guillaume Gbikpi-Benissan † and Qinmeng Zou *,†

CentraleSupélec, Mathematics in Interaction with Computer Science Laboratory, 9 rue Joliot Curie,
F-91192 Gif-sur-Yvette, France; frederic.magoules@hotmail.com (F.M.); guibenissan@gmail.com (G.G.-B.)
* Correspondence: zouqinmeng@gmail.com; Tel.: +33-(0)1-7531-6000
† These authors contributed equally to this work.

Received: 9 February 2018; Accepted: 15 March 2018; Published: 21 March 2018
����������
�������

Abstract: Spatial domain decomposition methods have been largely investigated in the last decades,
while time domain decomposition seems to be contrary to intuition and so is not as popular as the
former. However, many attractive methods have been proposed, especially the parareal algorithm,
which showed both theoretical and experimental efficiency in the context of parallel computing.
In this paper, we present an original model of asynchronous variant based on the parareal scheme,
applied to the European option pricing problem. Some numerical experiments are given to illustrate
the convergence performance and computational efficiency of such a method.

Keywords: parallel computing; asynchronous iterations; parareal method; European options; domain
decomposition; time-dependent problems

1. Introduction

Today’s dominating high-performance computer architecture is parallel. Computer-aided
engineering (CAE) generally leads to problems that are not naturally parallelizable. A strong effort has
been made during the last years to propose high-performance decomposition domain methods (DDM)
that support scalability and reach high rates of speed-up and efficiency.

For about two decades, people have also tried to propose parallel-in-time algorithms.
Although this can appear unnatural because of time-line “orientation”, some attempts did succeed
for particular problems or equations, inviting people to look forward and continue research in
this direction. Multiple shooting methods [1,2], for example, were proposed to allow for parallel
computation of initial-value problems of differential equations. Another approach is the time
decomposition method originally introduced by researchers from the multi-grid field [3,4] and applied
to solve partial differential equations. Finally, people also tried to apply spatial domain decomposition
methods for time dependent problems. The so-called Waveform relaxation methods (see, e.g., [5])
distribute the computation on parallel computers by partitioning the system into subsystems and then
use a Picard iteration to compute the global solution. The major flaw of these methods is their low
convergence rate. To make them efficient, one needs to use time-dependent transmission conditions
adapted to the underlying problem [6].

The recent parareal scheme (resp. parallel implicit time-integrator (PITA) algorithm) proposed
in [7] (resp. [8]) follows both multiple shooting and multi-grid approaches. Two levels of time
grid are considered in order to split the time domain into subdomains. A prediction of the solution
is parallel-computed on the fine time grid. Then at the end-boundary of each time subdomain,
the solution makes a jump with the previous initial boundary value (IBV) to the next time subdomain.
A correction of the IBV for the next iteration is then computed on the coarse time grid. Reference [8]
shows that the method converges at least in a finite number of iterations, due to the propagation of the

Mathematics 2018, 6, 45; doi:10.3390/math6040045 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/6//45?type=check_update&version=1
http://dx.doi.org/10.3390/math6040045
http://www.mdpi.com/journal/mathematics

Mathematics 2018, 6, 45 2 of 18

fine time grid solution as at each iteration k, the IBV of the kth time subdomain is exact. Generalizations
of the parareal scheme were then proposed by introducing a wider class of coarse solvers that are not
specifically defined on coarser time sub-grids. Coarse solvers can be simple physical models where
fine physics is approximated or simply skipped.

On the other hand, an efficient computational scheme has been proposed to address the drawbacks
of the classical parallel methods, which is called asynchronous iterative scheme. The primordial idea
was put forward by Chazan and Miranker [9] for solving linear systems, where a necessary and
sufficient convergence condition was derived. Several extensions were then developed, based on the
operator theory applied to nonlinear problems [10–13]. Furthermore, we cite also the work of Bertsekas
and Tsitsiklis [14,15] for general theories of asynchronous iterations, which leads to a great deal of
striking applications (see, e.g., [16,17]). In [15], the asynchronous scheme is designed to be divided
into two types, which are called totally asynchronous iterations and partially asynchronous iterations.
The major difference consists in whether a bound assumption is used on the communication time or not,
a negative answer to this question having been first formalized in [11]. Recently, a brand-new scheme
called asynchronous iterations with flexible communication was proposed in [18–20], which was
continually under investigation in subsequent periods [21,22]. The key idea behind this scheme is that
items are sent to the other processors as soon as they are obtained, regardless the completion of the
local iteration. Accordingly, such a scheme is built upon the two-stage model, which was introduced
in [23], or in partial update situations (see [22] for further information). An attempt to present all of
the theoretical and practical efforts is beyond the scope of our paper, but the reader can refer to [21,24]
for a broader discussion.

In this paper, we concentrate on a modified parareal algorithm which will be enhanced by the
asynchronous iterative scheme with flexible communication. In Section 2, we formalize an option pricing
model which will be considered throughout the paper. Section 3 gives the details of the asynchronous
parareal algorithm. Then, we implement the asynchronous solver in Section 4, where we present the
programming trick using an advanced asynchronous communication library. Finally, Section 5 is
devoted to the numerical experiments, and concluding remarks are presented in Section 6.

2. Problem Formulation

2.1. Overview

An option is a contract that gives its owner the right to trade in a fixed number of shares of the
underlying asset at a fixed price at any time on, or before, a given date, which is a prominent form of
financial derivatives that have been derived from other financial instruments, mainly used for hedging
and arbitrage. The right to buy a security is called a call option, whereas the right to sell is called a
put option.

