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Abstract: In view of the wide application of resistance distance, the computation of resistance
distance in various graphs becomes one of the main topics. In this paper, we aim to compute
resistance distance in H-join of graphs G1, G2, . . . , Gk. Recall that H is an arbitrary graph with
V(H) = {1, 2, . . . , k}, and G1, G2, . . . , Gk are disjoint graphs. Then, the H-join of graphs G1, G2, . . . , Gk,
denoted by

∨
H{G1, G2, . . . , Gk}, is a graph formed by taking G1, G2, . . . , Gk and joining every vertex

of Gi to every vertex of Gj whenever i is adjacent to j in H. Here, we first give the Laplacian
matrix of

∨
H{G1, G2, . . . , Gk}, and then give a {1}-inverse L(

∨
H{G1, G2, . . . , Gk}){1} or group inverse

L(
∨

H{G1, G2, . . . , Gk})# of L(
∨

H{G1, G2, . . . , Gk}). It is well know that, there exists a relationship
between resistance distance and entries of {1}-inverse or group inverse. Therefore, we can easily
obtain resistance distance in

∨
H{G1, G2, . . . , Gk}. In addition, some applications are presented in

this paper.
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1. Introduction

Throughout this paper, “G is a graph” always means that “G is a simple and undirected graph”.
Moreover, we denote a graph G by G = (V(G), E(G)), where V(G) = {v1, v2, . . . , vn} is the vertex set
and E(G) = {e1, e2, . . . , em} is the edge set of G. Associated with a graph G, some matrices characterize
the structure of G, such as the adjacency matrix A(G), which is an n× n matrix with entry aij = 1 if
vi and vj are adjacent in G, and aij = 0 otherwise, the diagonal matrix D(G) with diagonal entries
dG(v1), dG(v2), . . . , dG(vn) and the Laplacian matrix L(G), which is D(G) − A(G). Let In denote
the unit matrix of order n, 1n be the all-one column vector of dimension n and Jn×m be the all-one
n×m-matrix. For more detail, one can refer to [1,2] for the definitions and notions in the paper.

It is rather clear that, from some given graphs, a big graph arises by the help of graph operations,
such as the Cartesian product, the Kronecker product, the corona graph, the neighborhood corona
graph and subdivision-vertex join and subdivision-edge join of graphs (see [3–7]). Furthermore,
following [8], from an arbitrary graph H of order k and graphs G1, G2, . . . , Gk, we obtain a new graph
called H-join of graphs G1, G2, . . . , Gk, which is denoted by

∨
H{G1, G2, . . . , Gk}, for detail:

Definition 1. Let H be an arbitrary graph with V(H) = {1, 2, . . . , k}, and G1, G2, . . . , Gk be disjoint graphs
of orders n1, n2, . . . , nk. The H-join of graphs G1, G2, . . . , Gk, which is denoted by

∨
H{G1, G2, . . . , Gk}, is a

graph formed by taking G1, G2, . . . , Gk and joining every vertex of Gi to every vertex of Gj whenever i is adjacent
to j in H. Particularly,

∨
H{G1, G1, . . . , G1} is denoted by H

⊙
G1.
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Example 1. Let Pn and Cn be a path and a cycle with n vertices. Then,
∨

P3
{P3, P1, P2}, P3

⊙
P2 and C3

⊙
P3

are as follows (Figures 1 and 2).
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Figure 1.
∨

P3
{P3, P1, P2} and P3

⊙
P2.
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Figure 2. C3
⊙

P3.

As we know, the length of a shortest path between vertices vi and vj, which is denoted by
dij, is the conventional distance. However, it does not apply to some practical situations, such as
electrical network. Thus, based on electrical network theory, Klein and Randić introduced a new
distance called resistance distance ([9]). The resistance distance between vertices vi and vj is denoted
by rij, and, in fact, rij is the effective electrical resistance between vi and vj if every edge of G is
replaced by a unit resistor. In view of its practical application, resistance distance was widely explored
by many authors. One of the main topics in the study of resistance distance is to determine it in
various graphs. For example, from [10], one would know that how rij can be computed from the
Laplacian matrix of the graph; in [11], authors gave the resistance distance between any two vertices
of a wheel and a fan; in [3], authors obtained formulae for resistance distance in subdivision-vertex
join and subdivision-edge join of graphs; recently, in [12], authors gave the resistance distance in
corona and the neighborhood corona graphs of two disjoint graphs. Except for the above, one can refer
to [13–20] for more information.

