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Abstract: There are several chemical indices that have been introduced in theoretical chemistry
to measure the properties of molecular topology, such as distance-based topological indices,
degree-based topological indices and counting-related topological indices. Among the degree-based
topological indices, the atom-bond connectivity (ABC) index and geometric–arithmetic (GA) index
are the most important, because of their chemical significance. Certain physicochemical properties,
such as the boiling point, stability and strain energy, of chemical compounds are correlated by these
topological indices. In this paper, we study the molecular topological properties of some special
graphs. The indices (ABC), (ABC4), (GA) and (GA5) of these special graphs are computed.
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1. Introduction

Graph theory, as applied in the study of molecular structures, represents an interdisciplinary
science called chemical graph theory or molecular topology. By using tools taken from graph theory,
set theory and statistics, we attempt to identify structural features involved in structure–property
activity relationships. Molecules and modeling unknown structures can be classified by the topological
characterization of chemical structures with desired properties. Much research has been conducted in
this area in the last few decades. The topological index is a numeric quantity associated with chemical
constitutions purporting the correlation of chemical structures with many physicochemical properties,
chemical reactivity or biological activity. Topological indices are designed on the grounds of the
transformation of a molecular graph into a number that characterizes the topology of the molecular
graph. We study the relationship between the structure, properties, and activity of chemical compounds
in molecular modeling. Molecules and molecular compounds are often modeled by molecular graphs.
A chemical graph is a model used to characterize a chemical compound. A molecular graph is a
simple graph whose vertices correspond to the atoms and whose edges correspond to the bonds.
It can be described in different ways, such as by a drawing, a polynomial, a sequence of numbers,
a matrix or by a derived number called a topological index. The topological index is a numeric
quantity associated with a graph, which characterizes the topology of the graph and is invariant
under a graph automorphism. Some major types of topological indices of graphs are degree-based
topological indices, distance-based topological indices and counting-related topological indices. The
degree-based topological indices, the atom-bond connectivity (ABC) and geometric–arithmetic (GA)
indices, are of great importance, with a significant role in chemical graph theory, particularly in
chemistry. Precisely, a topological index Top(G) of a graph is a number such that, if H is isomorphic to
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G, then Top(H) = Top(G). It is clear that the number of edges and vertices of a graph are topological
indices [1–7]. We let G = (V, E) be a simple graph, where V(G) denotes its vertex set and E(G)

denotes its edge set. For any vertex u ∈ V(G), we call the set NG(u) = {v ∈ V(G)|uv ∈ E(G)} the
open neighborhood of u; we denote by du the degree of vertex u and by Su = ∑v∈NG(u) d(v) the degree
sum of the neighbors of u. The number of vertices and number of edges of the graph G are denoted by
|V(G)| and |E(G)|, respectively. A simple graph of order n in which each pair of distinct vertices is
adjacent is called a complete graph and is denoted by Kn. The notation in this paper is taken from the
books [3,8–10].

In this paper, we study the molecular topological properties of some special graphs: Cayley
trees, Γ2

n; square lattices, SLn; a graph Gn; and a complete bipartite graph, Km,n. Additionally, the
indices (ABC), (ABC4), (GA) and (GA5) of these special graphs, whose definitions are discussed in
the materials and methods section, are computed.

Definition 1. [11] The oldest degree-based topological index, the Randi’c index, denoted by R− 1
2 (G), is

defined as

R− 1
2
(G) = ∑

uv∈E(G)

1√
dudv

. (1)

Definition 2. [12] For any real number α ∈ R, the general Randi’c index, Rα(G), is defined as

Rα(G) = ∑
uv∈E(G)

(dudv)
α. (2)

Definition 3. [13]. The degree-based topological ABC index is defined as

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
. (3)

Definition 4. [2]. The degree-based topological GA index is defined as

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
. (4)

Recently, several authors have introduced new versions of the ABC and GA indices, which we
derive in the two definitions below.

