

Article

The Extremal Graphs of Some Topological Indices with Given Vertex *k*-Partiteness

Fang Gao¹, Xiaoxin Li¹, Kai Zhou¹ and Jia-Bao Liu^{2,*}

- ¹ School of Mathematics and Computer Science, Chizhou University, Chizhou 247000, China; gaofang@czu.edu.cn (F.G.); lxx@czu.edu.cn (X.L.); zk1984@163.com (K.Z.)
- ² School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
- * Correspondence: liujiabaoad@163.com

Received: 12 October 2018; Accepted: 16 November 2018; Published: 21 November 2018

MDP

Abstract: The vertex k-partiteness of graph G is defined as the fewest number of vertices whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general zeroth-order Randić index, and the modified-Wiener index among graphs of order n with vertex k-partiteness not more than m.

Keywords: topological index; vertex k-partiteness; extremal graph

1. Introduction

All graphs considered in this paper are simple, undirected, and connected. Let *G* be a graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and edge set $E(G) = \{e_1, \dots, e_m\}$. The degree of a vertex $u \in V(G)$ is the number of edges incident to *u*, denoted by $d_G(u)$. The distance between two vertices *u* and *v* is the length of the shortest path connecting *u* and *v*, denoted by $d_G(u, v)$. The complement of *G*, denoted by \overline{G} , is the graph with vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G}) = \{uv : uv \notin E(G)\}$. A subgraph of *G* induced by *H*, denoted by $\langle H \rangle$, is the subgraph of *G* that has the vertex set *H*, and for any two vertices *u*, $v \in V(H)$, they are adjacent in *H* iff they are adjacent in *G*. The adjacency matrix of *G* is a square $n \times n$ matrix such that its element a_{ij} is one when there is an edge from vertex u_i to vertex u_j , and zero when there is no edge, denoted by A(G). Let $D(G) = diag(d_1, d_2, \dots, d_n)$ be the diagonal matrix of vertex degrees of *G*. The Laplacian matrix of *G* is defined as L(G) = D(G) - A(G), and the eigenvalues of L(G) are called Laplacian eigenvalues of *G*, denoted by μ_1, \dots, μ_n with $\mu_1 \ge \dots \ge \mu_n$. It is well known that $\mu_n = 0$, and the multiplicity of zero corresponds to the number of connected components of *G*.

A bipartite graph is a graph whose vertex set can be partitioned into two disjoint sets U_1 and U_2 , such that each edge has an end vertex in U_1 and the other one in U_2 . A complete bipartite graph, denoted by $K_{s,t}$, is a bipartite graph with $|U_1| = s$ and $|U_2| = t$, where any two vertices $u \in U_1$ and $v \in U_2$ are adjacent. If every pair of distinct vertices in *G* is connected by a unique edge, we call *G* a complete graph. The complete graph with *n* vertices is denoted by K_n . An independent set of *G* is a set of vertices, no two of which are adjacent. A graph *G* is called *k*-partite if its vertex-set can be partitioned into *k* different independent sets U_1, \dots, U_k . When k = 2, they are the bipartite graphs, and k = 3 the tripartite graphs. The vertex *k*-partiteness of graph *G*, denoted by $v_k(G)$, is the fewest number of vertices whose deletion from *G* yields a *k*-partite graph. A complete *k*-partite graph, denoted by K_{s_1,\dots,s_k} , is a *k*-partite graph with *k* different independent sets $|U_1| = s_1, \dots, |U_k| = s_k$, where there is an edge between every pair of vertices from different independent sets.

A topological index is a numerical value that can be used to characterize some properties of molecule graphs in chemical graph theory. Recently, many researchers have paid much attention to

studying different topological indices. Dimitrov [1] studied the structural properties of trees with minimal atom-bond connectivity index. Li and Fan [2] obtained the extremal graphs of the Harary index. Xu et al. [3] determined the eccentricity-based topological indices of graphs. Hayat et al. [4] studied the valency-based topological descriptors of chemical networks and their applications. Let G + uv be the graph obtained from G by adding an edge $uv \in E(\overline{G})$. Let I(G) be a graph invariant, if I(G + uv) > I(G) (or I(G + uv) < I(G), respectively) for any edge $uv \in E(\overline{G})$, then we call I(G) a monotonic increasing (or decreasing, respectively) graph invariant with the addition of edges [5]. Let $\mathscr{G}_{n,m,k}$ be the set of graphs with order n and vertex k-partiteness $v_k(G) \leq m$, where $1 \leq m \leq n - k$. In [5–7], the authors have researched several monotonic topological indices in $\mathscr{G}_{n,m,2}$, such as the Kirchhoff index, the spectral radius, the signless Laplacian spectral radius, the modified-Wiener index, the connective eccentricity index, and so on. Inspired by these results, we extend the parameter of graph partition from two-partiteness to arbitrary k-partiteness. Moreover, we study some monotonic topological indices in $\mathscr{G}_{n,m,k}$.

2. Preliminaries

The join of two-vertex-disjoint graphs G_1 , G_2 , denoted by $G = G_1 \vee G_2$, is the graph obtained from the disjoint union $G_1 \cup G_2$ by adding edges between each vertex of G_1 and each of G_2 . It is to say that $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}$.

The join operation can be generalized as follows. Let $F = \{G_1, \dots, G_k\}$ be a set of vertex-disjoint graphs and H be an arbitrary graph with vertex set $V(H) = \{1, \dots, k\}$. Each vertex $i \in V(H)$ is assigned to the graph $G_i \in F$.