Motivated by the study of resistance distance and graph operations, a natural question arises:
what is the resistance distance in

∨
H{G1, G2, . . . , Gk}? In fact, this paper focuses on this question, gives

resistance distance in H-join of graphs G1, G2, . . . , Gk and finally presents some applications.
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2. Preliminaries

Recall that, for a matrix M, a {1}-inverse of M, which is always denoted by M{1}, is a matrix
X such that MXM = M. For a square matrix M, the group inverse of M, which is denoted by M#,
is the unique matrix X such that the following hold: (1)MXM = M; (2)XMX = X; (3)MX = XM.
It is well-known that M# exists if and only if rank(M)=rank(M2). Therefore, A# exists and it is a
{1}-inverse of A, whenever A is a real symmetric. In fact, assume that A is a real symmetric matrix and
U is an orthogonal matrix (i.e., UUT = UTU = I), such that A = UTdiag{λ1, λ2, · · · , λn}U, where
λ1, λ2, · · · , λn are eigenvalues of A. Then, A# = UTdiag{ f (λ1), f (λ2), · · · , f (λn)}U, where

f (λi) =

{
1/λi, if λi 6= 0,

0, if λi = 0.

Note that the Laplacian matrix L(G) of a graph G is real symmetric. Thus, L(G)# exists. For more
detail about the group inverse of the Laplacian matrix of a graph, see [21].

Lemma 1 ([3,22]). Let L =

(
L1 L2

LT
2 L3

)
be the Laplacian matrix of a connected graph. Assume that L1 is

nonsingular. Denote S = L3 − LT
2 L−1

1 L2. Then,

(1)

(
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)
is a symmetric {1}-inverse of L.

(2) If each column vector of L2 is 1 or a zero vector, then

(
L−1

1 0
0 S#

)
is a symmetric {1}-inverse of L.

In order to compute the inverse of a matrix, the next lemma is useful.

Lemma 2 ([3]). Let M =

(
A B
C D

)
be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
,

where S = D− CA−1B is the Schur complement of A in M.

One of the important applications of group inverse L(G)# or {1}-inverse L(G){1} is based on the
following fact, which gives the formulae for resistance distance.

Lemma 3 ([3]). Let G be a connected graph and (L(G))ij be the (i, j)-entry of the Laplacian matrix L(G). Then,

rij(G)=(L(G){1})ii+ (L(G){1})jj− (L(G){1})ij− (L(G){1})ji

= (L(G)#)ii + (L(G)#)jj − 2(L(G)#)ij.

3. Main Results

Now, we turn to compute resistance distance in H-join of graphs G1, G2, . . . , Gk. Denote G =∨
H{G1, G2, . . . , Gk}. Keeping Lemma 3 in mind, we only need to compute the group inverse L(G)# or

a {1}-inverse L(G){1}.
First, we give the Laplacian matrix L(G) of G.
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Theorem 1. Let H be an arbitrary graph with V(H) = {1, 2, . . . , k}, and Gi be the disjoint graph of order ni
(i = 1, 2, . . . , k). Assume that the adjacency matrix of H is A(H) = (aij)k and

A(H)(n1, n2, . . . , nk)
T = (m1, m2, . . . , mk)

T .

Denote G =
∨

H{G1, G2, . . . , Gk}, and label the ni vertices of Gi with

V(Gi) = {v
n1+···+ni−1+1
i , vn1+···+ni−1+2

i , . . . , vn1+···+ni−1+ni
i }.

Then, V(G) = {v1
1, . . . , vn1

1 , . . . , vn1+···+ni−1+1
i , . . . , vn1+···+ni−1+ni

i , . . . , vn1+···+nk−1+1
k , . . . , vn1+···+nk−1+nk

k },
and the Laplacian matrix L(G) of G is

L(G1) + m1 In1 0 · · · 0
0 L(G2) + m2 In2 · · · 0
...

...
. . .

...
0 0 · · · L(Gk) + mk Ink

−


a11 Jn1×n1 a12 Jn1×n2 · · · a1k Jn1×nk

a21 Jn2×n1 a22 Jn2×n2 · · · a2k Jn2×nk
...

...
...

ak1 Jnk×n1 ak2 Jnk×n2 · · · akk Jnk×nk

 .