Option pricing remained a frustrating problem that was obscure to solve, until the revolutionary
advent of the Black-Scholes model. The pioneering work was done by Black, Merton, and Scholes [25–27]
in the early 1970s. In quick succession, Cox and Ross [28] proposed the risk neutral pricing theory,
which leads to the famous martingale pricing theory [29] by Harrison and Kreps. Meanwhile, Cox,
Ross, and Rubinstein simplified the Black-Scholes model, giving birth to the binomial options pricing
model [30]. More recently, some stochastic volatility option models have been proposed to better
simulate the real volatility in the financial market (see, e.g., [31,32]).

Throughout this paper, we will investigate the original Black-Scholes equation to solve the
European call option pricing problem. Consider the following equation

∂V
∂t

+ rS
∂V
∂S

+
1
2

σ2S2 ∂2V
∂S2 = rV, (1)

where V is the price of the option as a function of underlying asset price S and time t and the parameters
are volatility σ and risk-free interest rate r, with the final and boundary conditions given by

Mathematics 2018, 6, 45 3 of 18

V(S, t) = max(S− E, 0), t = T, S ∈ [0,+∞),

V(S, t) = 0, t ∈ [0, T], S = 0,

V(S, t) ∼ S− Ee−r(T−t), t ∈ [0, T], S→ +∞,

where T is the time to maturity, and E is the exercise price. There are many assumptions to be held:
(i) the underlying asset follows geometric Brownian motion with drift rate µ and volatility σ constant;
(ii) the underlying asset does not pay dividends; (iii) the risk-free interest rate r is constant; (iv) there
are no transaction costs or taxes; (v) trading in assets is a continuous process; (vi) the short selling is
permitted; and (vii) there are no arbitrage opportunities.

2.2. Derivation of the Black-Scholes Equation

To derive this outstanding equation, it is necessary to establish a model for the underlying asset
price. The economic theory suggests that a stock price follows a generalized Wiener process

∆S = νS∆t + σS∆Z.

The right-hand side is composed of two parts. The first contains a drift rate ν, which depicts
the trend of stock price, whereas the second item is a standard Wiener process, also known as
Brownian motion, with a volatility parameter σ, describing the standard deviation of the stock’s
returns. The stochastic term Z takes on the expression

∆Z = ε
√

∆t,

where ε is a standard normal distribution variable, while stock price follows the log-normal distribution.
In the limit, as ∆t→ 0, this becomes

dS = νSdt + σSdZ. (2)

Therefore, the option price is a function of stock price and time. From Itô’s lemma [33], it follows
the process

dV = (νS
∂V
∂S

+
∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2)dt + σS

∂V
∂S

dZ. (3)

Since a square-root term
√

∆t exists in the stochastic process, the second-order term is kept
during the Taylor series expansions. It is seen that solving the equation seems obscure in view of the
stochastic term dZ. The main conceptual idea proposed by Black and Scholes lies in the construction
of a portfolio, consisting of underlying stocks and options, that is instantaneously risk-less. Let Π be
the value of portfolio consisting of one short position derivative and ∂C

∂S units of the underlying asset.
Then, the value of the portfolio is given by

Π = −V +
∂V
∂S

S. (4)

Hence, the instantaneous change in the portfolio becomes

dΠ = −dC +
∂C
∂S

dS.

Substituting (2) and (3) yields

dΠ = (−∂C
∂t
− 1

2
σ2S2 ∂2C

∂S2)dt. (5)

The change of the portfolio value is not dependent on dZ, which means that the portfolio is
risk-less during the time interval dt. As mentioned before, there are no arbitrage opportunities in

Mathematics 2018, 6, 45 4 of 18

the financial market, so that the return of this portfolio must be equal to other risk-free securities.
Thus, we have

dΠ = rΠdt. (6)

Substituting (4) and (5) into (6) yields

∂V
∂t

+ rS
∂V
∂S

+
1
2

σ2S2 ∂2V
∂S2 − rV = 0,

where we obtain the original Black-Scholes Equation (1), which involves adequate conditions to reach
the final solution.

2.3. Transformation into the Heat Equation

It has been seen that the Black-Scholes partial differential Equation (1) is a parabolic linear
equation, while the heat equation leads to a simpler one. Accordingly, the transformation from the
original to the latter can simplify the solving process. A change of variables is given as

S = Eex, t = T − 2τ

σ2 , V = Ev.

Substituting into the Black-Scholes Equation (1) gives

∂v
∂τ

= (κ − 1)
∂v
∂x

+
∂2v
∂x2 − κv,

where κ = 2r
σ2 . Setting

α =
1
2
(κ − 1), β =

1
2
(κ + 1), v = e−αx−β2τu

then gives the heat equation in an infinite interval

∂u
∂τ

=
∂2u
∂x2 , τ ∈ [0,

Tσ2

2
], x ∈ R. (7)

We notice that the heat equation is forward parabolic, whereas the Black-Scholes equation is
backward. In particular, the initial and boundary conditions become{

u(x, τ) = max(eβx − eαx, 0), τ = 0, x ∈ R,

u(x, τ) ∼ 0, τ ∈ [0, Tσ2

2], x → ±∞.

Unfortunately, we address the issue where such infinity conditions can not be applied directly
to discrete applications. A suitably large boundary is therefore considered, instead of the original
boundary. Accordingly, we choose the precise boundaries as following{

x− = min(x0, 0)− log(4),

x+ = max(x0, 0) + log(4),

such that {
u(x, τ) = 0, τ ∈ [0, Tσ2

2], x = x−,

u(x, τ) = eβx+β2τ − eαx+α2τ , τ ∈ [0, Tσ2

2], x = x+.

We then notice that the Equation (7) can be solved employing appropriate time and
space discretization.