The *H*-join of the graphs G_1, \dots, G_k is the graph $G = H[G_1, \dots, G_k]$, such that $V(G) = \bigcup_{i=1}^{k} V(G_i)$ and:

$$E(G) = \bigcup_{j=1}^{k} E(G_j) \bigcup (\bigcup_{ij \in E(H)} \{uv : u \in V(G_i), v \in V(G_j)\}).$$

If $H = K_2$, the *H*-join is the usual join operation of graphs, and the complete *k*-partite graph K_{s_1,\dots,s_k} can be seen as the K_k -join graph $K_k[O_{s_1},\dots,O_{s_k}]$, where O_{s_i} is an empty graph of order $s_i, 1 \le i \le k$.

For $U \subseteq V(G)$, let G - U be the graph obtained from G by deleting the vertices in U and the edges incident with them.

Lemma 1. Let G be an arbitrary graph in $\mathscr{G}_{n,m,k}$ and I(G) be a monotonic increasing graph invariant. Then, there exists k positive integers s_1, \dots, s_k satisfying $\sum_{i=1}^k s_i = n - m$, such that $I(G) \leq I(\widehat{G})$ holds for all graphs $G \in \mathscr{G}_{n,m,k}$, where $\widehat{G} = K_m \vee (K_k[O_{s_1}, \dots, O_{s_k}]) \in \mathscr{G}_{n,m,k}$, with equality holds if and only if $G \cong \widehat{G}$.

Proof. Choose $\widehat{G} \in \mathscr{G}_{n,m,k}$ with the maximum value of a monotonic increasing graph invariant such that $I(G) \leq I(\widehat{G})$ for all $G \in \mathscr{G}_{n,m,k}$. Assume that the *k*-partiteness of graph \widehat{G} is *m'*, then there exists a vertex set *U* of graph \widehat{G} with order *m'* such that $\widehat{G} - U$ is a *k*-partite graph with *k*-partition $\{U_1, \dots, U_k\}$. For $1 \leq i \leq k$, let s_i be the order of U_i ; hence, $n = \sum_{i=1}^k s_i + m'$.

Firstly, we claim that $\widehat{G} - U = K_k[O_{s_1}, \dots, O_{s_k}]$. Otherwise, there exists at least two vertices $u \in U_{s_i}$ and $v \in U_{s_j}$ for some $i \neq j$, which are not adjacent in \widehat{G} . By joining the vertices u and v, we get a new graph $\widehat{G} + uv$, obviously, $\widehat{G} + uv \in \mathscr{G}_{n,m,k}$. Then, $I(\widehat{G}) < I(\widehat{G} + uv)$, which is a contradiction.

Secondly, we claim that U is the complete graph $K_{m'}$. Otherwise, there exists at least two vertices $u, v \in U$, which are not adjacent. By connecting the vertices u and v, we arrive at a new graph $\hat{G} + uv$, obviously, $\hat{G} + uv \in \mathscr{G}_{n,m,k}$. Then, we have $I(\hat{G}) < I(\hat{G} + uv)$, a contradiction again.

Using a similar method, we can get $\widehat{G} = K_{m'} \vee (K_k[O_{s_1}, \cdots, O_{s_k}]).$

Finally, we prove that m' = m. If $m' \leq m - 1$, then $\sum_{i=1}^{k} s_i = n - m' \geq n - m + 1 > n - m \geq k$; thus, $\sum_{i=1}^{k} s_i > k$. Without loss of generality, we assume that $s_1 \geq 2$. By moving a vertex $u \in O_{s_1}$ to the set of U and adding edges between u and all the other vertices in O_{s_1} , we get a new graph $\widetilde{G} = K_{m'+1} \lor (K_k[O_{s_1-1}, O_{s_2}, \cdots, O_{s_k}])$. It is easy to check that $\widetilde{G} \in \mathscr{G}_{n,m,k}$ has $s_1 - 1$ edges more than the graph \widehat{G} . By the definition of the monotonic increasing graph invariant, we get $I(\widehat{G}) < I(\widetilde{G})$, which is obviously another contradiction.

Therefore, \widehat{G} is the join of a complete graph with order *m* and a complete *k*-partite graph with order n - m. That is to say $\widehat{G} = K_m \vee (K_k[O_{s_1}, \cdots, O_{s_k}])$.

The proof of the lemma is completed. \Box

Lemma 2. Let G be an arbitrary graph in $\mathscr{G}_{n,m,k}$ and I(G) be a monotonic decreasing graph invariant. Then, there exists k positive integers s_1, \dots, s_k satisfying $\sum_{i=1}^k s_i = n - m$, such that $I(G) \ge I(\widehat{G})$ holds for all graphs $G \in \mathscr{G}_{n,m,k}$, where $\widehat{G} = K_m \lor (K_k[O_{s_1}, \dots, O_{s_k}]) \in \mathscr{G}_{n,m,k}$, with equality holds if and only if $G \cong \widehat{G}$.

3. Main Results

In this section, we will characterize the graphs with an extremal monotonic increasing (or decreasing, respectively) graph invariant in $\mathscr{G}_{n,m,k}$. Assume that n - m = sk + t, where *s* is a positive integer and *t* is a non-negative integer with $0 \le t < k$.

3.1. The Reformulated First Zagreb Index, Multiplicative-Sum Zagreb Index, and k-Partiteness

The first Zagreb index is used to analyze the structure-dependency of total π -electron energy on the molecular orbitals, introduced by Gutman and Trinajstć [8]. It is denoted by:

$$M_1(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)),$$

which can be also calculated as:

$$M_1(G) = \sum_{u \in V(G)} d_G(u)^2.$$

Todeschini and Consonni [9] considered the multiplicative version of the first Zagreb index in 2010, defined as:

$$\Pi_1(G) = \prod_{u \in V(G)} d_G(u)^2.$$

For an edge $e = uv \in E(G)$, we define the degree of e as $d_G(e) = d_G(u) + d_G(v) - 2$. Milličević et al. [10] introduced the reformulated first Zagreb index, defined as:

$$\widetilde{M}_1(G) = \sum_{e \in E(G)} d_G(e)^2 = \sum_{uv \in E(G)} (d_G(u) + d_G(v) - 2)^2.$$

Eliasi et al. [11] introduced another multiplicative version of the first Zagreb index, which is called the multiplicative-sum Zagreb index and defined as:

$$\Pi_1^*(G) = \prod_{uv \in E(G)} (d_G(u) + d_G(v)).$$

They are widely used in chemistry to study the heat information of heptanes and octanes. For some recent results on the fourth Zagreb indices, one can see [12–17].