Proof. Clearly, all of the diagonal matrix D(G), the adjacency matrix A(G) and the Laplacian
matrix L(G) are partitioned k × k-matrixes, whose (ij)-entry is a ni × nj-matrix. We proceed via
the following steps:

(1) The diagonal matrix D(G) of G.

Obviously, the degree increment of V(Gi) depends on the i-th line (ai1 ai2 · · · aik) of A(H).
For detail, if aij = 1, j = 1, 2, · · · , k, then every vertex of Gj is joined to every vertex of Gi, that
is, the increment of each vertex in V(Gi) is aijnj. Otherwise, that is aij = 0, the increment is zero,
which can also be written by aijnj. In general, the degree increment of each vertex of V(Gi) is

ai1n1 + ai2n2 + · · ·+ aiknk = mi.

Consequently, the diagonal matrix of G is

D(G) =


D(G1) + m1 In1 0 · · · 0

0 D(G2) + m2 In2 · · · 0
...

...
. . .

...
0 0 · · · D(Gk) + mk Ink

 .

(2) The adjacency matrix A(G) of G.

Similarly, the i-th line of the partitioned matrixes A(G) also relies on (ai1 ai2 · · · aik). Assume that
aij = 1. Then, every vertex of Gj is joined to every vertex of Gi. Thus, the (ij)-entry of A(G) is Jni×nj ,
which is aij Jni×nj . If aij = 0, then there is no edge between V(Gi) and V(Gj), that is, the (ij)-entry of
A(G) is zero. However, in this case, we can also denote it by aij Jni×nj . Note that the above holds for
i = j. Therefore, the adjacency matrix of G is

A(G) =


A(G1) 0 · · · 0

0 A(G2) · · · 0
...

...
. . .

...
0 0 · · · A(Gk)

+


a11 Jn1×n1 a12 Jn1×n2 · · · aik Jn1×nk

a21 Jn2×n1 a22 Jn1×n2 · · · a2k Jn2×nk
...

...
...

ak1 Jnk×n1 ak2 Jnk×n2 · · · a2k Jnk×nk

 .

(3) The Laplacian matrix L(G) of G.

With respect to the above results, the Laplacian matrix L(G) of G is the Theorem 1.

According to Theorem 1 and Lemma 1, we finally obtain a symmetric {1}-inverse of L(G).
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Theorem 2. Let H be an arbitrary connected graph with V(H) = {1, 2, . . . , k}, and Gi be disjoint
connected graph of order ni (i = 1, 2, . . . , k). Assume that A(H) = (aij)k and A(H)(n1, n2, . . . , nk)

T =

(m1, m2, . . . , mk)
T . Denote G =

∨
H{G1, G2, . . . , Gk}. Then, the following matrix(
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)

is a symmetric {1}-inverse of L(G), where

L1 = L(G1) + m1 In1 ;

L2 = −(a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk );

L3 = diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − (aij Jni×nj)i,j=2,3,...,k;

S = L3 − LT
2 L−1

1 L2

= diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − ((aij + ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − ((ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − sBBT .

Here, s=1T
n1

L−1
1 1n1 and BT =

(
a121T

n2
a131T

n3
· · · a1k1T

nk

)
.

Proof. Note that all of H and G1, G2, . . . , Gk are connected. Thus, it is easy to show that G is connected.
By Theorem 1, we have the Laplacian matrix L(G) of G. In order to give a {1}-inverse of L(G) with

the help of Lemma 1, we further divide L(G) into blocks L(G) =

(
L1 L2

LT
2 L3

)
, where

L1 =L(G1) + m1 In1 − a11 Jn1×n1 = L(G1) + m1 In1 ;

L2 =− (a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk );

L3 =

 L(G2) + m2 In2 · · · 0
...

. . .
...

0 · · · L(Gk) + mk Ink

−
 a22 Jn2×n2 · · · a2k Jn2×nk

...
...

ak2 Jnk×n2 · · · akk Jnk×nk

 .

Note that LT
2 =


−a12 Jn2×n1

−a13 Jn3×n1
...