Definition 5. [14]. The fourth version (ABC4) of the ABC index is defined as

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
. (5)

Definition 6. [15]. The fifth version (GA5) of the GA index is defined as

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
. (6)

The concept of topological indices came from Wiener [16] while he was working on the boiling
point of paraffin and was named the index path number. Later, the path number was renamed as the
Wiener index [17]. Hayat et al. [1] studied various degree-based topological indices for certain types of
networks, such as silicates, hexagonals, honeycombs and oxides. Imran et al. [7] studied the molecular
topological properties and determined the analytical closed formula of the ABC, ABC4 , ABC5 , GA,
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GA4 and GA5 indices of Sierpinski networks. M. Darafsheh [18] developed different methods to
calculate the Wiener index, Szeged index and Padmakar–Ivan index for various graphs using the
group of automorphisms of G. He also found the Wiener indices of a few graphs using inductive
methods. A. Ayache and A. Alameri [19] provided some topological indices of mk-graphs, such as
the Wiener index, the hyper-Wiener index, the Wiener polarity, Zagreb indices, Schultz and modified
Schultz indices and the Wiener-type invariant. Wei Gao et al. [20] obtained certain eccentricity-version
topological indices of the family of cycloalkanes CRi

n . Recently, there has been extensive research into
ABC and GA indices, as well as into their variants. For further studies of topological indices of various
graphs and chemical structures, see [21–26].

2. Materials and Methods

2.1. The Cayley Tree Γk

The Cayley tree Γk of order k ≥ 1 is an infinite and symmetric regular tree, that is, a graph without
cycles, from each vertex of which exactly k + 1 edges are issued. In this paper, we consider the Cayley
tree Γ2

n = (V, E, i) of order 2 and with n levels from the root x0, where V is the set of vertices of Γ2
n, E is

the set of edges of Γ2
n, and i is the incidence function associating each edge e ∈ E with its end vertices.

If i(e) = {x, y}, then x and y are adjacent vertices, and we write e =< x, y >. For any x, y ∈ V, the
distance d(x, y) is defined as

d(x, y) = min{d|x = x0, x1, x2, ..., xd−1, xd = y ∈ V}

such that the pairs < x0, x1 >,< x1, x2 >, ...,< xd−1, xd > are adjacent vertices [27].
For the root x0 of the Cayley tree, we have

Wn = {x ∈ V|d(x0, x) = n},

Vn = {x ∈ V|d(x0, x) ≤ n},

En = {e =< x, y >∈ E|x, y ∈ Vn}.

It is easy to compute the number of vertices reachable in step n or in level n starting from the
root x0, which is |Wn| = 3× 2(n−1). The number of vertices of Γ2

n is |Vn| = 1 + 3× (2n − 1), and the
number of edges of Γ2

n is |En| = 3× (2n − 1), as is shown in Figure 1 below.
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2.2. The Square Lattice Graph SLn

Lattice networks are widely used, for example, in distributed parallel computation, distributed
control, wired circuits, and so forth. They are also known as grid or mesh networks. We choose a simple
structure of lattice networks called a square lattice because this allows for a theoretical analysis [28].

We consider a square graph SLn(V, E) of size n× n vertices, where V denotes the set of vertices
of SLn and E denotes the set of edges of SLn, such that the number of vertices is |V| = n2, and the
number of edges is |E| = 2n(n− 1), as is shown in Figure 2 below.
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2.3. The Special Graph Gn

Other kinds of special graphs, denoted by Gn, can be obtained from other subgraphs.
The structures in Figure 3 show how to obtain a graph Gn.
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2.3. The Special Graph Gn

Other kinds of special graphs, denoted by Gn, can be obtained from other subgraphs.
The structures in Figure 3 show how to obtain a graph Gn.
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In Figure 3, we have obtained the graph sequence G1, G2, G3, G4, ..., Gn. We let G1 be a complete
graph of order 3 (G1 ≡ K3) and let V(G1) = {v1, v2, v3}; we have subdivided the three edges of G1.
The new vertices are denoted by {v4, v5, v6}, and G2[v4, v5, v6] ≡ K3. Thus,
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V(G2) = V(G1) ∪ {v1, v2, v3},
E(G2) = {v1v5, v5v2, v2v6, v6v3, v3v4, v4v1, v4v5, v5v6, v6v4},
G2 = G1 − {v1v2, v2v3, v3v1}+ {v1v5, v5v2, v2v6, v6v3, v3v4, v4v1, v4v5, v5v6, v6v4}.