Lemma 3. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $\widetilde{M}_1(G) < \widetilde{M}_1(G+uv)$.

Lemma 4. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $\Pi_1^*(G) < \Pi_1^*(G+uv)$.

Note that s_1, \dots, s_k are *k* positive integers with $\sum_{i=1}^k s_i = n - m$.

Theorem 1. Let \widehat{G} be a graph of order n > 2, and the join of a complete graph with order m and a complete k-partite graph with order n - m in $\mathscr{G}_{n,m,k}$, i.e., $\widehat{G} = K_m \vee (K_k[O_{s_1}, \cdots, O_{s_k}])$. By moving one vertex from the part of O_{s_1} to the part of O_{s_2} , we get a new graph $\widetilde{G} = K_m \vee (K_k[O_{s_1-1}, O_{s_2+1}, \cdots, O_{s_k}])$. If $s_1 - 1 \ge s_2 + 1$, then $\widetilde{M}_1(\widetilde{G}) > \widetilde{M}_1(\widehat{G})$.

Proof.By the definition of the reformulated first Zagreb index $\widetilde{M}_1(G)$, we can calculate as follows:

$$\widetilde{M}_1(\widehat{G}) = \frac{m(m-1)}{2}(2n-4)^2 + \sum_{i=1}^k ms_i(2n-s_i-3)^2 + \sum_{1 \le i < j \le k} s_i s_j(2n-s_i-s_j-2)^2.$$

Therefore,

$$\begin{split} \widetilde{M}_1(\widetilde{G}) &- \widetilde{M}_1(\widehat{G}) = m(s_1 - 1)(2n - s_1 - 2)^2 + m(s_2 + 1)(2n - s_2 - 4)^2 \\ &+ (s_1 - 1)(s_2 + 1)(2n - s_1 - s_2 - 2)^2 - ms_1(2n - s_1 - 3)^2 \\ &- ms_2(2n - s_2 - 3)^2 - s_1s_2(2n - s_1 - s_2 - 2)^2 \\ &+ \sum_{i=3}^k (s_1 - 1)s_i(2n - s_1 - s_i - 1)^2 + \sum_{i=3}^k (s_2 + 1)s_i(2n - s_2 - s_i - 3)^2 \\ &- \sum_{i=3}^k s_1s_i(2n - s_1 - s_i - 2)^2 - \sum_{i=3}^k s_2s_i(2n - s_2 - s_i - 2)^2 \\ &= (s_1 - s_2 - 1)[(5n + 3p - 12)p + (n + p - 2)^2 \\ &+ (7n + 8m - 12)\sum_{i=3}^k s_i + (\sum_{i=3}^k s_i)^2 + \sum_{i=3}^k s_i(3\sum_{i=3}^k s_i - 4s_i) \\ &= (s_1 - s_2 - 1)[(n - 2)^2 + (7n - 16)m + 4m^2 \\ &+ (7n + 8m - 12)\sum_{i=3}^k s_i + 4(\sum_{i=3}^k s_i)^2 - 4\sum_{i=3}^k s_i^2] \\ &> (s_1 - s_2 - 1)[(n - 2)^2 + (4n - 8)m + 4m^2] \\ &= (s_1 - s_2 - 1)(n - 2 + 2m)^2 > 0. \quad \Box \end{split}$$

Note that we have n - m = sk + t = (k - t)s + t(s + 1), where *s* is a positive integer and *t* is a non-negative integer with $0 \le t < k$. For simplicity, we write $K_m \lor (K_k[\{k - t\}O_s, \{s\}O_{s+1}]) = K_m \lor (K_k[\underbrace{O_s, \cdots, O_s}_{k-t}, \underbrace{O_{s+1}, \cdots, O_{s+1}}_{t}])$. Then, the extremal value and the corresponding graph of the

reformulated first Zagreb index $\widetilde{M}_1(G)$ can be shown as follows.

Theorem 2. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$. Then:

$$\begin{split} \widetilde{M}_1(G) &\leq \frac{m(m-1)}{2}(2n-4)^2 + m(n-m)(6n-3s-11) \\ &+ 2(n-m)(n-m-s)(n-s-1)^2 \\ &+ t(s+1)[-6(n-s-1)^2 + n + 2m(5-2n+s) + (t-2)(s+1)], \end{split}$$

with the equality holding if and only if $G \cong K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemmas 1, 3, and Theorem 1, the extremal graph having the maximum reformulated first Zagreb index in $\mathscr{G}_{n,m,k}$ is the graph $K_m \vee (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$.