−a1k Jnk×n1

. Thus, we have

LT
2 L−1

1 L2 =


a12 Jn2×n1

a13 Jn3×n1
. . .

a1k Jnk×n1

 L−1
1 (a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk )

=


a12a12 Jn2×n1 L−1

1 Jn1×n2 · · · a12a1k Jn2×n1 L−1
1 Jn1×nk

a13a12 Jn3×n1 L−1
1 Jn1×n2 · · · a13a1k Jn3×n1 L−1

1 Jn1×nk
...

...
a1ka12 Jnk×n1 L−1

1 Jn1×n2 · · · a1ka1k Jnk×n1 L−1
1 Jn1×nk

 .
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Since Jni×n1 L−1
1 Jn1×nj = sJni×nj , where s = 1T

n1
L−1

1 1n1 ∈ R, we have

LT
2 L−1

1 L2 = s


a12a12 Jn2×n2 · · · a12a1k Jn2×nk

a13a12 Jn3×n2 · · · a13a1k Jn3×nk
...

...
a1ka12 Jnk×n2 · · · a1ka1k Jnk×nk



= s


a121n2

a131n3
...

a1k1nk

 (a121T
n2

a131T
n3

. . . a1k1T
nk
).

Assume that B is a column vector of dimension n2 + n3 + · · ·+ nk satisfying

BT =
(

a121T
n2

a131T
n3

. . . a1k1T
nk

)
.

Therefore, S = L3 − LT
2 L−1

1 L2 has three forms:

S = diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − ((aij + ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − s(ai1a1j Jni×nj)i,j=2,3,...,k

= L3 − sBBT .

By Lemma 1, we know that Theorem 2 holds.

Recall that the Kronecker product A⊗ B ([23]) of two matrices A = (aij)m×n and B = (bij)p×q

is an mp× nq-matrix obtained from A by replacing every element aij by aijB. As an application of
Theorem 2, we easily obtain a symmetric {1}-inverse of L(H

⊙
G).

Corollary 1. Let H be an arbitrary connected graph with k vertices and G be a connected graph with n vertices.

Assume that A(H) =

(
01×1 H2

HT
2 H3

)
and nA(H)1n = nD(H)1n = (m1, m2, . . . , mk)

T. Then, the

following matrix (
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)
is a symmetric {1}-inverse of L(H

⊙
G), where

L1 = L(G) + m1 In;

L2 = −H2 ⊗ Jn×n;

L3 = Ik−1 ⊗ L(G) + diag{m2, . . . , mk} ⊗ In − H3 ⊗ Jn×n;

S = L3 − LT
2 L−1

1 L2

= L3 − s(HT
2 ⊗ 1n)(H2 ⊗ 1T

n )

= L3 − s(HT
2 H2)⊗ Jn×n.

Here, s = 1T
n L−1

1 1n.

4. Some Applications

Now, we give a specific application of formation mentioned in the Section 2. Let A be a real
symmetric such that λ1, λ2, · · · , λn−1, 0 are eigenvalues of A and 0 is a simple eigenvalue. Assume that
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A is a real symmetric and U is an orthogonal matrix such that A = UTdiag{λ1, λ2, · · · , λn−1, 0}U.
Then, A# = UTdiag{ 1

λ1
, 1

λ2
, · · · , 1

λn−1
, 0}U.

Example 2. Compute resistance distance in G =
∨

P3
{P3, P1, P2} (see Figure 1).

Step 1. We label the vertices P3 = {v1
1, v2

1, v3
1}, P1 = {v4

2}, P2 = {v5
3, v6

3}. Then,

V(G) = {v1
1, v2

1, v3
1, v4

2, v5
3, v6

3}.

Note that A(P3)

 3
1
2

 =

 0 1 0
1 0 1
0 1 0


 3

1
2

 =

 1
5
1

 . Thus, the Laplacian matrix of G is

L(G) =

 L(P3) + I3 0 0
0 L(P1) + 5I1 0
0 0 L(P2) + I2

−
 03×3 J3×1 03×2

J1×3 01×1 J1×2

02×3 J2×1 02×2

 =

(
L1 L2

LT
2 L3

)
,

where L1 = L(P3) + I3 =

 2 −1 0
−1 3 −1
0 −1 2

, L2 = −(J3×1 03×2) =

 −1 0 0
−1 0 0
−1 0 0

 and

L3 =

(
L(P1) + 5I1 −J1×2

−J2×1 L(P2) + I2

)
=

 5 −1 −1
−1 2 −1
−1 −1 2

 .