Now, for Gn, we have subdivided the edges {v3n−5v3n−4, v3n−4v3n−3, v3n−3v3n−5}. The new
vertices are denoted by {v3n−2, v3n−1, v3n} and Gn[v3n−2, v3n−1, v3n] ≡ K3. Thus,

V(Gn) = V(Gn−1) ∪ {v3n−2, v3n−1, v3n},
Gn = Gn−1 − {v3n−5v3n−4, v3n−4v3n−3, v3n−3v3n−5}+ {v3n−5v3n, v3nv3n−4, v3n−4v3n−2, v3n−2v3n−3,

v3n−3v3n−1, v3n−1v3n−5, v3n−2v3n−1, v3n−1v3n, v3nv3n−2}.
It can be observed that the number of vertices of a graph Gn is 3n and that the number of edges is

6n− 3 or, mathematically, |V(Gn)| = 3n, and |E(Gn)| = 6n− 3, respectively, where n ≥ 1.

2.4. The Complete Bipartite Graph Km,n

A graph Km,n is a complete bipartite graph if its vertex set can be partitioned into two subsets X
and Y, such that one of the two endpoints of each edge in X and the other in Y, as well as each vertex
v ∈ X, is adjacent to all vertices of Y, as is shown in Figure 4 below. Clearly, if |X| = m and |Y| = n,
then |V(Km,n)| = m + n and |E(Km,n)| = mn. For more details, see [10].
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3. Results and Discussion

Prior to presenting our main results, the edge partitions of the Cayley tree, lattice square, Gn and
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n on the basis of the degree sum of vertices lying at a unit distance from the end vertices of each
edge, as follows: the first type, for e = uv ∈ E(Γ2

n), is such that Su = 3 and Sv = 5; the second
type, for e = uv ∈ E(Γ2

n), is such that Su = 5 and Sv = 9; the third type, for e = uv ∈ E(Γ2
n),

is such that Su = Sv = 9. There are 3× 2n−1, 3× 2n−2, and 3× (2n − 1) − 3× 2n−1 − 3× 2n−2 =

3(2n − 2n−1 − 2n−2 − 1) = 3× 2n−2 edges in the first, second and third types of Γ2
n, respectively, as is

shown in Table 2.

Table 1. Edge partition of Γ2
n on the basis of degrees of end vertices of each edge.

(du, dv) Where uv ∈ E Number of Edges

(1, 3) 3× 2n−1

(3, 3) 3× (2(n−1) − 1)
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Table 2. Edge partition of Γ2
n on the basis of degree sum of neighbors of end vertices of each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(3, 5) 3× 2n−1

(5, 9) 3× 2n−2

(9, 9) 3× (2(n−2) − 1)

Referring to Figure 2, there are four types of edges in SLn on the basis of the degrees of the
end vertices of each edge, as follows: the first type, for e = uv ∈ E(SLn), is such that du = 2 and
dv = 3; the second type, for e = uv ∈ E(SLn), is such that du = 3 and dv = 3; the third type,
for e = uv ∈ E(SLn), is such that du = 3 and dv = 4; the fourth type, for e = uv ∈ E(SLn), is
such that du = dv = 4. Because |E(SLn)| = 2n(n − 1), then there are 8, 4(n − 3), 4(n − 2), and
2n(n− 1)− [8 + 4(n− 3) + 4(n− 2)] = 2n2 − 2n− [8 + 4n− 12 + 4n− 8] = 2n2 − 10n− 12 edges in
the first, second, third and fourth types of SLn, respectively, as is shown in Table 3.

Table 3. Edge partition of SLn on the basis of degrees of end vertices of each edge.