Let $\widehat{G} = K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}]).$

1

Then, we obtain that:

$$\begin{split} \widetilde{M}_1(\widehat{G}) &= \frac{m(m-1)}{2}(2n-4)^2 + (k-t)ms(2n-s-3)^2 \\ &+ tm(s+1)(2n-s-4)^2 + \frac{t(t-1)}{2}(s+1)^2(2n-2s-4)^2 \\ &+ \frac{(k-t)(k-t-1)}{2}s^2(2n-2s-2)^2 + t(k-t)s(s+1)(2n-2s-3)^2 \\ &= \frac{m(m-1)}{2}(2n-4)^2 + m(n-m)(6n-3s-11) \\ &+ 2(n-m)(n-m-s)(n-s-1)^2 \\ &+ t(s+1)[-6(n-s-1)^2 + n + 2m(5-2n+s) + (t-2)(s+1)]. \end{split}$$

Theorem 3. Let \widehat{G} be a graph of order n > 2, and the join of a complete graph with order m and a complete *k*-partite graph with order n - m in $\mathscr{G}_{n,m,k}$, i.e., $\widehat{G} = K_m \vee (K_k[O_{s_1}, \cdots, O_{s_k}])$. If $s_1 - 1 \ge s_2 + 1$, by moving one vertex from the part of O_{s_1} to the part of O_{s_2} , we get a new graph $\widetilde{G} = K_m \vee (K_k[O_{s_1-1}, O_{s_2+1}, \cdots, O_{s_k}])$. *Then*, $\Pi_1^*(\hat{G}) > \Pi_1^*(\hat{G})$.

Proof. By the definition of the multiplicative-sum Zagreb index $\Pi_1^*(G)$, it is easy to see that:

$$\Pi_1^*(\widehat{G}) = (2n-2)^{\frac{m(m-1)}{2}} \prod_{i=1}^k (2n-s_i-1)^{ms_i} \prod_{1 \le i < j \le k} (2n-s_i-s_j)^{s_i s_j}.$$

Hence,

$$\begin{split} \frac{\Pi_1^*(\widetilde{G})}{\Pi_1^*(\widehat{G})} &= (2n - s_1 - s_2)^{(s_1 - s_2 - 1)} \frac{2n - s_2 - 2}{2n - s_1 - 1} a^{m(s_1 - 1)} b^{ms_2} \\ \Pi_{i=3}^k c^{(s_1 - 1)s_i} \Pi_{i=3}^k d^{s_2 s_i} \Pi_{i=3}^k (\frac{2n - s_2 - s_i - 1}{2n - s_1 - s_i})^{s_i} \\ &> (ab)^{ms_2} \Pi_{i=3}^k (cd)^{s_2 s_i}, \end{split}$$

where $a = \frac{2n-s_1}{2n-s_1-1}$, $b = \frac{2n-s_2-2}{2n-s_2-1}$, $c = \frac{2n-s_1-s_i+1}{2n-s_1-s_i}$, $d = \frac{2n-s_2-s_i-1}{2n-s_2-s_i}$. By a simple calculation, we have:

$$\begin{split} (2n-s_1)(2n-s_2-2)-(2n-s_1-1)(2n-s_2-1) &= s_1-s_2-1 > 0, \\ (2n-s_1-s_i+1)(2n-s_2-s_i-1)-(2n-s_1-s_i)(2n-s_2-s_i) &= s_1-s_2-1 > 0. \\ \end{split}$$
 Therefore, $\frac{\Pi_1^*(\tilde{G})}{\Pi_1^*(\tilde{G})} > 1. \quad \Box$

Theorem 4. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$. Then:

$$\Pi_1^*(G) \le (2n-2)^{\frac{m(m-1)}{2}} (2n-s-1)^{ms(k-t)} (2n-s-2)^{m(s+1)t} (2n-2s)^{\frac{s^2(k-t)(k-t-1)}{2}} (2n-2s-2)^{\frac{(s+1)^2t(t-1)}{2}} (2n-2s-1)^{s(s+1)t(k-t)},$$

with the equality holding if and only if $G \cong K_m \vee (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemmas 1, 4, and Theorem 3, the extremal graph having the maximum multiplicative-sum Zagreb index in $\mathscr{G}_{n,m,k}$ should be the graph $K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Let $\widehat{G} = K_m \vee (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$. We get that,

$$\Pi_1^*(\widehat{G}) = (2n-2)^{\frac{m(m-1)}{2}} (2n-s-1)^{ms(k-t)} (2n-s-2)^{m(s+1)t} (2n-2s)^{\frac{s^2(k-t)(k-t-1)}{2}} (2n-2s-2)^{\frac{(s+1)^2t(t-1)}{2}} (2n-2s-1)^{s(s+1)t(k-t)}. \quad \Box$$

3.2. The General Laplacian-Energy-Like Invariant and k-Partiteness

The general Laplacian-energy-like invariant (also called the sum of powers of the Laplacian eigenvalues) of a graph *G* is defined by Zhou [18] as:

$$S_{\alpha}(G) = \sum_{i=1}^{n-1} \mu_i^{\alpha},$$

where α is an arbitrary real number.

 $S_{\alpha}(G)$ is the Laplacian-energy-like invariant [19], and the Laplacian energy [20] when $\alpha = \frac{1}{2}$ and $\alpha = 2$, respectively. For $\alpha = -1$, $nS_{-1}(G)$ is equal to the Kirchhoff index [21], and $\alpha = 1$, $\frac{1}{2}S_1(G)$ is equal to the number of edges in *G*. For some recent results on the general Laplacian-energy-like invariant, one can see [22–25].

Lemma 5. [18] Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $S_{\alpha}(G) > S_{\alpha}(G + uv)$ for $\alpha < 0$, and $S_{\alpha}(G) < S_{\alpha}(G + uv)$ for $\alpha > 0$.

