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Abstract: The vertex k-partiteness of graph G is defined as the fewest number of vertices
whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal
value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general
Laplacian-energy-like invariant, the general zeroth-order Randić index, and the modified-Wiener
index among graphs of order n with vertex k-partiteness not more than m.

Keywords: topological index; vertex k-partiteness; extremal graph

1. Introduction

All graphs considered in this paper are simple, undirected, and connected. Let G be a graph with
vertex set V(G) = {v1, · · · , vn} and edge set E(G) = {e1, · · · , em}. The degree of a vertex u ∈ V(G)

is the number of edges incident to u, denoted by dG(u). The distance between two vertices u and v is
the length of the shortest path connecting u and v, denoted by dG(u, v). The complement of G, denoted
by G, is the graph with vertex set V(G) = V(G) and edge set E(G) = {uv : uv /∈ E(G)}. A subgraph
of G induced by H, denoted by 〈H〉, is the subgraph of G that has the vertex set H, and for any two
vertices u, v ∈ V(H), they are adjacent in H iff they are adjacent in G. The adjacency matrix of G is a
square n× n matrix such that its element aij is one when there is an edge from vertex ui to vertex uj,
and zero when there is no edge, denoted by A(G). Let D(G) = diag(d1, d2, · · · , dn) be the diagonal
matrix of vertex degrees of G. The Laplacian matrix of G is defined as L(G) = D(G)− A(G), and the
eigenvalues of L(G) are called Laplacian eigenvalues of G, denoted by µ1, · · · , µn with µ1 ≥ · · · ≥ µn.
It is well known that µn = 0, and the multiplicity of zero corresponds to the number of connected
components of G.

A bipartite graph is a graph whose vertex set can be partitioned into two disjoint sets U1 and
U2, such that each edge has an end vertex in U1 and the other one in U2. A complete bipartite graph,
denoted by Ks,t, is a bipartite graph with |U1| = s and |U2| = t, where any two vertices u ∈ U1 and
v ∈ U2 are adjacent. If every pair of distinct vertices in G is connected by a unique edge, we call G a
complete graph. The complete graph with n vertices is denoted by Kn. An independent set of G is a set
of vertices, no two of which are adjacent. A graph G is called k-partite if its vertex-set can be partitioned
into k different independent sets U1, · · · , Uk. When k = 2, they are the bipartite graphs, and k = 3
the tripartite graphs. The vertex k-partiteness of graph G, denoted by vk(G), is the fewest number
of vertices whose deletion from G yields a k-partite graph. A complete k-partite graph, denoted by
Ks1,··· ,sk , is a k-partite graph with k different independent sets |U1| = s1, · · · , |Uk| = sk, where there is
an edge between every pair of vertices from different independent sets.

A topological index is a numerical value that can be used to characterize some properties of
molecule graphs in chemical graph theory. Recently, many researchers have paid much attention to
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studying different topological indices. Dimitrov [1] studied the structural properties of trees with
minimal atom-bond connectivity index. Li and Fan [2] obtained the extremal graphs of the Harary
index. Xu et al. [3] determined the eccentricity-based topological indices of graphs. Hayat et al. [4]
studied the valency-based topological descriptors of chemical networks and their applications.
Let G + uv be the graph obtained from G by adding an edge uv ∈ E(G). Let I(G) be a graph invariant,
if I(G + uv) > I(G) (or I(G + uv) < I(G), respectively) for any edge uv ∈ E(G), then we call I(G)

a monotonic increasing (or decreasing, respectively) graph invariant with the addition of edges [5].
Let Gn,m,k be the set of graphs with order n and vertex k-partiteness vk(G) ≤ m, where 1 ≤ m ≤ n− k.
In [5–7], the authors have researched several monotonic topological indices in Gn,m,2, such as the
Kirchhoff index, the spectral radius, the signless Laplacian spectral radius, the modified-Wiener index,
the connective eccentricity index, and so on. Inspired by these results, we extend the parameter of
graph partition from two-partiteness to arbitrary k-partiteness. Moreover, we study some monotonic
topological indices and characterize the graphs with extremal monotonic topological indices in Gn,m,k.