(du, dv) Where uv ∈ E Number of Edges

(2, 3) 8
(3, 3) 4(n− 3)
(3, 4) 4(n− 2)
(4, 4) 2n2 − 10n + 12

Similarly, from Figure 2, there are nine types of edges in SLn on the basis of the degree sum of
vertices lying at a unit distance from the end vertices of each edge, as follows:

1. For e = uv ∈ E(SLn) such that Su = 6 and Sv = 9, there are 8 edges.
2. For e = uv ∈ E(SLn) such that Su = 9 and Sv = 10, there are 8 edges.
3. For e = uv ∈ E(SLn) such that Su = 10 and Sv = 10, there are 4(n− 5) edges.
4. For e = uv ∈ E(SLn) such that Su = 9 and Sv = 14, there are 8 edges.
5. For e = uv ∈ E(SLn) such that Su = 10 and Sv = 15, there are 4(n− 4) edges.
6. For e = uv ∈ E(SLn) such that Su = 14 and Sv = 15, there are 8 edges.
7. For e = uv ∈ E(SLn) such that Su = 15 and Sv = 15, there are 4(n− 5) edges.
8. For e = uv ∈ E(SLn) such that Su = 15 and Sv = 16, there are 4(n− 4) edges.
9. For e = uv ∈ E(SLn) such that Su = 16 and Sv = 16, and because |E(SLn)| = 2n(n− 1), then

there are 2n(n− 1)− [32 + 8(n− 5) + 8(n− 4)] = 2n2 − 2n− [16n− 40] = 2n2 − 18n + 40 edges.

Table 4 shows the edge partition of the square lattice SLn on the basis of the degree sum of vertices
lying at a unit distance from the end vertices of each edge.

Table 4. Edge partition of SLn on the basis of degree sum of neighbors of end vertices of each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(6, 9) 8
(9, 10) 8

(10, 10) 4(n− 5)
(9, 14) 8

(10, 15) 4(n− 4)
(14, 15) 8
(15, 15) 4(n− 5)
(15, 16) 4(n− 4)
(16, 16) 2n2 − 18n + 40
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Referring to Figure 3, for the edge partition of Gn on the basis of the degrees of the end vertices of
each edge, we have two cases for n = 1 and n ≥ 2, as follows:

For n = 1, because G1 ≡ K3, then there are 3 edges such that du = dv = 2, as is shown in Table 5.

Table 5. Edge partition of Gn (n = 1) on the basis of degrees of end vertices of each edge.

(du, dv) Where uv ∈ E Number of Edges

(2, 2) 3

For n ≥ 2, there are two types of edges in Gn, as follows: the first type, for e = uv ∈ E(Gn), is such
that du = 2 and dv = 4; the other type, for e = uv ∈ E(Gn), is such that du = dv = 4. In the first type,
there are 6 edges, and in the other type, because |E(Gn)| = 6n− 3, then there are (6n− 3)− 6 = 6n− 9
edges, as is shown in Table 6.

Table 6. Edge partition of Gn (n ≥ 2) on the basis of degrees of end vertices of each edge.

(du, dv) Where uv ∈ E Number of Edges

(2, 4) 6
(4, 4) 6n− 9

Similarly, from Figure 3, for the edge partition of Gn on the basis of the degree sum of vertices
lying at a unit distance from the end vertices of each edge, we have three cases for n = 1, n = 2 and
n ≥ 3, as follows:

For n = 1, because G1 ≡ K3, then there are 3 edges such that Su = Sv = 4, as is shown in Table 7.

Table 7. Edge partition of Gn (n = 1) on the basis of degree sum of neighbors of end vertices of
each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(4, 4) 3

For n = 2, there are two types of edges in G2, as follows: the first type, for e = uv ∈ E(G2), is
such that Su = 8 and Sv = 12; the other type, for e = uv ∈ E(G2), is such that Su = Sv = 12. There are
6 edges in the first type of G2 and 3 edges in the second type of G2, as is shown in Table 8.