Mathematics 2018, 6, 45 5 of 18

2.4. Black-Scholes Pricing Formula

Without numerical tools, we can also deduce the solution of (7), called the Black-Scholes formula,
by some analytic procedures. In the case of heat equation, the fundamental solution is

G(x, τ) =
1√
4πτ

exp(− x2

4τ
). (8)

In particular, the general solution of the heat equation can be presented by the convolution integral

u(x, τ) =
∫ +∞

−∞
G(x− y, τ)u0(y)dy,

where u(x, 0) = u0(x) with x ∈ R and τ ≥ 0. Substituting (8) yields

u(x, τ) =
1√
4πτ

∫ +∞

−∞
exp(− (x− y)2

4τ
)u0(y)dy.

We note that applying the initial condition into such an equation still involves some brute force.
To summarize, the final closed-form solution is

V(S, t) = SN (d1)− Ee−r(T−t)N (d2),

where N (x) is the cumulative distribution function of the standard normal distribution

N (x) =
1√
2π

∫ x

−∞
e−

1
2 z2

dz,

with the parameters d1 and d2 being given as

d1 =
ln S

E + (r + σ2

2)(T − t)
σ
√

T − t
, d2 =

ln S
E + (r− σ2

2)(T − t)
σ
√

T − t
.

We notice that d2 = d1 − σ
√

T − t.

3. Asynchronous Parareal Algorithm

3.1. Asynchronous Iteration

Let E be a product space with E = E1 × · · · × Ep and let f : E→ E be the function defined by fi:
E→ Ei with

f (x) = [f1(x), . . . , fp(x)], x = (x1, . . . , xp) ∈ E.

Let k ∈ N, Pk ⊆ {1, . . . , p} and Pk /∈ ∅. We assume that

∀i ∈ {1, . . . , p}, card{k ∈ N | i ∈ Pk} = +∞ (9)

For i = 1, . . . , p and j = 1, . . . , p, let µi
j(k) ∈ N such that

µi
j(k) ≤ k, (10)

and satisfying
∀i, j ∈ {1, . . . , p}, lim

k→+∞
µi

j(k) = +∞. (11)

An asynchronous iteration corresponding to f and starting with a given vector x0 is defined
recursively by

Mathematics 2018, 6, 45 6 of 18

xk+1
i =

xk
i , i /∈ Pk,

fi(xµi
1(k)

1 , . . . , x
µi

p(k)
p), i ∈ Pk.

(12)

Note that the assumption (9) illustrates that each processor will proceed the computation now and
again, while (11) indicates that each component used by each processor is always eventually updated.

On the other hand, Algorithm 1 gives us a computational model of the basic asynchronous iterations.

Algorithm 1 Asynchronous iterations with asynchronous communication.

1: while not convergence do
2: Receive x from other processors
3: xi ← fi(x)
4: Send xi to other processors

It is important to notice that asynchronous iterations perfectly work without the synchronization
points, which may constitute a decisive bottleneck. In other words, we proceed the next iteration using
the latest local data rather than waiting for the newest information from other processors. Finally,
we are interested in the operational process of such iterations. A typical example is showed in Figure 1.

Figure 1. Example of asynchronous iterations with asynchronous communication.

To make it clear, we illustrate also the synchronous counterpart in Figure 2 whereby we can gain
a better insight of the asynchronous iterative mechanism.

Figure 2. Example of synchronous iterations with asynchronous communication.

As we can see, Figure 1 shows the behaviour of asynchronous iterations, while Figure 2 shows
the synchronous mode. The major difference resides in the moment when one process waits for

Mathematics 2018, 6, 45 7 of 18

receiving new data. In synchronous mode, one must wait for receiving all latest data from its essential
neighbours; in asynchronous mode, one does not wait any more but, instead, proceeds with a new
iteration, on the basis of the latest available data. Note that white block represents idleness, which is a
waste of time for the iterative methods.

We now turn to the study of two-stage methods that can be applied to the parareal algorithm.
The original asynchronous two-stage methods were introduced in [23], which are called outer
asynchronous and totally asynchronous, respectively. A well-known improvement consists of allowing
the intermediate results from the inner level to be used by the other processors. As a consequence, this
method may be better performing in some cases, by early taking advantage of a better approximation
of the solution.

It would obviously be possible to extent the model (12) to the two-stage situation. Let f :
E× E→ E be the function defined by fi : E× E→ Ei. For i = 1, . . . , p and j = 1, . . . , p, let ρi

j(k) ∈ N
such that

ρi
j(k) ≤ k, (13)

and satisfying
∀i, j ∈ {1, . . . , p}, lim

k→+∞
ρi

j(k) = +∞. (14)

We assume that the conditions (9), (10) and (11) are still vouched in such context. Then, an
asynchronous two-stage iteration with flexible communication corresponding to f and starting with a
given vector x0 is defined recursively by

xk+1
i =

xk
i , i /∈ Pk,

fi((xµi
1(k)

1 , . . . , x
µi

p(k)
p), (xρi

1(k)
1 , . . . , x

ρi
p(k)

p)), i ∈ Pk.
(15)

Furthermore, we can establish the computational scheme from the aforementioned mathematical
model, which is presented in Algorithm 2.

Algorithm 2 Asynchronous two-stage iterations with flexible communication.

1: while not convergence do
2: Receive x from other processors
3: x̂ ← x
4: Send xi to other processors
5: while not precise enough do
6: xi ← fi(xi, x̂)
7: Send xi to other processors

Clearly, the crucial property lies in the sending instruction of inner iteration whereby one can
make a transmission without waiting for the local completion in such scope. In this context, we may
fully exploit the latest local approximations to accelerate the global convergence. In the same manner,
Figure 3 provides an example of asynchronous two-stage iterations with flexible communication,
which illustrates the context of inner/outer iterations (see, e.g., [22]).

Mathematics 2018, 6, 45 8 of 18

Figure 3. Example of asynchronous two-stage iterations with flexible communication.