2. Preliminaries

The join of two-vertex-disjoint graphs G1, G2, denoted by G = G1 ∨ G2, is the graph obtained
from the disjoint union G1 ∪ G2 by adding edges between each vertex of G1 and each of G2. It is to say
that V(G) = V(G1) ∪V(G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V(G1), v ∈ V(G2)}.

The join operation can be generalized as follows. Let F = {G1, · · · , Gk} be a set of vertex-disjoint
graphs and H be an arbitrary graph with vertex set V(H) = {1, · · · , k}. Each vertex i ∈ V(H) is
assigned to the graph Gi ∈ F.

The H-join of the graphs G1, · · · , Gk is the graph G = H[G1, · · · , Gk], such that V(G) =
k⋃

j=1
V(Gj) and:

E(G) =
k⋃

j=1

E(Gj)
⋃
(

⋃
ij∈E(H)

{uv : u ∈ V(Gi), v ∈ V(Gj)}).

If H = K2, the H-join is the usual join operation of graphs, and the complete k-partite graph
Ks1,··· ,sk can be seen as the Kk-join graph Kk[Os1 , · · · , Osk ], where Osi is an empty graph of order
si, 1 ≤ i ≤ k.

For U ⊆ V(G), let G −U be the graph obtained from G by deleting the vertices in U and the
edges incident with them.

Lemma 1. Let G be an arbitrary graph in Gn,m,k and I(G) be a monotonic increasing graph invariant.

Then, there exists k positive integers s1, · · · , sk satisfying
k
∑

i=1
si = n − m, such that I(G) ≤ I(Ĝ) holds

for all graphs G ∈ Gn,m,k, where Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]) ∈ Gn,m,k, with equality holds if and only if
G ∼= Ĝ.

Proof. Choose Ĝ ∈ Gn,m,k with the maximum value of a monotonic increasing graph invariant such that
I(G) ≤ I(Ĝ) for all G ∈ Gn,m,k. Assume that the k-partiteness of graph Ĝ is m′, then there exists a vertex
set U of graph Ĝ with order m′ such that Ĝ −U is a k-partite graph with k-partition {U1, · · · , Uk}.

For 1 ≤ i ≤ k, let si be the order of Ui; hence, n =
k
∑

i=1
si + m′.

Firstly, we claim that Ĝ − U = Kk[Os1 , · · · , Osk ]. Otherwise, there exists at least two vertices
u ∈ Usi and v ∈ Usj for some i 6= j, which are not adjacent in Ĝ. By joining the vertices u and v, we get

a new graph Ĝ + uv, obviously, Ĝ + uv ∈ Gn,m,k. Then, I(Ĝ) < I(Ĝ + uv), which is a contradiction.
Secondly, we claim that U is the complete graph Km′ . Otherwise, there exists at least two vertices

u, v ∈ U, which are not adjacent. By connecting the vertices u and v, we arrive at a new graph Ĝ + uv,
obviously, Ĝ + uv ∈ Gn,m,k. Then, we have I(Ĝ) < I(Ĝ + uv), a contradiction again.
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Using a similar method, we can get Ĝ = Km′ ∨ (Kk[Os1 , · · · , Osk ]).

Finally, we prove that m′ = m. If m′ ≤ m− 1, then
k
∑

i=1
si = n− m′ ≥ n− m + 1 > n− m ≥ k;

thus,
k
∑

i=1
si > k. Without loss of generality, we assume that s1 ≥ 2. By moving a vertex u ∈ Os1

to the set of U and adding edges between u and all the other vertices in Os1 , we get a new graph
G̃ = Km′+1 ∨ (Kk[Os1−1, Os2 , · · · , Osk ]). It is easy to check that G̃ ∈ Gn,m,k has s1 − 1 edges more than
the graph Ĝ. By the definition of the monotonic increasing graph invariant, we get I(Ĝ) < I(G̃),
which is obviously another contradiction.