Lemma 6. [26] If $\mu_1 \ge \cdots \ge \mu_{i-1} \ge \mu_i = 0$ are the Laplacian eigenvalues of graph G and $\mu'_1 \ge \cdots \ge \mu'_{j-1} \ge \mu'_j = 0$ are the Laplacian eigenvalues of graph G', then the Laplacian eigenvalues of $G \lor G'$ are:

$$i + j, \mu_1 + j, \mu_2 + j, \cdots, \mu_{i-1} + j, \mu'_1 + i, \mu'_2 + i, \cdots, \mu'_{i-1} + i, 0.$$

It is well known that Laplacian eigenvalues of the complete graph K_p are $0, p, \dots, p$, and Laplacian eigenvalues of O_p are $0, 0, \dots, 0$. Then, the Laplacian eigenvalues of $K_{s_1,s_2} = O_{s_1} \vee O_{s_2}$ are $s_1 + s_2, s_2, \dots, s_2, s_1, \dots, s_1, 0$, where the multiplicity of s_2 is $s_1 - 1$ and the multiplicity of s_1 is $s_2 - 1$. The Laplacian eigenvalues of $K_{s_1,s_2,s_3} = K_{s_1,s_2} \vee O_{s_3}$ are $s_1 + s_2 + s_3, s_1 + s_2 + s_3, s_2 + s_3, \dots, s_2 + s_3, s_1 + s_3, \dots, s_1 + s_3, 0$, where the multiplicity of $s_2 + s_3$ is $s_1 - 1$ and the multiplicity of $s_1 + s_3$ is $s_2 - 1$.

By induction, we have that the Laplacian eigenvalues of K_{s_1,\dots,s_k} are $\sum_{i=1}^k s_i,\dots,\sum_{i=1}^k s_i,\sum_{i=1}^k s_i - s_1,\dots,\sum_{i=1}^k s_i - s_k,\dots,\sum_{i=1}^k s_i - s_k,0$, where the multiplicity of $\sum_{i=1}^k s_i$ is k-1 and the multiplicity of $\sum_{i=1}^k s_i - s_j$ is $s_j - 1$, for $1 \le j \le k$.

From Lemma 6 and the above analysis, we obtain the following lemma.

Lemma 7. Let \widehat{G} be a graph of order n, and the join of a complete graph with order m and a complete k-partite graph with order n - m i.e., $\widehat{G} = K_m \lor (K_k[O_{s_1}, \cdots, O_{s_k}])$. Then, the Laplacian eigenvalues of \widehat{G} are $n, \cdots, n, n - s_1, \cdots, n - s_k, \cdots, n - s_k, 0$, where the multiplicity of n is m + k - 1 and the multiplicity of $n - s_j$ is $s_j - 1$, for $1 \le j \le k$.

Theorem 5. Let \widehat{G} be a graph of order n > 2, and the join of a complete graph with order m and a complete k-partite graph with order n - m in $\mathscr{G}_{n,m,k}$, i.e., $\widehat{G} = K_m \vee (K_k[O_{s_1}, \dots, O_{s_k}])$. If $s_1 - 1 \ge s_2 + 1$, by moving

one vertex from the part of O_{s_1} to the part of O_{s_2} , we get a new graph $\widetilde{G} = K_m \vee (K_k[O_{s_1-1}, O_{s_2+1}, \cdots, O_{s_k}])$. Then, $S_{\alpha}(\widetilde{G}) < S_{\alpha}(\widehat{G})$ for $\alpha < 0$, and $S_{\alpha}(\widetilde{G}) > S_{\alpha}(\widehat{G})$ for $0 < \alpha < 1$.

Proof. By the definition of the general Laplacian-energy-like invariant $S_{\alpha}(G)$ and Lemma 7, we conclude that:

$$S_{\alpha}(\widehat{G}) = (m+k-1)n^{\alpha} + \sum_{i=1}^{k} (s_i-1)(n-s_i)^{\alpha}.$$

Therefore:

$$\begin{split} S_{\alpha}(\widetilde{G}) - S_{\alpha}(\widehat{G}) &= (s_1 - 2)(n - s_1 + 1)^{\alpha} + s_2(n - s_2 - 1)^{\alpha} \\ &- (s_1 - 1)(n - s_1)^{\alpha} - (s_2 - 1)(n - s_2)^{\alpha} \\ &= (s_1 - 2)[(n - s_1 + 1)^{\alpha} - (n - s_1)^{\alpha}] \\ &+ (s_2 - 1)[(n - s_2 - 1)^{\alpha} - (n - s_2)^{\alpha}] + (n - s_2 - 1)^{\alpha} - (n - s_1)^{\alpha}. \end{split}$$

For $\alpha < 0$, we have:

$$\begin{split} S_{\alpha}(\widetilde{G}) - S_{\alpha}(\widehat{G}) &< (s_{1}-2)[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha}] + (s_{2}-1)[(n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}] \\ &< (s_{1}-2)[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha} + (n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}] \\ &= (s_{1}-2)[f(n-s_{1}) - f(n-s_{2}-1)], \end{split}$$

where $f(x) = (x+1)^{\alpha} - x^{\alpha}$, $f'(x) = \alpha(x+1)^{\alpha-1} - \alpha x^{\alpha-1} > 0$. Then, $f(n-s_1) < f(n-s_2-1)$, and $S_{\alpha}(\widetilde{G}) < S_{\alpha}(\widehat{G})$. For $0 < \alpha < 1$, we have:

$$\begin{split} S_{\alpha}(\widetilde{G}) - S_{\alpha}(\widehat{G}) &> (s_{1}-2)[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha}] + (s_{2}-1)[(n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}] \\ &> (s_{2}-1)[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha} + (n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}] \\ &= (s_{2}-1)[f(n-s_{1}) - f(n-s_{2}-1)], \end{split}$$

where $f(x) = (x+1)^{\alpha} - x^{\alpha}$, $f'(x) = \alpha(x+1)^{\alpha-1} - \alpha x^{\alpha-1} < 0$. Then, $f(n-s_1) > f(n-s_2-1)$, and $S_{\alpha}(\widetilde{G}) > S_{\alpha}(\widehat{G})$. \Box