3.2. Classical Parareal Algorithm

Given a second-order linear elliptic operator L, consider the following time-dependent problem
∂u
∂t (x, t) + Lu(x, t) = f (x, t), t ∈ [0, T], x ∈ Ω,

u(x, t) = u0(x), t = 0, x ∈ Ω,

u(x, t) = g(x), t ∈ [0, T], x ∈ ∂Ω,

where the boundary ∂Ω is Lipschitz continuous. The above mathematical description can be
decomposed into N sequential problems

0 = T0 < · · · < Tn = n∆T < · · · < TN = T.

By importing a function λn, we now reconstruct our problem as
∂un
∂t (x, t) + Lun(x, t) = fn(x, t), t ∈ [Tn, Tn+1], x ∈ Ω,

un(x, t) = λn(x), t = Tn, x ∈ Ω,

un(x, t) = g(x), t ∈ [Tn, Tn+1], x ∈ ∂Ω,

(16)

where n = 0, . . . , N − 1, together with the condition

λn+1(x) = lim
ε→0

un(x, Tn+1 − ε).

Now we can solve the subproblems (16) independently with some essential message passing of
the initial boundary values.

The parareal iterative scheme is driven by two operators, G and F, which are called coarse
propagator and fine propagator respectively. On the other hand, we assume that the time-dependent
problem is approximated by some appropriate classical discretization schemes. Let δt be a fine time
step. Each subproblem will be solved by G with respect to ∆T, and then by F, based on δt. Note that
the discretization schemes exploited for such two operators might be different. Finally, in order to
approximate the solution of (16) in parallel, we come out with an iterative method given by

λk+1
n+1 = G(λk+1

n) + F(λk
n)− G(λk

n),

which is the parareal iterative scheme, where G(λk+1
n) is called predictor and the remain is called

corrector, with n = 0, . . . , N − 1 and λ0
0 = u0. This is therefore a predictor-corrector scheme.

Furthermore, we are obliged to respect two more conditions λ0
n+1 = G(λ0

n) and λk+1
0 = λk

0 within the

Mathematics 2018, 6, 45 9 of 18

iterations. To make it clear, Figure 4 illustrates the aforementioned context and Algorithm 3 gives us
the implementation of such a method.

Algorithm 3 Classical parareal algorithm.

1: n : rank of current processor
2: λ0 = u0
3: for i = 0 to n− 1 do
4: λ0 = G(λ0)
5: w = G(λ0)
6: while not convergence do
7: v = F(λ0)
8: wait for the update of λ0 from processor n− 1
9: w̃ = G(λ0)

10: λ = w̃ + v− w
11: send λ to processor n + 1 as λ0
12: w = w̃

Figure 4. Parareal iterative scheme. F propagates step-by-step, whereas G performs only one step in
each subdomain. We compute λn+1 by combining the predictor and the corrector, then, proceed with
the next iteration.

3.3. Asynchronous Parareal Algorithm

Now we turn to the investigation of a modified parareal method based on the asynchronous
scheme. We choose Equation (15) to establish the new model. Given Pk ⊆ {0, . . . , N − 1} and Pk 6= ∅,
consider the following iteration

λk+1
n+1 =

{
λk

n+1, n /∈ Pk,

G(λ
µn(k)
n) + F(λρn(k)

n)− G(λ
ρn(k)
n), n ∈ Pk,

where λk+1
0 = λk

0, and satisfying

0 ≤ µi
j(k) ≤ k + 1, 0 ≤ ρi

j(k) ≤ k,

and under the similar assumptionscard{k ∈ N | n ∈ Pk} = +∞, n ∈ {0, . . . , N − 1},
lim

k→+∞
µn(k) = lim

k→+∞
ρn(k) = +∞, n ∈ {0, . . . , N − 1},

We notice that the predictor and the corrector come from different iterations, so that we can treat
the parareal scheme as a special case of two-stage methods. It is clear that the classical parareal scheme

Mathematics 2018, 6, 45 10 of 18

will be obtained when setting Pk = {0, . . . , N − 1}, µn(k) = k + 1 and ρn(k) = k. The asynchronous
parareal scheme is illustrated in Algorithm 4, which can be directly used as a basis for implementation.

Algorithm 4 Asynchronous parareal algorithm.

1: n : rank of current processor
2: λ0 = u0
3: for i = 0 to n− 1 do
4: λ0 = G(λ0)
5: w = G(λ0)
6: while not convergence do
7: v = F(λ0)
8: if detect λ0 from processor n− 1 then
9: update λ0

10: w̃ = G(λ0)
11: λ = w̃ + v− w
12: send λ to processor n + 1 as λ0
13: w = w̃

4. Implementation

4.1. Asynchronous Communication Library

The development of an asynchronous communication library is interesting because it provides a
reliable computational environment. However, the issues about termination and communication
management are important, and many theoretical investigations have been done, but few
implementations are proposed. Some libraries have been proposed to deal with the implementation
problems (see, e.g., [34–38]), based upon Java or C++, but no one managed to build upon the
message-passing interface (MPI) library, which is widely used in the scientific domain.

Recently, Just an Asynchronous Computation Kernel (JACK) [39], an asynchronous communication
kernel library, was proposed as the first MPI-based C++ library for parallel implementation of both
classical and asynchronous iterations, which has been upgraded to the new version called JACK2 [40].
It offers a new high-level application programming interface (API), a simplified management of
resources and several global convergence detectors. This project will be released in 2018 and will
be accessible at the link: http://asynchronous-iterations.com. Examples of using JACK are also
available for some simple iterative methods, including parallel-in-space solvers (Jacobi, etc.) and
parallel-in-time solvers. In the sequel, we will specify the implementation of the asynchronous parareal
iterative scheme.