Therefore, Ĝ is the join of a complete graph with order m and a complete k-partite graph with
order n−m. That is to say Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]).

The proof of the lemma is completed.

Lemma 2. Let G be an arbitrary graph in Gn,m,k and I(G) be a monotonic decreasing graph invariant.

Then, there exists k positive integers s1, · · · , sk satisfying
k
∑

i=1
si = n − m, such that I(G) ≥ I(Ĝ) holds

for all graphs G ∈ Gn,m,k, where Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]) ∈ Gn,m,k, with equality holds if and only
if G ∼= Ĝ.

3. Main Results

In this section, we will characterize the graphs with an extremal monotonic increasing (or
decreasing, respectively) graph invariant in Gn,m,k. Assume that n−m = sk + t, where s is a positive
integer and t is a non-negative integer with 0 ≤ t < k.

3.1. The Reformulated First Zagreb Index, Multiplicative-Sum Zagreb Index, and k-Partiteness

The first Zagreb index is used to analyze the structure-dependency of total π-electron energy on
the molecular orbitals, introduced by Gutman and Trinajstć [8]. It is denoted by:

M1(G) = ∑
uv∈E(G)

(dG(u) + dG(v)),

which can be also calculated as:
M1(G) = ∑

u∈V(G)

dG(u)2.

Todeschini and Consonni [9] considered the multiplicative version of the first Zagreb index in
2010, defined as:

Π1(G) = ∏
u∈V(G)

dG(u)2.

For an edge e = uv ∈ E(G), we define the degree of e as dG(e) = dG(u) + dG(v) − 2.
Millic̆ević et al. [10] introduced the reformulated first Zagreb index, defined as:

M̃1(G) = ∑
e∈E(G)

dG(e)2 = ∑
uv∈E(G)

(dG(u) + dG(v)− 2)2.

Eliasi et al. [11] introduced another multiplicative version of the first Zagreb index, which is called
the multiplicative-sum Zagreb index and defined as:

Π∗1(G) = ∏
uv∈E(G)

(dG(u) + dG(v)).

They are widely used in chemistry to study the heat information of heptanes and octanes. For some
recent results on the fourth Zagreb indices, one can see [12–17].
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Lemma 3. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then M̃1(G) < M̃1(G + uv).

Lemma 4. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Π∗1(G) < Π∗1(G + uv).

Note that s1, · · · , sk are k positive integers with
k
∑

i=1
si = n−m.

Theorem 1. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). By moving one vertex from the
part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]). If s1 − 1 ≥ s2 + 1,
then M̃1(G̃) > M̃1(Ĝ).

Proof.By the definition of the reformulated first Zagreb index M̃1(G), we can calculate as follows:

M̃1(Ĝ) =
m(m− 1)

2
(2n− 4)2 +

k

∑
i=1

msi(2n− si − 3)2 + ∑
1≤i<j≤k

sisj(2n− si − sj − 2)2.

Therefore,

M̃1(G̃)− M̃1(Ĝ) = m(s1 − 1)(2n− s1 − 2)2 + m(s2 + 1)(2n− s2 − 4)2

+ (s1 − 1)(s2 + 1)(2n− s1 − s2 − 2)2 −ms1(2n− s1 − 3)2

−ms2(2n− s2 − 3)2 − s1s2(2n− s1 − s2 − 2)2

+
k

∑
i=3

(s1 − 1)si(2n− s1 − si − 1)2 +
k

∑
i=3

(s2 + 1)si(2n− s2 − si − 3)2

−
k

∑
i=3

s1si(2n− s1 − si − 2)2 −
k

∑
i=3

s2si(2n− s2 − si − 2)2

= (s1 − s2 − 1)[(5n + 3p− 12)p + (n + p− 2)2

+ (7n + 8m− 12)
k

∑
i=3

si + (
k

∑
i=3

si)
2 +

k

∑
i=3

si(3
k

∑
i=3

si − 4si)