Theorem 6. Let G be an arbitrary graph in $\mathscr{G}_{n,m,k}$. Then, for $\alpha < 0$, $S_{\alpha}(G) \ge (m+k-1)n^{\alpha} + (k-t)(s-1)(n-s)^{\alpha} + ts(n-s-1)^{\alpha}$, for $0 < \alpha < 1$, $S_{\alpha}(G) \le (m+k-1)n^{\alpha} + (k-t)(s-1)(n-s)^{\alpha} + ts(n-s-1)^{\alpha}$, with the equality holding if and only if $G \cong K_m \lor (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemmas 1, 2, and Theorem 5, the extremal graph having the extremal value of the general Laplacian-energy-like invariant in $\mathscr{G}_{n,m,k}$ should be the graph $K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$. Let $\widehat{G} = K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$, then we can verify that

Let
$$G = K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$$
, then we can verify that $S_{\alpha}(\widehat{G}) = (m+k-1)n^{\alpha} + (k-t)(s-1)(n-s)^{\alpha} + ts(n-s-1)^{\alpha}$. \Box

3.3. The General Zeroth-Order Randić Index and k-Partiteness

The general zeroth-order Randić index is introduced by Li [27] as:

$${}^0R_{\alpha}(G)=\sum_{u\in V(G)}(d_G(u))^{\alpha},$$

where α is a non-zero real number.

 ${}^{0}R_{\alpha}(G)$ is the inverse degree [28], the zeroth-Randić index [29], the first Zagreb index [30], and the forgotten index [31] when $\alpha = -1$, $\alpha = -\frac{1}{2}$, $\alpha = 2$, and $\alpha = 3$, respectively. For some recent results on the general zeroth-order Randić index, one can see [32–34].

Lemma 8. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then ${}^{0}R_{\alpha}(G) > {}^{0}R_{\alpha}(G + uv)$ for $\alpha < 0$, and ${}^{0}R_{\alpha}(G) < {}^{0}R_{\alpha}(G + uv)$ for $\alpha > 0$.

Theorem 7. Let \widehat{G} be a graph of order n > 2, and the join of a complete graph with order m and a complete k-partite graph with order n - m in $\mathscr{G}_{n,m,k}$, i.e., $\widehat{G} = K_m \vee (K_k[O_{s_1}, \dots, O_{s_k}])$. If $s_1 - 1 \ge s_2 + 1$, by moving one vertex from the part of O_{s_1} to the part of O_{s_2} , we get a new graph $\widetilde{G} = K_m \vee (K_k[O_{s_1-1}, O_{s_2+1}, \dots, O_{s_k}])$. Then, ${}^0R_{\alpha}(\widetilde{G}) < {}^0R_{\alpha}(\widehat{G})$ for $\alpha < 0$, and ${}^0R_{\alpha}(\widetilde{G}) > {}^0R_{\alpha}(\widehat{G})$ for $0 < \alpha < 1$.

Proof. By the definition of the general zeroth-order Randić index ${}^{0}R_{\alpha}(G)$, we have:

$${}^{0}R_{\alpha}(\widehat{G}) = m(n-1)^{\alpha} + \sum_{i=1}^{k} s_i(n-s_i)^{\alpha}$$

Then,

$${}^{0}R_{\alpha}(\widetilde{G}) - {}^{0}R_{\alpha}(\widehat{G}) = (s_{1} - 1)(n - s_{1} + 1)^{\alpha} - s_{1}(n - s_{1})^{\alpha} + (s_{2} + 1)(n - s_{2} - 1)^{\alpha} - s_{2}(n - s_{2})^{\alpha} = (n - s_{2} - 1)^{\alpha} - (n - s_{1})^{\alpha} + (s_{1} - 1)[(n - s_{1} + 1)^{\alpha} - (n - s_{1})^{\alpha}] + s_{2}[(n - s_{2} - 1)^{\alpha} - (n - s_{2})^{\alpha}].$$

For $\alpha < 0$, we have:

$${}^{0}R_{\alpha}(\widetilde{G}) - {}^{0}R_{\alpha}(\widehat{G}) < (s_{1}-1)[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha} + (n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}] = (s_{1}-1)[f(n-s_{1}) - f(n-s_{2}-1)],$$

where $f(x) = (x+1)^{\alpha} - x^{\alpha}$, $f'(x) = \alpha(x+1)^{\alpha-1} - \alpha x^{\alpha-1} > 0$. Then, $f(n-s_1) < f(n-s_2-1)$, ${}^0R_{\alpha}(\tilde{G}) < {}^0R_{\alpha}(\hat{G})$.

For $0 < \alpha < 1$, we have:

$${}^{0}R_{\alpha}(\widehat{G}) - {}^{0}R_{\alpha}(\widehat{G}) > s_{2}[(n-s_{1}+1)^{\alpha} - (n-s_{1})^{\alpha} + (n-s_{2}-1)^{\alpha} - (n-s_{2})^{\alpha}]$$

= $s_{2}[f(n-s_{1}) - f(n-s_{2}-1)],$

where $f(x) = (x+1)^{\alpha} - x^{\alpha}$, $f'(x) = \alpha(x+1)^{\alpha-1} - \alpha x^{\alpha-1} < 0$. Then, $f(n-s_1) > f(n-s_2-1)$, $R_{\alpha}(\widetilde{G}) > R_{\alpha}(\widehat{G})$. \Box

Theorem 8. Let G be an arbitrary graph in $\mathscr{G}_{n,m,k}$. Then, for $\alpha < 0$, ${}^{0}R_{\alpha}(G) \ge m(n-1)^{\alpha} + (k-t)s(n-s)^{\alpha} + t(s+1)(n-s-1)^{\alpha}$, for $0 < \alpha < 1$, ${}^{0}R_{\alpha}(G) \le m(n-1)^{\alpha} + (k-t)s(n-s)^{\alpha} + t(s+1)(n-s-1)^{\alpha}$, with the equality holding if and only if $G \cong K_m \lor (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemma 8 and Theorem 7, in view of Lemmas 1 and 2, the extremal graph having the extremal value of the general zeroth-order Randić index in $\mathscr{G}_{n,m,k}$ should be the graph $K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Let $\widehat{G} = K_m \vee (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$. By a simple calculation, we have ${}^0R_{\alpha}(\widehat{G}) = m(n-1)^{\alpha} + (k-t)s(n-s)^{\alpha} + t(s+1)(n-s-1)^{\alpha}$. \Box

3.4. The Modified-Wiener Index and k-Partiteness

The modified-Wiener index is defined by Gutman [35] as:

$$W_{\lambda}(G) = \sum_{u,v \in V(G)} d_{G}^{\lambda}(u,v)$$

where λ is a non-zero real number.