Table 8. Edge partition of Gn (n = 2) on the basis of degree sum of neighbors of end vertices of
each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(8, 12) 6
(12, 12) 3

For n ≥ 3, there are three types of edges in Gn, as follows: the first type, for e = uv ∈ E(Gn), is
such that Su = 8 and Sv = 12; the second type, for e = uv ∈ E(Gn), is such that Su = 12 and Sv = 16;
the third type, for e = uv ∈ E(Gn), is such that Su = Sv = 16. There are 6 edges in both the first type
and the second type of Gn, and because |E(Gn)| = 6n− 3, then there are (6n− 3)− 6− 6 = 6n− 15
edges, as is shown in Table 9.
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Table 9. Edge partition of Gn (n ≥ 3) on the basis of degree sum of neighbors of end vertices of
each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(8, 12) 6
(12, 16) 6
(16, 16) 6n− 15

Referring to Figure 4, for the complete bipartite graph Km,n, because ∀u ∈ X, du = m and
∀v ∈ Y, dv = n, where |E(Km,n)| = mn, then the number of edges of Km,n on the basis of the degrees of
the end vertices of each edge is such that du = m, and dv = n is equal to the number of edges of Km,n

on the basis of the degree sum of the vertices lying at a unit distance from the end vertices of each edge
such that Su = Sv = mn and both of them are equal to mn, as is shown in Tables 10 and 11 respectively.

Table 10. Edge partition of Km,n on the basis of degrees of end vertices of each edge.

(du, dv) Where uv ∈ E Number of Edges

(m, n) mn

Table 11. Edge partition of Km,n on the basis of degree sum of neighbors of end vertices of each edge.

(Su, Sv) Where uv ∈ E Number of Edges

(mn, mn) mn

Using the data of the edge partition, which is presented in Tables 1–11, we can derive the
following theorems.

Theorem 1. For the Cayley tree Γ2
n, the ABC index and the fourth version (ABC4) of the ABC index are equal

to the following, respectively:

1. ABC(Γ2
n) = 2n−1(3

√
2
3 + 2)− 2.

2. ABC4(Γ2
n) = 3× 2n−1(√ 6

15 + 1√
15

+ 2
9
)
− 4

3 .

Proof.

1. From Table 1, by using the edge partition of Γ2
n on the basis of the degrees of the end vertices of

each edge, and because

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
,

this implies that

ABC(Γ2
n) = 3× 2n−1

√
1+3−2

1×3 + 3× (2n−1 − 1)
√

3+3−2
3×3 .

After an easy simplification, we obtain

ABC(Γ2
n) = 2n−1(3

√
2
3 + 2)− 2.
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2. By using the edge partition of Γ2
n on the basis of the degree sum of the neighbors of the end

vertices of each edge in Table 2, and because

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this implies that

ABC4(Γ2
n) = 3× 2n−1

√
3+5−2

3×5 + 3× 2n−2
√

5+9−2
5×9 + 3× (2n−2 − 1)

√
9+9−2

9×9 .

After an easy simplification, we obtain

ABC4(Γ2
n) = 3× 2n−1(√ 6

15 + 1√
15

+ 2
9
)
− 4

3 .

By Equations (1) and (2), we complete the proof of the result.

Theorem 2. For the Cayley tree Γ2
n, the GA index and the fifth version (GA5) of the GA index are equal to the

following, respectively:

1. GA(Γ2
n) = 3× 2n−2(

√
3 + 2)− 3.

2. GA5(Γ2
n) = 3× 2n−3(

√
15 + 6

√
5

7 + 2)− 3.

Proof.

1. From Table 1 by using the edge partition of Γ2
n on the basis of the degrees of the end vertices of

each edge, and because

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
,

this gives that

GA(Γ2
n) =

2×3×2n−1√1×3
1+3 + 2×3×(2n−1−1)

√
3×3

3+3 .

After an easy simplification, we obtain

GA(Γ2
n) = 3× 2n−2(

√
3 + 2)− 3.