= (s1 − s2 − 1)[(n− 2)2 + (7n− 16)m + 4m2

+ (7n + 8m− 12)
k

∑
i=3

si + 4(
k

∑
i=3

si)
2 − 4

k

∑
i=3

s2
i ]

> (s1 − s2 − 1)[(n− 2)2 + (4n− 8)m + 4m2]

= (s1 − s2 − 1)(n− 2 + 2m)2 > 0.

Note that we have n− m = sk + t = (k − t)s + t(s + 1), where s is a positive integer and t is
a non-negative integer with 0 ≤ t < k. For simplicity, we write Km ∨ (Kk[{k − t}Os, {s}Os+1]) =

Km ∨ (Kk[Os, · · · , Os︸ ︷︷ ︸
k−t

, Os+1, · · · , Os+1︸ ︷︷ ︸
t

]). Then, the extremal value and the corresponding graph of the

reformulated first Zagreb index M̃1(G) can be shown as follows.

Theorem 2. Let G be an arbitrary graph in Gn,m,k. Then:

M̃1(G) ≤ m(m− 1)
2

(2n− 4)2 + m(n−m)(6n− 3s− 11)

+ 2(n−m)(n−m− s)(n− s− 1)2

+ t(s + 1)[−6(n− s− 1)2 + n + 2m(5− 2n + s) + (t− 2)(s + 1)],
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with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemmas 1, 3, and Theorem 1, the extremal graph having the maximum reformulated first
Zagreb index in Gn,m,k is the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]).
Then, we obtain that:

M̃1(Ĝ) =
m(m− 1)

2
(2n− 4)2 + (k− t)ms(2n− s− 3)2

+ tm(s + 1)(2n− s− 4)2 +
t(t− 1)

2
(s + 1)2(2n− 2s− 4)2

+
(k− t)(k− t− 1)

2
s2(2n− 2s− 2)2 + t(k− t)s(s + 1)(2n− 2s− 3)2

=
m(m− 1)

2
(2n− 4)2 + m(n−m)(6n− 3s− 11)

+ 2(n−m)(n−m− s)(n− s− 1)2

+ t(s + 1)[−6(n− s− 1)2 + n + 2m(5− 2n + s) + (t− 2)(s + 1)].

Theorem 3. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Π∗1(G̃) > Π∗1(Ĝ).

Proof. By the definition of the multiplicative-sum Zagreb index Π∗1(G), it is easy to see that:

Π∗1(Ĝ) = (2n− 2)
m(m−1)

2 Πk
i=1(2n− si − 1)msi Π1≤i<j≤k(2n− si − sj)

sisj .

Hence,

Π∗1(G̃)

Π∗1(Ĝ)
= (2n− s1 − s2)

(s1−s2−1) 2n− s2 − 2
2n− s1 − 1

am(s1−1)bms2

Πk
i=3c(s1−1)si Πk

i=3ds2si Πk
i=3(

2n− s2 − si − 1
2n− s1 − si

)si

> (ab)ms2 Πk
i=3(cd)s2si ,

where a = 2n−s1
2n−s1−1 , b = 2n−s2−2

2n−s2−1 , c = 2n−s1−si+1
2n−s1−si

, d = 2n−s2−si−1
2n−s2−si

.
By a simple calculation, we have:

(2n− s1)(2n− s2 − 2)− (2n− s1 − 1)(2n− s2 − 1) = s1 − s2 − 1 > 0,

(2n− s1 − si + 1)(2n− s2 − si − 1)− (2n− s1 − si)(2n− s2 − si) = s1 − s2 − 1 > 0.