Lemma 9. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $W_{\lambda}(G) < W_{\lambda}(G + uv)$ for $\lambda < 0$, and $W_{\lambda}(G) > W_{\lambda}(G + uv)$ for $\lambda > 0$.

Theorem 9. Let \widehat{G} be a graph of order n > 2, and the join of a complete graph with order m and a complete k-partite graph with order n - m in $\mathscr{G}_{n,m,k}$, i.e., $\widehat{G} = K_m \vee (K_k[O_{s_1}, \dots, O_{s_k}])$. If $s_1 - 1 \ge s_2 + 1$, by moving one vertex from the part of O_{s_1} to the part of O_{s_2} , we get a new graph $\widetilde{G} = K_m \vee (K_k[O_{s_1-1}, O_{s_2+1}, \dots, O_{s_k}])$. Then, $W_{\lambda}(\widetilde{G}) > W_{\lambda}(\widehat{G})$ for $\lambda < 0$, and $W_{\lambda}(\widetilde{G}) < W_{\lambda}(\widehat{G})$ for $\lambda > 0$.

Proof. By the definition of the modified-Wiener index $W_{\lambda}(G)$, we have the following result.

$$W_{\lambda}(\widehat{G}) = \frac{m(m-1)}{2} + \sum_{i=1}^{k} \frac{s_i(s_i-1)}{2} 2^{\lambda} + \sum_{i=1}^{k} ms_i + \sum_{1 \le i < j \le k} s_i s_j$$

Then,

$$\begin{split} W_{\lambda}(\widetilde{G}) - W_{\lambda}(\widehat{G}) &= \frac{(s_1 - 1)(s_1 - 2)}{2} 2^{\lambda} + \frac{(s_2 + 1)s_2}{2} 2^{\lambda} + m(s_1 - 1) \\ &+ m(s_2 + 1) + (s_1 - 1)(s_2 + 1) + \sum_{i=3}^k (s_1 - 1)s_i + \sum_{i=3}^k (s_2 + 1)s_i \\ &- \frac{s_1(s_1 - 1)}{2} 2^{\lambda} - \frac{s_2(s_2 - 1)}{2} 2^{\lambda} - ms_1 - ms_2 - s_1s_2 - \sum_{i=3}^k s_1s_i - \sum_{i=3}^k s_2s_i \\ &= (s_1 - s_2 - 1)(1 - 2^{\lambda}). \end{split}$$

For $\lambda > 0$, we have $W_{\lambda}(\widetilde{G}) < W_{\lambda}(\widehat{G})$. For $\lambda < 0$, we have $W_{\lambda}(\widetilde{G}) > W_{\lambda}(\widehat{G})$. \Box

Theorem 10. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$. Then, for $\alpha < 0$, $W_{\lambda}(G) \leq \frac{1}{2}[m(m-1) + (n-m)(n+m-s) - (s+1)t + s(n-m+t-k)2^{\lambda}]$, for $\alpha > 0$, $W_{\lambda}(G) \geq \frac{1}{2}[m(m-1) + (n-m)(n+m-s) - (s+1)t + s(n-m+t-k)2^{\lambda}]$, with the equality holding if and only if $G \cong K_m \vee (K_k[\{k-t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemma 9 and Theorem 9, in view of Lemmas 1 and 2, the extremal graph having the extremal value of the modified-Wiener index in $\mathscr{G}_{n,m,k}$ should be the graph $K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Let $\widehat{G} = K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$. Consequently, we have that:

$$W_{\lambda}(\widehat{G}) = \frac{m(m-1)}{2} + (k-t)\frac{s(s-1)}{2}2^{\lambda} + t\frac{s(s+1)}{2}2^{\lambda} + tm(s+1) + (k-t)ms$$

= $\frac{1}{2}[m(m-1) + (n-m)(n+m-s) - (s+1)t + s(n-m+t-k)2^{\lambda}].$

4. Conclusions

In this paper, we consider connected graphs of order *n* with vertex *k*-partiteness not more than *m* and characterize some extremal monotonic graph invariants such as the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general

zeroth-order Randić index, and the modified-Wiener index among these graphs, and we investigate the corresponding extremal graphs of these invariants.

Author Contributions: The authors made equal contributions in the article. All authors read and approved the final manuscript.

Funding: This research was funded by the National Science Foundation of China under Grant 11601006; the China Postdoctoral Science Foundation under Grant 2017M621579; the Postdoctoral Science Foundation of Jiangsu Province under Grant 1701081B; Anhui Provincial Natural Science Foundation under Grant 1708085QA13; the Natural Science Foundation of the Anhui Provincial Education Department under Grant KJ2016A517; and the Project of Chizhou University under Grants 2017ZRZ009, 2016XJXTD02.