4.2. Preprocessing

We follow the primitive ideas of JACK2, that each element should be configured before processing
including communication graph, communication buffers, computation residual and solution vectors.
Hence, there are many but unambiguous works to be carried out in this cycle.

The parareal algorithm is a special case of domain decomposition methods, since each time frame
only depends upon its predecessor, and essentially needed by its successor. We separate the neighbors
into the outgoing links and the incoming links, and thus write the code as Listing 1. Notice that the
first processor has no predecessor, whereas the last one has no successor.

The second component is the communication buffers, which is managed completely by the library,
illustrated in Listing 2. Clearly, each processor needs to handle the information from one incoming
neighbour and one outgoing neighbour, while each neighbour has an array of data. Therefore, buffers
are constructed with the two-dimensional arrays.

http://asynchronous-iterations.com

Mathematics 2018, 6, 45 11 of 18

Listing 1: Communication graph.
/* template <typename T, typename U> */
// T: float, double, ...
// U: int, long, ...
U numb_sneighb = 1;
U numb_rneighb = 1;
U* sneighb_rank = new U[1]; // outgoing links.
U* rneighb_rank = new U[1]; // incoming links.

Listing 2: Communication buffers.
/* template <typename T, typename U> */
U* sbuf_size = new U[1];
U* rbuf_size = new U[1];
sbuf_size[0] = numb_sub_domain;
rbuf_size[0] = numb_sub_domain;
T** send_buf = new T*[1]; // buffers for sending data.
T** recv_buf = new T*[1]; // buffers for receiving data.
send_buf[0] = new T[sbuf_size[0]];
recv_buf[0] = new T[rbuf_size[0]];

The computation residual involves an indication of norm, whereby we define the length of a
vector, and thus measure the convergence results compared with a threshold. In Listing 3, as an
example, we choose the L2-norm and present the configuration.

Listing 3: Computation residual.
/* template <typename T, typename U> */
T* res_vec_buf = new T[1]; // local residual vector.
U res_vec_size = 1;
T res_vec_norm; // norm of the global residual vector.
float norm_type = 2; // 2 for Euclidean norm, < 1 for maximum norm.

Finally, for the asynchronous parareal scheme, the solution vectors are the parameters to initialize
the configuration of asynchronous iterations. Listing 4 illustrates the variables in demand.

Listing 4: Solution vectors.
/* template <typename T, typename U> */
T* sol_vec_buf; // local solution vector.
U sol_vec_size = numb_sub_domain;
int lconv_flag; // local convergence indicator.

In JACK2, we can see that JACKComm is a front-end interface to perform both blocking and
non-blocking tasks.A simple way to initialize the communicator is shown in Listing 5.

Listing 5: Initialization of communicator.
// -- initializes MPI
MPI_Init(&argc, &argv);

JACKComm comm;
comm.Init(numb_sneighb, numb_rneighb, sneighb_rank, rneighb_rank, MPI_COMM_WORLD);
comm.Init(sbuf_size, rbuf_size, send_buf, recv_buf);
comm.Init(res_vec_size, res_vec_buf, &res_vec_norm, norm_type);

For the asynchronous mode, the library employs a member function in initializing the solution
vectors, shown in Listing 6, which can be easily overloaded for some advanced abilities.

Mathematics 2018, 6, 45 12 of 18

Listing 6: Initialization of asynchronous mode.
if (async_flag) {
comm.ConfigAsync(sol_vec_size, &sol_vec_buf, &lconv_flag, &recv_buf);
comm.SwitchAsync();

}

We mention here that there are many classes behind the common front-end interface to handle
the diverse problems, such as stopping criterion, norm computation and spanning tree construction.
If necessary, moreover, one can switch to an appropriate convergence detection method within several
choices equipped with some advanced configurations, which are still easy to manipulate. We do
not pursue a further description of these features, and rather turn to the implementation of the
processing steps.

4.3. Implementation of Parareal Algorithms

We implement the algorithms in two levels, which solve the sequential time-dependent problem
and parallel-in-time problem, respectively. It is seen that in parallel solvers we solve independently
the sequential problems, leading to a composite pattern in our design. Our discussion focuses
on the parareal scheme applied to the partial differential equations. Hence, we give two classes,
PDESolver and Parareal, to meet the needs. Moreover, for our specific problem, we need two instances
to simulate coarse propagator and fine propagator, for which the initialization is illustrated as Listing 7.

Listing 7: Declaration of solvers.
/* template <typename T, typename U> */
PDESolver<T,U> coarse_pde;
PDESolver<T,U> fine_pde;
Vector<T,U> coarse_vec_U; // coarse results.
Vector<T,U> fine_vec_U; // fine results.
Vector<T,U> vec_U; // solution vector.
Vector<T,U> vec_U0; // initial vector.

There are still some initialization functions for the solvers which are unessential to be mentioned.
The key part begins with some chores that must be handled before the main iteration. Following the
aforementioned parareal algorithms, we illustrate such a process, somewhat trivial, in Listing 8.

Listing 8: Initialization of iterations.
/* template <typename T, typename U> */
for (U i = 0; i < rank; i++) {
coarse_pde.Integrate();
vec_U0 = coarse_vec_U;

}
coarse_pde.Integrate();
vec_U = coarse_vec_U;

Now we have a dividing ridge. For the classical parareal algorithm, we follow Algorithm 3
and list the code as Listings 9 and 10. Note that the processor n will stop updating after (n + 1)th
iteration, which leads to a supplementary condition in the judging area to lighten the communication.
Furthermore, we need to finalize the fine solution and wait for the global termination.