Therefore, Π∗1(G̃)

Π∗1(Ĝ)
> 1.

Theorem 4. Let G be an arbitrary graph in Gn,m,k. Then:

Π∗1(G) ≤ (2n− 2)
m(m−1)

2 (2n− s− 1)ms(k−t)(2n− s− 2)m(s+1)t

(2n− 2s)
s2(k−t)(k−t−1)

2 (2n− 2s− 2)
(s+1)2t(t−1)

2 (2n− 2s− 1)s(s+1)t(k−t),

with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).
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Proof. By Lemmas 1, 4, and Theorem 3, the extremal graph having the maximum multiplicative-sum
Zagreb index in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). We get that,

Π∗1(Ĝ) = (2n− 2)
m(m−1)

2 (2n− s− 1)ms(k−t)(2n− s− 2)m(s+1)t

(2n− 2s)
s2(k−t)(k−t−1)

2 (2n− 2s− 2)
(s+1)2t(t−1)

2 (2n− 2s− 1)s(s+1)t(k−t).

3.2. The General Laplacian-Energy-Like Invariant and k-Partiteness

The general Laplacian-energy-like invariant (also called the sum of powers of the Laplacian
eigenvalues) of a graph G is defined by Zhou [18] as:

Sα(G) =
n−1

∑
i=1

µα
i ,

where α is an arbitrary real number.
Sα(G) is the Laplacian-energy-like invariant [19], and the Laplacian energy [20] when α = 1

2
and α = 2, respectively. For α = −1, nS−1(G) is equal to the Kirchhoff index [21], and α = 1, 1

2 S1(G)

is equal to the number of edges in G. For some recent results on the general Laplacian-energy-like
invariant, one can see [22–25].

Lemma 5. [18] Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Sα(G) > Sα(G + uv) for α < 0,
and Sα(G) < Sα(G + uv) for α > 0.

Lemma 6. [26] If µ1 ≥ · · · ≥ µi−1 ≥ µi = 0 are the Laplacian eigenvalues of graph G and µ′1 ≥ · · · ≥
µ′j−1 ≥ µ′j = 0 are the Laplacian eigenvalues of graph G′, then the Laplacian eigenvalues of G ∨ G′ are:

i + j, µ1 + j, µ2 + j, · · · , µi−1 + j, µ′1 + i, µ′2 + i, · · · , µ′j−1 + i, 0.

It is well known that Laplacian eigenvalues of the complete graph Kp are 0, p, · · · , p, and Laplacian
eigenvalues of Op are 0, 0, · · · , 0. Then, the Laplacian eigenvalues of Ks1,s2 = Os1 ∨ Os2 are s1 +

s2, s2, · · · , s2, s1, · · · , s1, 0, where the multiplicity of s2 is s1 − 1 and the multiplicity of s1 is s2 − 1.
The Laplacian eigenvalues of Ks1,s2,s3 = Ks1,s2 ∨ Os3 are s1 + s2 + s3, s1 + s2 + s3, s2 + s3, · · · , s2 +

s3, s1 + s3, · · · , s1 + s3, 0, where the multiplicity of s2 + s3 is s1 − 1 and the multiplicity of s1 + s3 is
s2 − 1.

By induction, we have that the Laplacian eigenvalues of Ks1,··· ,sk are
k
∑

i=1
si, · · · ,

k
∑

i=1
si,

k
∑

i=1
si −

s1, · · · ,
k
∑

i=1
si − s1, · · · ,

k
∑

i=1
si − sk, · · · ,

k
∑

i=1
si − sk, 0, where the multiplicity of

k
∑

i=1
si is k − 1 and the

multiplicity of
k
∑

i=1
si − sj is sj − 1, for 1 ≤ j ≤ k.

From Lemma 6 and the above analysis, we obtain the following lemma.