Acknowledgments: The authors are grateful to the anonymous reviewers and the editor for the valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Dimitrov, D. On structural properties of trees with minimal atom-bond connectivity index. *Discret. Appl. Math.* **2014**, 172, 28–44. [CrossRef]
- 2. Li, X.; Fan, Y. The connectivity and the Harary index of a graph. *Discret. Appl. Math.* **2015**, *181*, 167–173. [CrossRef]
- 3. Xu, K.; Alizadeh, Y.; Das, K.C. On two eccentricity-based topological indices of graphs. *Discret. Appl. Math.* **2017**, 233, 240–251. [CrossRef]
- 4. Hayat, S.; Wang, S.; Liu, J. Valency-based topological descriptors of chemical networks and their applications. *Appl. Math. Model.* **2018**, *60*, 164–178. [CrossRef]
- 5. Chen, H.; Wu, R.; Deng, H. The extremal values of some monotonic topological indices in graphs with given vertex bipartiteness. *MATCH Commun. Math. Comput. Chem.* **2017**, *78*, 103–120.
- 6. Liu, J.; Pan, X. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. *Appl. Math. Comput.* **2016**, 291, 84–88. [CrossRef]
- 7. Robbiano, M.; Morales, K.T.; Martin, B.S. Extremal graphs with bounded vertex bipartiteness number. *Linear Algebra Appl.* **2016**, *493*, 28–36. [CrossRef]
- 8. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals.Total *π*-electron energy of alternant hydrocarbons. *Chem. Phys. Lett.* **1972**, *17*, 535–538. [CrossRef]
- 9. Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. *Match Commun. Math. Comput. Chem.* **2010**, *64*, 359–372.
- 10. Milićević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. *Mol. Divers.* **2004**, *8*, 393–399. [CrossRef] [PubMed]
- 11. Eliasi, M.; Iranmanesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. *Match Commun. Math. Comput. Chem.* **2012**, *68*, 217–230.
- 12. Borovićanin, B.; Furtula, B. On extremal Zagreb indices of trees with given domination number. *Appl. Math. Comput.* **2016**, 279, 208–218. [CrossRef]
- 13. Gao, W.; Jamil, M.K.; Farahani, M.R. The hyper-Zagreb index and some graph operations. *J. Math. Anal. Appl.* **2017**, *54*, 263–275. [CrossRef]
- 14. Gutman, I.; Furtula, B.; Vukićević, K.; Popivoda, G. On Zagreb indices and coindices. *Match Commun. Math. Comput. Chem.* **2015**, *74*, 5–16.
- 15. Milovanović, E.I.; Milovanović, I.; Dolićanin, E.; Glogić, E. A note on the first reformulated Zagreb index. *Appl. Math. Comput.* **2016**, 273, 16–20. [CrossRef]
- 16. Wang, C.; Liu, J.; Wang, S. Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter. *Discret. Appl. Math.* **2017**, 227, 156–165. [CrossRef]
- 17. Wang, S.; Wang, C.; Liu, J. On extremal multiplicative Zagreb indices of trees with given domination number. *Appl. Math. Comput.* **2018**, 332, 338–350. [CrossRef]
- 18. Zhou, B. On sum of powers of the Laplacian eigenvalues of graphs. *Linear Algebra Appl.* **2008**, 429, 2239–2246. [CrossRef]
- 19. Liu, J.; Liu, B. A Laplacian-energy-like invariant of a graph. *Match Commun. Math. Comput. Chem.* **2011**, *66*, 713–730.

- 20. Lazić, M. On the Laplacian energy of a graph. Czechoslovak Math. J. 2006, 56, 1207–1213. [CrossRef]
- 21. Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81-95. [CrossRef]
- 22. Das, K.C.; Xu, K.; Liu, M. On sum of powers of the Laplacian eigenvalues of graphs. *Linear Algebra Appl.* **2013**, *439*, 3561–3575. [CrossRef]
- 23. Liu, M.; Liu, B. A note on sum of powers of the Laplacian eigenvalues of graphs. *Appl. Math. Lett.* **2011**, *24*, 249–252. [CrossRef]
- 24. Qiao, L.; Zhang, S.; Jing, B.; Li, J. Coulson-type integral formulas for the general Laplacian-energy-like invariant of graphs I. *J. Math. Anal. Appl.* **2016**, *435*, 1246–1261. [CrossRef]
- 25. Tian, G.; Huang, T.; Zhou, B. A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. *Linear Algebra Appl.* **2009**, 430, 2503–2510. [CrossRef]
- 26. Merris, R. Laplacian graph eigenvectors. Linear Algebra Appl. 1998, 278, 221-236. [CrossRef]
- 27. Li, X.; Zheng, J. A unified approach to the extremal trees for different indices. *Match Commun. Math. Comput. Chem.* **2005**, *54*, 195–208.
- 28. Fajtlowicz, S. On conjectures of graffiti II. Congr. Numer. 1987, 60, 189–197.
- 29. Klein, L.B.; Hall, L.H. The meaning of molecular connectivity: A bimolecular accessibility model. *Croat. Chem. Acta* **2002**, *75*, 371–382.
- 30. Nikolić, S.; Kovačenić, G.; Milićević, A.; Trinajstić, N. The Zagreb indices 30 years after. *Croat. Chem. Acta* **2003**, *76*, 113–124.
- 31. Furtula, B.; Gutman, I. On forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [CrossRef]
- 32. Chen, Z.; Su, G.; Volkmann, L. Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected graphs. *Discret. Appl. Math.* **2017**, *218*, 64–70. [CrossRef]
- 33. Su, G.; Tu, J.; Das, K.C. Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index. *Appl. Math. Comput.* **2015**, *270*, 705–710. [CrossRef]
- 34. Zhang, B.; Zhou, B. On zeroth-order general Randić indices of trees and unicyclic graphs. *Match Commun. Math. Comput. Chem.* **2007**, *58*, 139–146.
- 35. Gutman, I. A property of the Wiener number and its modifications. Indian J. Chem. 1997, 36, 128–132.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).