2. By using the edge partition of Γ2
n on the basis of the degree sum of the neighbors of the end

vertices of each edge shown in Table 2, and because

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives that

GA5(Γ2
n) =

2×3×2n−1√3×5
3+5 + 2×3×2n−2√5×9

5+9 + 2×3×(2n−2−1)
√

9×9
9+9 .

After an easy simplification, we obtain

GA5(Γ2
n) = 3× 2n−3(

√
15 + 6

√
5

7 + 2)− 3.

By Equations (1) and (2), we complete the proof of the result.

Theorem 3. For the square lattice graph SLn the ABC index and the fourth version (ABC4) of the ABC index
are equal to the following, respectively:

1. ABC(SLn) =
8√
2
+ (n− 3) 8

3 + 2(n− 2)
√

5
3 + (n2 − 10n + 12)

√
6

4 .
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2. ABC4(SLn) =
8
3

√
13
6 + 8

3

√
17
10 + 6

√
2

5 (n− 5) + 8
3

√
3
2 + 4

√
23

150 (n− 4) + 24√
70

+ 8
√

7
15 (n− 5)

+
√

29
15 (n− 4) +

√
30

16 (2n2 − 18n + 40).

Proof.

1. From Table 3, by using the edge partition of SLn on the basis of the degrees of the end vertices of
each edge, and because

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
,

this implies that

ABC(SLn) = 8
√

2+3−2
2×3 + 4(n− 3)

√
3+3−2

3×3 + 4(n− 2)
√

3+4−2
3×4 + (n2 − 10n + 12)

√
4+4−2

4×4 .

After an easy simplification, we obtain

ABC(SLn) =
8√
2
+ (n− 3) 8

3 + 2(n− 2)
√

5
3 + (n2 − 10n + 12)

√
6

4 .

2. By using the edge partition of SLn on the basis of the degree sum of the neighbors of the end
vertices of each edge shown in Table 4, and because

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this implies that

ABC4(SLn) = 8
√

6+9−2
6×9 + 8

√
9+10−2

9×10 + 4(n− 5)
√

10+10−2
10×10 + 8

√
9+14−2

9×14 + 4(n− 4)
√

10+15−2
10×15

+ 8
√

14+15−2
14×15 + 4(n− 5)

√
15+15−2

15×15 + 4(n− 4)
√

15+16−2
15×16 +(2n2− 18n+ 40)

√
16+16−2

16×16 .

After an easy simplification, we obtain

ABC4(SLn) =
8
3

√
13
6 + 8

3

√
17
10 + 6

√
2

5 (n− 5) + 8
3

√
3
2 + 4

√
23

150 (n− 4) + 24√
70

+ 8
√

7
15 (n− 5)

+
√

29
15 (n− 4) +

√
30

16 (2n2 − 18n + 40).

By Equations (1) and (2), we complete the proof of the result.

Theorem 4. For the square lattice graph SLn the GA index and the fifth version (GA5) of the GA index are
equal to the following, respectively:

1. GA(SLn) =
16
√

6
5 + 16

√
3

7 (n− 2) + (n2 − 6n).

2. GA5(SLn) =
16
√

6
5 + 48

√
10

29 + 48
√

14
23 + 8

√
150

25 (n− 4) + 16
√

210
29 + 32

√
15

31 (n− 4) + (n2 − 10n).

Proof.

1. From Table 3, by using the edge partition of SLn on the basis of the degrees of the end vertices of
each edge, and because

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
,

this gives that

GA(SLn) =
2×8
√

2×3
2+3 + 2×4(n−3)

√
3×3

3+3 + 2×4(n−2)
√

3×4
3+4 + 2×(n2−10n+12)

√
4×4

4+4 .

After an easy simplification, we obtain

GA(SLn) =
16
√

6
5 + 16

√
3

7 (n− 2) + (n2 − 6n).
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2. By using the edge partition of SLn on the basis of the degree sum of the neighbors of the end
vertices of each edge shown in Table 4, and because

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives that

GA5(SLn) =
2×8
√

6×9
6+9 + 2×8

√
9×10

9+10 + 2×4(n−5)
√

10×10
10+10 + 2×8

√
9×14

9+14 + 2×4(n−4)
√

10×15
10+15

+ 2×8
√

14×15
14+15 + 2×4(n−5)

√
15×15

15+15 + 2×4(n−4)
√

15×16
15+16 + 2×(n2−18n+40)

√
16×16

16+16 .