Lemma 7. Let Ĝ be a graph of order n, and the join of a complete graph with order m and a complete
k-partite graph with order n− m i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). Then, the Laplacian eigenvalues of Ĝ
are n, · · · , n, n− s1, · · · , n− s1, · · · , n− sk, · · · , n− sk, 0, where the multiplicity of n is m + k− 1 and the
multiplicity of n− sj is sj − 1, for 1 ≤ j ≤ k.

Theorem 5. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving



Mathematics 2018, 6, 271 7 of 11

one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Sα(G̃) < Sα(Ĝ) for α < 0, and Sα(G̃) > Sα(Ĝ) for 0 < α < 1.

Proof. By the definition of the general Laplacian-energy-like invariant Sα(G) and Lemma 7,
we conclude that:

Sα(Ĝ) = (m + k− 1)nα +
k

∑
i=1

(si − 1)(n− si)
α.

Therefore:

Sα(G̃)− Sα(Ĝ) = (s1 − 2)(n− s1 + 1)α + s2(n− s2 − 1)α

− (s1 − 1)(n− s1)
α − (s2 − 1)(n− s2)

α

= (s1 − 2)[(n− s1 + 1)α − (n− s1)
α]

+ (s2 − 1)[(n− s2 − 1)α − (n− s2)
α] + (n− s2 − 1)α − (n− s1)

α.

For α < 0, we have:

Sα(G̃)− Sα(Ĝ) < (s1 − 2)[(n− s1 + 1)α − (n− s1)
α] + (s2 − 1)[(n− s2 − 1)α − (n− s2)

α]

< (s1 − 2)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s1 − 2)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 > 0.
Then, f (n− s1) < f (n− s2 − 1), and Sα(G̃) < Sα(Ĝ).
For 0 < α < 1, we have:

Sα(G̃)− Sα(Ĝ) > (s1 − 2)[(n− s1 + 1)α − (n− s1)
α] + (s2 − 1)[(n− s2 − 1)α − (n− s2)

α]

> (s2 − 1)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s2 − 1)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 < 0.
Then, f (n− s1) > f (n− s2 − 1), and Sα(G̃) > Sα(Ĝ).

Theorem 6. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, Sα(G) ≥ (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α,
for 0 < α < 1, Sα(G) ≤ (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α,
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemmas 1, 2, and Theorem 5, the extremal graph having the extremal value of the general
Laplacian-energy-like invariant in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]), then we can verify that
Sα(Ĝ) = (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α.

3.3. The General Zeroth-Order Randić Index and k-Partiteness

The general zeroth-order Randić index is introduced by Li [27] as:

0Rα(G) = ∑
u∈V(G)

(dG(u))α,

where α is a non-zero real number.
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0Rα(G) is the inverse degree [28], the zeroth-Randić index [29], the first Zagreb index [30], and the
forgotten index [31] when α = −1, α = − 1

2 , α = 2, and α = 3, respectively. For some recent results on
the general zeroth-order Randić index, one can see [32–34].

Lemma 8. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then 0Rα(G) >0Rα(G + uv) for α < 0,
and 0Rα(G) <0Rα(G + uv) for α > 0.

Theorem 7. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, 0Rα(G̃) <0Rα(Ĝ) for α < 0, and 0Rα(G̃) >0Rα(Ĝ) for 0 < α < 1.

Proof. By the definition of the general zeroth-order Randić index 0Rα(G), we have:

0Rα(Ĝ) = m(n− 1)α +
k

∑
i=1

si(n− si)
α

Then,

0Rα(G̃)−0 Rα(Ĝ) = (s1 − 1)(n− s1 + 1)α − s1(n− s1)
α

+ (s2 + 1)(n− s2 − 1)α − s2(n− s2)
α

= (n− s2 − 1)α − (n− s1)
α

+ (s1 − 1)[(n− s1 + 1)α − (n− s1)
α] + s2[(n− s2 − 1)α − (n− s2)

α].