Mathematics 2018, 6, 45 13 of 18

Listing 9: Synchronous parareal iterative process.
numb_iter = 0;
while (res_norm >= res_thresh && numb_iter < m_rank) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
comm.UpdateResidual();
numb_iter++;

}

Listing 10: Synchronous parareal finalized process.
fine_pde.Integrate();
vec_U = fine_vec_U;
comm.Send();
// -- wait for global termination
(*res_vec_buf) = 0.0;
while (res_vec_norm >= res_thresh) {
comm.UpdateResidual();
numb_iter++;

}
}

Finally, the asynchronous mode is more interesting for us, while the implementation is compact
enough. Listing 11 illustrate a somewhat similar code as before.

Listing 11: Asynchronous parareal iterative process.
res_norm = res_thresh;
numb_iter = 0;
while (res_norm >= res_thresh) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
lconv_flag = ((*res_vec_buf) < res_thresh);
comm.UpdateResidual();
numb_iter++;

}

Notice that function Integrate gives the same effect as G(λn) or F(λn). In the code above,
we use vec_U0 in each processor as incoming information and employ the two propagators to
obtain the intermediate data, whereas vec_U, the solution vector, is computed eventually by the
predictor-corrector scheme. lconv_flag is a convergence indicator equipped by the library, whereby
function UpdateResidual can invoke other objects to communicate the residual information. It is clear
that the programmer should guarantee the sending and receiving buffers corresponding to vec_U

Mathematics 2018, 6, 45 14 of 18

and vec_U0, respectively. In practice, such a behaviour depends on the mathematical library used in
the project.

5. Numerical Experiments

In this section, we are interested in the numerical performance of the asynchronous parareal
method. We utilize Alinea [41] to carry out the mathematical operations, which is implemented in C++
for both central processing unit and graphic processing unit devices. Note that it has basic linear algebra
operations [42] and plenty of linear system solvers [43–45], together with some energy consumption
optimization [46] and spatial domain decomposition methods [47]. The parareal algorithm code is
compiled with the “-O2” option in GCC 7.3.0 environment, which is a well-known compiler system
produced by a free-software project. Besides, the experiments are executed on the SGI ICE X clusters
connected with Fourteen Data Rate (FDR) InfiniBand network at 56 Gbit/s. Each node includes two
Intel Xeon E5-2670 v3, 2.30 GHz, CPUs. Finally, SGI Message Passing Toolkit (MPT) 2.14 provides the
MPI environment.

As we mentioned above, the application is an European option pricing problem, and we employ
the Black-Scholes model to predict the target price. The basic idea is, obviously, that we can use the
heat equation to simplify the computation. After deciding the appropriate discretization schemes,
we need to solve the resulting equations in the time domain. In the sequel, we assume that both coarse
and fine problems are approximated by the implicit Euler method, while testing different high-order
schemes are beyond the purpose of this paper. Moreover, let us fix volatility and risk-free interest
rate at σ = 0.2 and r = 0.05, which has few influence on the parareal algorithms. Finally, we choose
finite-differences method to discretize the spatial domain, therefore a variable m representing the
number of sub-intervals has to be determined.

We first illustrate some results which are intended to prove the precision of the asynchronous
parareal scheme. In Table 1, we vary ∆T to simulate different time to maturity, and further obtain
different option prices, where we can see that the method is precise enough.

Table 1. Asynchronous parareal results with approximate option prices Va, exact option prices Ve,
absolute error εa, relative error εr and number of iterations I, given N = 20, m = 250, δt = 0.001,
S = 50, E = 60.

∆T Va Ve εa εr Imin Imax Imean Time(s)

0.05 1.6297 1.6237 0.0060 0.0037 33 43 37 0.600
0.20 8.3064 8.3022 0.0042 0.0005 34 47 39 2.453
0.35 13.9586 13.9541 0.0045 0.0003 33 43 37 4.039
0.50 18.7968 18.7918 0.0050 0.0003 34 47 40 6.123
0.65 22.9713 22.9659 0.0054 0.0002 34 45 39 7.769
0.80 26.5845 26.5796 0.0049 0.0002 38 47 42 10.337
0.95 29.7150 29.7125 0.0025 0.0001 35 45 39 11.459

In the case of convergence properties, we illustrate an example in Figure 5, over which we can see,
tidily enough, that each processor converges fast.

For the synchronous counterpart, as mentioned before, the processor n will stop updating after
(n + 1) iterations. We notice that the asynchronous parareal iterations are similar to that case, but at a
closer view, they still bring out different number of iterations.

We now consider the processing time. The first case leads to a fixed time to maturity,
while changing the number of processors dramatically, shown in Figure 6.

Mathematics 2018, 6, 45 15 of 18

16
15

14
13

12
11

Processor

10
9

8
7

6
5

4
3

2
1

20

15

Iteration

10

5

0

1e-08

1e-05

1e-02

R
e
s
id

u
a
l

Figure 5. Asynchronous parareal iterations for 16 cores. Unlike other asynchronous methods, parareal
scheme performs as a tidy convergent process.

Number of processors
0 20 40 60 80 100 120 140

T
im

e
 (

s
)

4

6

8

10

12

14

16

18

20

Figure 6. Computational time of asynchronous parareal iterations for fixed time to maturity.

We vary ∆T with respect to N to keep the problem immutable with some given parameters.
Finally, we compare the performance of the asynchronous parareal with its synchronous counterpart,
which leads to Table 2.

Mathematics 2018, 6, 45 16 of 18

Table 2. Comparison of Synchronous and Asynchronous Parareal Scheme, given m = 150, S = 25,
E = 30, δt = 0.001, ∆T = 0.1.