After an easy simplification, we obtain

GA5(SLn) =
16
√

6
5 + 48

√
10

29 + 48
√

14
23 + 8

√
150

25 (n− 4) + 16
√

210
29 + 32

√
15

31 (n− 4) + (n2 − 10n).

By Equations (1) and (2), we complete the proof of the result.

Theorem 5. For the graph Gn, where n = 1 and n ≥ 2,the ABC index is equal to the following:

ABC(Gn) =

{
3
2

√
2 if n = 1,

3
√

2 + (6n− 9)
√

6
4 if n ≥ 2.

Proof. We prove this by using Tables 5 and 6. We use the edge partition of Gn on the basis of the
degrees of the end vertices of each edge. Tables 5 and 6 explain such a partition for the graph Gn for
n = 1 and n ≥ 2, respectively. Now by using the partitions given in Tables 5 and 6, we can apply the
formula of the ABC index to compute this index for the graph Gn.

Because we have

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
,

this gives, for n = 1, ABC(G1) = 3
√

2+2−2
2×2 = 3

√
2
4 = 3

2

√
2.

For n ≥ 2, because we have,

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
,

this gives ABC(Gn) = 6
√

2+4−2
2×4 + (6n− 9)

√
4+4−2

4×4 = 3
√

2 + (6n− 9)
√

6
4 .

This proves the result.

Theorem 6. For the graph Gn, where n = 1 and n ≥ 2, the GA index is equal to the following:

GA(Gn) =

{
3 if n = 1,

4
√

2 + (6n− 9) if n ≥ 2.

Proof. We prove this by using Tables 5 and 6. We use the edge partition of Gn on the basis of the
degrees of the end vertices of each edge. Tables 5 and 6 explain such a partition for the graph Gn for
n = 1 and n ≥ 2, respectively. Now by using the partitions given in Tables 5 and 6, we can apply the
formula of the GA index to compute this index for the graph Gn.

Because we have

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
,
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this implies, for n = 1, GA(G1) =
2×3
√

2×2
2+2 = 2×3

√
4

4 = 3.
For n ≥ 2, because we have

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
,

this implies that GA(Gn) =
2×6
√

2×4
2+4 + 2×(6n−9)

√
4×4

4+4 = 4
√

2 + (6n− 9).
This proves the result.

Theorem 7. For the graph Gn, where n = 1, n = 2 and n ≥ 3, the fourth version (ABC4) of the ABC index is
equal to the following:

ABC4(Gn) =


3
4

√
6 if n = 1,

3
√

3
2 +

√
22
4 if n = 2,

3
√

3
2 + 3

2

√
13
6 + (6n− 15)

√
30

16 if n ≥ 3.

Proof. We prove this by using Tables 7–9. We use the edge partition of Gn on the basis of the degree
sum of the neighbors of the end vertices of each edge. Tables 7–9 explain such a partition for the graph
Gn for n = 1, n = 2 and n ≥ 3, respectively. Now by using the partitions given in Tables 7–9, we can
apply the formula of the ABC4 index to compute this index for the graph Gn.

Because we have

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this gives, for n = 1, ABC4(G1) = 3
√

4+4−2
4×4 = 3

4

√
6.

For n = 2, because we have

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this gives ABC4(G2) = 6
√

8+12−2
8×12 + 3

√
12+12−2

12×12 .
After an easy simplification, we obtain

ABC4(G2) =
3
√

3
2 +

√
22
4 .

For n ≥ 3, because we have,

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this gives ABC4(Gn) = 6
√

8+12−2
8×12 + 6

√
12+16−2

12×16 + (6n− 15)
√

16+16−2
16×16 .

After an easy simplification, we obtain

ABC4(Gn) =
3
√

3
2 + 3

2

√
13
6 + (6n− 15)

√
30

16 .