For α < 0, we have:

0Rα(G̃)−0 Rα(Ĝ) < (s1 − 1)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s1 − 1)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 > 0. Then, f (n − s1) < f (n − s2 − 1),
0Rα(G̃) <0 Rα(Ĝ).

For 0 < α < 1, we have:

0Rα(G̃)−0 Rα(Ĝ) > s2[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= s2[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 < 0.
Then, f (n− s1) > f (n− s2 − 1), Rα(G̃) > Rα(Ĝ).

Theorem 8. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, 0Rα(G) ≥ m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α,
for 0 < α < 1, 0Rα(G) ≤ m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α,
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemma 8 and Theorem 7, in view of Lemmas 1 and 2, the extremal graph having the
extremal value of the general zeroth-order Randić index in Gn,m,k should be the graph Km ∨ (Kk[{k−
t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). By a simple calculation, we have
0Rα(Ĝ) = m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α.
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3.4. The Modified-Wiener Index and k-Partiteness

The modified-Wiener index is defined by Gutman [35] as:

Wλ(G) = ∑
u,v∈V(G)

dλ
G(u, v),

where λ is a non-zero real number.

Lemma 9. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Wλ(G) < Wλ(G + uv) for λ < 0,
and Wλ(G) > Wλ(G + uv) for λ > 0.

Theorem 9. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Wλ(G̃) > Wλ(Ĝ) for λ < 0, and Wλ(G̃) < Wλ(Ĝ) for λ > 0.

Proof. By the definition of the modified-Wiener index Wλ(G), we have the following result.

Wλ(Ĝ) =
m(m− 1)

2
+

k

∑
i=1

si(si − 1)
2

2λ +
k

∑
i=1

msi + ∑
1≤i<j≤k

sisj

Then,

Wλ(G̃)−Wλ(Ĝ) =
(s1 − 1)(s1 − 2)

2
2λ +

(s2 + 1)s2

2
2λ + m(s1 − 1)

+ m(s2 + 1) + (s1 − 1)(s2 + 1) +
k

∑
i=3

(s1 − 1)si +
k

∑
i=3

(s2 + 1)si

− s1(s1 − 1)
2

2λ − s2(s2 − 1)
2

2λ −ms1 −ms2 − s1s2 −
k

∑
i=3

s1si −
k

∑
i=3

s2si

= (s1 − s2 − 1)(1− 2λ).

For λ > 0, we have Wλ(G̃) < Wλ(Ĝ). For λ < 0, we have Wλ(G̃) > Wλ(Ĝ).

Theorem 10. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, Wλ(G) ≤ 1

2 [m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ],
for α > 0, Wλ(G) ≥ 1

2 [m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ],
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemma 9 and Theorem 9, in view of Lemmas 1 and 2, the extremal graph having the extremal
value of the modified-Wiener index in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). Consequently, we have that:

Wλ(Ĝ) =
m(m− 1)

2
+ (k− t)

s(s− 1)
2

2λ + t
s(s + 1)

2
2λ + tm(s + 1) + (k− t)ms

=
1
2
[m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ].

4. Conclusions

In this paper, we consider connected graphs of order n with vertex k-partiteness not more than
m and characterize some extremal monotonic graph invariants such as the reformulated first Zagreb
index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general
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zeroth-order Randić index, and the modified-Wiener index among these graphs, and we investigate
the corresponding extremal graphs of these invariants.
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10. Milićević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. Mol. Divers. 2004, 8, 393–399.
[CrossRef] [PubMed]

11. Eliasi, M.; Iranmanesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. Match Commun. Math.
Comput. Chem. 2012, 68, 217–230.
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edge-connected graphs. Discret. Appl. Math. 2017, 218, 64–70. [CrossRef]
33. Su, G.; Tu, J.; Das, K.C. Graphs with fixed number of pendent vertices and minimal Zeroth-order general
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