N
Synchronous Asynchronous

Iter. Time(s) Speedup Imin Imax Imean Time(s) Speedup

16 11 0.620 1.28 22 30 26 0.490 1.62
32 11 0.781 2.11 30 47 40 0.677 2.43
64 11 0.971 3.41 44 77 60 0.947 3.50

Note that the time indicated in Tables 1 and 2 corresponds to an average value among 20 experiments.
The results illustrate that the asynchronous scheme requires more iterations with the increase of processors,
whereas the number of iterations of the synchronous version remains the same throughout the test.

We notice that the asynchronous version is faster. However, results of asynchronous parareal
method seem to chase after the synchronous version, which reduces the difference of time. Indeed,
asynchronous iterations may benefit from the continuous computation, under the cost of more
iterations, which leads to a trade-off in practice depending on the iterative methods and computational
environment. Generally, asynchronous iterative methods work much better in the long distance
communication environment, like in grid computing (also known as distributed computing
environment), with fully communicative methods such as an “all-to-all” communication, where
each process communicates with all other processes. Nonetheless, in our case, processes depend only
on their previous neighbours, which prevents us from further improvement. Besides, our experimental
environment is local, where all clusters are assembled together, therefore communication delay is
not significant, which also reduces the cost of synchronization. This configuration is definitely the
worst case for asynchronous methods. Note that the asynchronous parareal method outperforms
the synchronous one on such configuration, which guarantees that it will be also the case on more
distributed configuration.

6. Conclusions

In this paper we investigated a modified parareal method with respect to the asynchronous
iterative scheme. We first proposed a brand-new scheme from the traditional parallel theories,
upon which an attractive model was established. Note that we applied asynchronous iterations
to the predictor-corrector scheme, instead of the classical inner-outer scheme, thereby we can make use
of the two-stage model to derive our target equations. To overcome the difficulty of implementation,
an asynchronous communication library has been adopted to facilitate our programming tasks.
We illustrated the design approach in detail and gave several numerical results, from which,
as expected, we illustrated the excellent precision and the conditional efficiency of the target approach.

Author Contributions: F.M. and G.G.-B. conceived and designed the experiments; Q.Z. performed the experiments;
F.M., G.G.-B. and Q.Z. analyzed the data; Q.Z. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chartier, P.; Philippe, B. A Parallel Shooting Technique for Solving Dissipative ODE’s. Computing 1993,
51, 209–236.

2. Deuflhard, P. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms; Springer Series
in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 35.

3. Horton, G.; Stefan, V. A Space-Time Multigrid Method for Parabolic Partial Differential Equations. SIAM J.
Sci. Comput. 1995, 16, 848–864.

4. Leimkuhler, B. Timestep Acceleration of Waveform Relaxation. SIAM J. Numer. Anal. 1998, 35, 31–50.
5. Gander, M.J.; Zhao, H. Overlapping Schwarz Waveform Relaxation for the Heat Equation in N Dimensions.

BIT Numer. Math. 2002, 42, 779–795.

Mathematics 2018, 6, 45 17 of 18

6. Gander, M.J.; Halpern, L.; Nataf, F. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave
Equation. SIAM J. Numer. Anal. 2003, 41, 1643–1681.

7. Lions, J.L.; Maday, Y.; Turinici, G. Résolution d’EDP par Un Schéma en Temps “Pararéel”. Comptes Rendus de
l’Académie des Sciences-Série I-Mathématique 2001, 332, 661–668.

8. Farhat, C.; Chandesris, M. Time-Decomposed Parallel Time-Integrators: Theory and Feasibility Studies for
Fluid, Structure, and Fluid–Structure Applications. Int. J. Numer. Methods Eng. 2003, 58, 1397–1434.

9. Chazan, D.; Miranker, W. Chaotic Relaxation. Linear Algebra Appl. 1969, 2, 199–222.
10. Miellou, J.C. Algorithmes de Relaxation Chaotique à Retards. ESAIM Math. Model. Numer. Anal. 1975,

9, 55–82.
11. Baudet, G.M. Asynchronous Iterative Methods for Multiprocessors. J. ACM 1978, 25, 226–244.
12. El Tarazi, M.N. Some Convergence Results for Asynchronous Algorithms. Numer. Math. 1982, 39, 325–340.
13. Miellou, J.C.; Spitéri, P. Un Critère de Convergence pour des Méthodes Générales de Point Fixe. ESAIM Math.

Model. Numer. Anal. 1985, 19, 645–669.
14. Bertsekas, D.P. Distributed Asynchronous Computation of Fixed Points. Math. Program. 1983, 27, 107–120.
15. Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Prentice-Hall, Inc.:

Upper Saddle River, NJ, USA, 1989.
16. Magoulès, F.; Venet, C. Asynchronous Iterative Sub-structuring Methods. Math. Comput. Simul. 2018,

145, 34–49.
17. Magoulès, F.; Szyld, D.B.; Venet, C. Asynchronous Optimized Schwarz Methods with and without Overlap.

Numer. Math. 2017, 137, 199–227.
18. El Baz, D.; Spitéri, P.; Miellou, J.C.; Gazen, D. Asynchronous Iterative Algorithms with Flexible

Communication for Nonlinear Network Flow Problems. J. Parallel Distrib. Comput. 1996, 38, 1–15.
19. Miellou, J.C.; El Baz, D.; Spitéri, P. A New Class of Asynchronous Iterative Algorithms with Order Intervals.

AMS Math. Comput. 1998, 67, 237–255.
20. Frommer, A.; Szyld, D.B. Asynchronous Iterations with Flexible Communication for Linear Systems.