Step 2. L−1
1 =

1
8

 5 2 1
2 4 2
1 2 5

 and so s = 1T
3 L−1

1 13 = 3. By Theorem 2, B =

 1
0
0

 and

S =

 2 −1 −1
−1 2 −1
−1 −1 2

 . By the formula at the beginning of this section, S# =
1
9

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Furthermore, −L−1
1 L2S# =

1
9

 2 −1 −1
2 −1 −1
2 −1 −1

 and L−1
1 L2S#LT

2 L−1
1 =

2
9

J3×3.

Step 3. By Lemma 1 or Theorem 2,



1
8

 5 2 1
2 4 2
1 2 5

+
2
9

J3×3
1
9

 2 −1 −1
2 −1 −1
2 −1 −1


1
9

 2 2 2
−1 −1 −1
−1 −1 −1

 1
9

 2 −1 −1
−1 2 −1
−1 −1 2




is a

{1}-inverse of L(G).
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Step 4. In view of Lemma 3, the matrix whose (i, j)-entry is the resistance distance rij between
vertices vi and vj is 

0
5
8

1
5
8

31
24

31
24

5
8

0
5
8

1
2

7
6

7
6

1
5
8

0
5
8

31
24

31
24

5
8

1
2

5
8

0
2
3

2
3

31
24

7
6

31
24

2
3

0
2
3

31
24

7
6

31
24

2
3

2
3

0



.

Example 3. Assume that G = P3
⊙

P2 (see Figure 1). Then, the Laplacian matrix of G is

L(G) =

 L(P2) + 2I2 0 0
0 L(P2) + 4I2 0
0 0 L(P2) + 2I2

−
 02×2 J2×2 02×2

J2×2 02×2 J2×2

02×2 J2×2 02×2

 .

From Theorem 2, we have that the matrix



1
16

(
7 3
3 7

)
1
16

(
1 1 −1 −1
1 1 −1 −1

)

1
16


1 1
1 1
−1 −1
−1 −1

 1
48


7 −1 −3 −3
−1 7 −3 −3
−3 −3 9 −3
−3 −3 −3 9




is

a {1}-inverse of L(G).
Thus, the matrix whose (i, j)-entry is rij is



0
1
2

11
24

11
24

3
4

3
4

1
2

0
11
24

11
24

3
4

3
4

11
24

11
24

0
1
3

11
24

11
24

11
24

11
24

1
3

0
11
24

11
24

3
4

3
4

11
24

11
24

0
1
2

3
4

3
4

11
24

11
24

1
2

0



.

Example 4. Assume that G = C3
⊙

P3 (see Figure 2). Then, the Laplacian matrix of G is
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L(G) =

 L(P3) + 6I3 0 0
0 L(P3) + 6I3 0
0 0 L(P3) + 6I3

−
 03×3 J3×3 J3×3

J3×3 03×3 J3×3

J3×3 J3×3 03×3

 .

Based on Theorem 2, the matrix


A

1
27

J3×3 03×3

1
27

J3×3 B 03×3

03×3 03×3 S#

 is a {1}-inverse of L(G), where

A = B =



31
189

1
27

4
189

1
27

4
27

1
27

4
189

1
27

31
189


, S# =



17
189

−1
27

−10
189

−1
27

2
27

−1
27

−10
189

−1
27

17
189


.

Thus, the matrix whose (i, j)-entry is rij is

0
5

21
2
7

16
63

5
21

16
63

16
63

5
21

16
63

5
21

0
5

21
5
21

2
9

5
21

5
21

2
9

5
21

2
7

5
21

0
16
63

5
21

16
63

16
63

5
21

16
63

16
63

5
21

16
63

0
5

21
2
7

16
63

5
21

16
63

5
21

2
9

5
21

5
21

0
5

21
5
21

2
9

5
21

16
63

5
21

16
63

2
7

5
21

0
16
63

5
21

16
63

16
63

5
21

16
63

16
63

5
21

16
63

0
5

21
2
7

5
21

2
9

5
21

5
21

2
9

5
21

5
21

0
5

21

16
63

5
21

16
63

16
63

5
21

16
63

2
7

5
21

0



.

5. Conclusions

This paper focuses on resistance distance in H-join of graphs G1, G2, . . . , Gk. Let G be H-join
of graphs G1, G2, . . . , Gk. Here we first give the Laplacian matrix L(G) of G. Then we compute a
symmetric {1}-inverse of L(G). Note that there exists a relationship between resistance distance and
entries of {1}-inverse. So we can easily obtain resistance distance in G.
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