This proves the result.

Theorem 8. For the graph Gn where n = 1, n = 2 and n ≥ 3, the fifth version (GA5) of the GA index is equal
to the following:

GA5(Gn) =


3 if n = 1,
12
√

6
5 + 3 if n = 2,

12
√

6
5 + 12

√
12

7 + (6n− 15) if n ≥ 3.
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Proof. We prove this by using Tables 7–9. We use the edge partition of Gn on the basis of the degree
sum of the neighbors of the end vertices of each edge. Tables 7–9 explain such a partition for the graph
Gn for n = 1, n = 2 and n ≥ 3, respectively. Now by using the partitions given in Tables 7–9, we can
apply the formula of the GA5 index to compute this index for the graph Gn.

Because we have

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives, for n = 1, GA5(G1) =
2×3
√

4×4
4+4 = 2×3×4

8 = 3.
For n = 2, because we have

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives GA5(G2) =
2×6
√

8×12
8+12 + 2×3

√
12×12

12+12 .
After an easy simplification, we obtain

GA5(G2) =
12
√

6
5 + 3.

For n ≥ 3, because we have

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives GA5(Gn) =
2×6
√

8×12
8+12 + 2×6

√
12×16

12+16 + 2×(6n−15)
√

16×16
16+16 .

After an easy simplification, we obtain

GA5(Gn) =
12
√

6
5 + 12

√
12

7 + (6n− 15).

This proves the result.

Theorem 9. For the complete bipartite graph Km,n the ABC index and the fourth version (ABC4) of the ABC
index are equal to the following, respectively:

1. ABC(Km,n) =
√
(mn)(m + n− 2).

2. ABC4(Km,n) =
√

2(mn− 1).

Proof.

1. From Table 10, by using the edge partition of Km,n on the basis of the degrees of the end vertices
of each edge, and because

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
,

this implies that ABC(Km,n) = (mn)
√

m+n−2
mn =

√
(mn)(m + n− 2).

2. By using the edge partition of Km,n on the basis of the degree sum of the neighbors of the end
vertices of each edge shown in Table 11, and because

ABC4(G) = ∑
uv∈E(G)

√
Su + Sv − 2

SuSv
,

this gives that ABC4(Km,n) = (mn)
√

(mn)+(mn)−2
(mn)(mn) =

√
2(mn− 1).

By Equations (1) and (2), we complete the proof of the result.
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Theorem 10. For the complete bipartite graph Km,n, the GA index and the fifth version (GA5) of the GA index
are equal to the following, respectively:

1. GA(Km,n) =
2(mn)

3
2

m+n .
2. GA5(Km,n) = (mn).

Proof.

1. From Table 10, by using the edge partition of Km,n on the basis of the degrees of the end vertices
of each edge, and because

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
,

this implies that GA(Km,n) =
2×(mn)

√
mn

m+n = 2(mn)
3
2

m+n .
2. By using the edge partition of Km,n on the basis of the degree sum of the neighbors of the end

vertices of each edge shown in Table 11, and because

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
,

this gives that GA5(Km,n) =
2×(mn)

√
(mn)(mn)

(mn)+(mn) = (mn).

By Equations (1) and (2), we complete the proof of the result.

4. Conclusions

The Randi’c index has been closely correlated with many chemical properties of molecules and
has been found to parallel the boiling point and Kovats constants. The ABC index provides a good
model for the stability of linear and branched alkanes as well as for the strain energy of cycloalkanes.
For certain physiochemical properties, the predictive power of the GA index is somewhat better than
the predictive power of the Randi’c connectivity index.

In this paper, certain degree-based topological indices, namely, the ABC and GA indices, are
studied. We have determined and computed the closed formulas of the ABC4 and GA5 indices for
these special graphs and networks. We have also computed their ABC and GA indices. These results
are novel and significant contributions in graph theory and network science, and they provide a good
basis to understand the topology of these graphs and networks. In the future, we are interested in
studying and computing topological indices of a tree with diameter d.
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