Calculateurs Parallèles 1998, 10, 91–103.
21. Frommer, A.; Szyld, D.B. On Asynchronous Iterations. J. Comput. Appl. Math. 2000, 123, 201–216.
22. El Baz, D.; Frommer, A.; Spiteri, P. Asynchronous Iterations with Flexible Communication: Contracting

Operators. J. Comput. Appl. Math. 2005, 176, 91–103.
23. Frommer, A.; Szyld, D.B. Asynchronous Two-Stage Iterative Methods. Numer. Math. 1994, 69, 141–153.
24. Bahi, J.M.; Contassot-Vivier, S.; Couturier, R. Parallel Iterative Algorithms: From Sequential to Grid Computing,

1st ed.; CRC Press: Boca Raton, FL, USA, 2007.
25. Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654.
26. Merton, R.C. Theory of Rational Option Pricing. Bell J. Econ. 1973, 4, 141–183.
27. Merton, R.C. On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. J. Financ. 1974,

29, 449–470.
28. Cox, J.C.; Ross, S.A. The Valuation of Options for Alternative Stochastic Processes. J. Financ. Econ. 1976,

3, 145–166.
29. Harrison, J.M.; Kreps, D.M. Martingales and Arbitrage in Multiperiod Securities Markets. J. Econ. Theory

1979, 20, 381–408.
30. Cox, J.C.; Ross, S.A.; Rubinstein, M. Option Pricing: A Simplified Approach. J. Financ. Econ. 1979, 7, 229–263.
31. Hull, J.; White, A. The Pricing of Options on Assets with Stochastic Volatilities. J. Financ. 1987, 42, 281–300.
32. Duan, J.C. The GARCH Option Pricing Model. Math. Financ. 1995, 5, 13–32.
33. Itô, K. On Stochastic Differential Equations; American Mathematical Society: Providence, RI, USA, 1951.
34. Bahi, J.M.; Domas, S.; Mazouzi, K. Jace: A Java Environment for Distributed Asynchronous Iterative

Computations. In Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, Coruna, Spain, 11–13 February 2004; pp. 350–357.

35. Bahi, J.M.; Couturier, R.; Vuillemin, P. JaceV: A Programming and Execution Environment for Asynchronous
Iterative Computations on Volatile Nodes. In Proceedings of the 2006 International Conference on High
Performance Computing for Computational Science, Rio de Janeiro, Brazil, 10–12 July 2006; pp. 79–92.

36. Bahi, J.M.; Couturier, R.; Vuillemin, P. JaceP2P: An Environment for Asynchronous Computations on
Peer-to-Peer Networks. In Proceedings of the 2006 IEEE International Conference on Cluster Computing,
Barcelona, Spain, 25–28 September 2006; pp. 1–10.

Mathematics 2018, 6, 45 18 of 18

37. Charr, J.C.; Couturier, R.; Laiymani, D. JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment
for Executing Parallel Iterative Asynchronous Applications on Volatile Distributed Architectures.
In Proceedings of the 2009 International Conference on Advances in Grid and Pervasive Computing,
Geneva, Switzerland, 4–8 May 2009; pp. 446–458.

38. Couturier, R.; Domas, S. CRAC: A Grid Environment to Solve Scientific Applications with Asynchronous
Iterative Algorithms. In Proceedings of the 2007 IEEE International Parallel and Distributed Processing
Symposium, Rome, Italy, 26–30 March 2007; pp. 1–8.

39. Magoulès, F.; Gbikpi-Benissan, G. JACK: An Asynchronous Communication Kernel Library for Iterative
Algorithms. J. Supercomput. 2017, 73, 3468–3487.

40. Magoulès, F.; Gbikpi-Benissan, G. JACK2: An MPI-based Communication Library with Non-blocking
Synchronization for Asynchronous Iterations. Adv. Eng. Softw. 2018, in press.

41. Magoulès, F.; Cheik Ahamed, A.K. Alinea: An Advanced Linear Algebra Library for Massively Parallel
Computations on Graphics Processing Units. Int. J. High Perform. Comput. Appl. 2015, 29, 284–310.

42. Cheik Ahamed, A.K.; Magoulès, F. Fast Sparse Matrix-Vector Multiplication on Graphics Processing Unit for
Finite Element Analysis. In Proceedings of the 14th IEEE International Confernence on High Performance
Computing and Communications, Liverpool, UK, 25–27 June 2012.

43. Magoulès, F.; Cheik Ahamed, A.K.; Putanowicz, R. Fast Iterative Solvers for Large Compressed-Sparse Row
Linear Systems on Graphics Processing Unit. Pollack Periodica 2015, 10, 3–18.

44. Cheik Ahamed, A.K.; Magoulès, F. Iterative Methods for Sparse Linear Systems on Graphics Processing
Unit. In Proceedings of the 14th IEEE International Confernence on High Performance Computing and
Communications, Liverpool, UK, 25–27 June 2012.

45. Magoulès, F.; Cheik Ahamed, A.K.; Putanowicz, R. Auto-Tuned Krylov Methods on Cluster of Graphics
Processing Unit. Int. J. Comput. Math. 2015, 92, 1222–1250.

46. Magoulès, F.; Cheik Ahamed, A.K.; Suzuki, A. Green Computing on Graphics Processing Units.
Concurr. Comput. Pract. Exp. 2016, 28, 4305–4325.

47. Magoulès, F.; Cheik Ahamed, A.K.; Putanowicz, R. Optimized Schwarz Method without Overlap for the
Gravitational Potential Equation on Cluster of Graphics Processing Unit. Int. J. Comput. Math. 2016,
93, 955–980.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Overview
	Derivation of the Black-Scholes Equation
	Transformation into the Heat Equation
	Black-Scholes Pricing Formula

	Asynchronous Parareal Algorithm
	Asynchronous Iteration
	Classical Parareal Algorithm
	Asynchronous Parareal Algorithm

	Implementation
	Asynchronous Communication Library
	Preprocessing
	Implementation of Parareal Algorithms

	Numerical Experiments
	Conclusions
	References

