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Abstract: The vertex k-partiteness of graph G is defined as the fewest number of vertices
whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal
value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general
Laplacian-energy-like invariant, the general zeroth-order Randi¢ index, and the modified-Wiener
index among graphs of order n with vertex k-partiteness not more than m.
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1. Introduction

All graphs considered in this paper are simple, undirected, and connected. Let G be a graph with
vertex set V(G) = {vy,--- ,v,} and edge set E(G) = {e1,- - - ,em}. The degree of a vertex u € V(G)
is the number of edges incident to u, denoted by d(u). The distance between two vertices u and v is
the length of the shortest path connecting 1 and v, denoted by d (1, v). The complement of G, denoted
by G, is the graph with vertex set V(G) = V(G) and edge set E(G) = {uv : uv ¢ E(G)}. A subgraph
of G induced by H, denoted by (H), is the subgraph of G that has the vertex set H, and for any two
vertices u,v € V(H), they are adjacent in H iff they are adjacent in G. The adjacency matrix of G is a
square n X n matrix such that its element 4;; is one when there is an edge from vertex u; to vertex u;,
and zero when there is no edge, denoted by A(G). Let D(G) = diag(dy,dy, - - - ,d,) be the diagonal
matrix of vertex degrees of G. The Laplacian matrix of G is defined as L(G) = D(G) — A(G), and the
eigenvalues of L(G) are called Laplacian eigenvalues of G, denoted by py, - - - , pty with g > -+ - > py.
It is well known that p, = 0, and the multiplicity of zero corresponds to the number of connected
components of G.

A bipartite graph is a graph whose vertex set can be partitioned into two disjoint sets U; and
Uy, such that each edge has an end vertex in U; and the other one in U,. A complete bipartite graph,
denoted by K, is a bipartite graph with |U;| = s and |U,| = t, where any two vertices u € U; and
v € U are adjacent. If every pair of distinct vertices in G is connected by a unique edge, we call G a
complete graph. The complete graph with n vertices is denoted by Kj;. An independent set of G is a set
of vertices, no two of which are adjacent. A graph G is called k-partite if its vertex-set can be partitioned
into k different independent sets U, - - - , Ux. When k = 2, they are the bipartite graphs, and k = 3
the tripartite graphs. The vertex k-partiteness of graph G, denoted by v, (G), is the fewest number
of vertices whose deletion from G yields a k-partite graph. A complete k-partite graph, denoted by
Ks, .. 5., is a k-partite graph with k different independent sets |U;| = sq, - - - , [Ug| = s, where there is
an edge between every pair of vertices from different independent sets.

A topological index is a numerical value that can be used to characterize some properties of
molecule graphs in chemical graph theory. Recently, many researchers have paid much attention to
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studying different topological indices. Dimitrov [1] studied the structural properties of trees with
minimal atom-bond connectivity index. Li and Fan [2] obtained the extremal graphs of the Harary
index. Xu et al. [3] determined the eccentricity-based topological indices of graphs. Hayat et al. [4]
studied the valency-based topological descriptors of chemical networks and their applications.

Let G + uv be the graph obtained from G by adding an edge uv € E(G). Let I(G) be a graph invariant,
if I(G +uv) > I(G) (or I(G + uv) < I(G), respectively) for any edge uv € E(G), then we call I(G)
a monotonic increasing (or decreasing, respectively) graph invariant with the addition of edges [5].
Let ¢, ,, k be the set of graphs with order n and vertex k-partiteness e(G) < m,wherel <m <n—k.
In [5-7], the authors have researched several monotonic topological indices in ¥, , 2, such as the
Kirchhoff index, the spectral radius, the signless Laplacian spectral radius, the modified-Wiener index,
the connective eccentricity index, and so on. Inspired by these results, we extend the parameter of
graph partition from two-partiteness to arbitrary k-partiteness. Moreover, we study some monotonic

topological indices and characterize the graphs with extremal monotonic topological indices in ¥, ,, i.

2. Preliminaries

The join of two-vertex-disjoint graphs Gi, Gy, denoted by G = G; V Gy, is the graph obtained
from the disjoint union G; U G, by adding edges between each vertex of G; and each of G,. It is to say
that V(G) = V(G1) UV(Gy) and E(G) = E(G1) UE(Gy) U{uv:u € V(Gy),v € V(Gy)}.

The join operation can be generalized as follows. Let F = {G, - - - , G} be a set of vertex-disjoint
graphs and H be an arbitrary graph with vertex set V(H) = {1,--- ,k}. Each vertex i € V(H) is
assigned to the graph G; € F.

The H-join of the graphs Gy,---, Gy is the graph G = HJ[Gy,- -, G, such that V(G) =

k
U V(G;) and:
j=1

k
EG) =UEGHU( U {uv:uecV(G),veV(G)}).
=1 ij€E(H)

If H = Kj, the H-join is the usual join operation of graphs, and the complete k-partite graph
K, ... 5, can be seen as the Kj-join graph Ki[Os,,---,Os,], where Os; is an empty graph of order
Si, 1 S i S k.

For U C V(G), let G — U be the graph obtained from G by deleting the vertices in U and the
edges incident with them.

Lemma 1. Let G be an arbitrary graph in 4, ;. and 1(G) be a monotonic increasing graph invariant.
k ~

Then, there exists k positive integers sq,- - - , s satisfying Y s; = n —m, such that I(G) < 1(G) holds
i=1

for all graphs G € 9, 1, where G = Ky V (Ki[Os,, -+, 0s,]) € Gy, with equality holds if and only if
G=G.

Proof. Choose G € 9, m k with the maximum value of a monotonic increasing graph invariant such that
1(G) < I(G) forall G € 4 m - Assume that the k-partiteness of graph G is m’, then there exists a vertex
set U of graph G with order m’ such that G — U is a k-partite graph with k-partition {Uj, - - - , Ui }.
For 1 <i <k, let s; be the order of U;; hence, n = f s; +m'.
i=1

Firstly, we claim that G-U = Ky [Osl, e ,Osk]. Otherwise, there exists at least two vertices
u € Us; and v € Uy, for some i # j, which are not adjacent in G. By joining the vertices u and v, we get
anew graph G + uv, obviously, G + uv € %, ,, - Then, I(G) < I(G + uv), which is a contradiction.

Secondly, we claim that U is the complete graph K,,. Otherwise, there exists at least two vertices
u,v € U, which are not adjacent. By connecting the vertices # and v, we arrive at a new graph G +uo,
obviously, G+uve %, mk- Then, we have I (é) <I (@ + uv), a contradiction again.
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Using a similar method, we can get G= Ky V (Kg[Osy, - -+, Os,]).

k
Finally, we prove that m’ = m. If !’ <m—1,then }s;,=n—m' >n—m+1>n—m > k;
i=1

k
thus, )} s; > k. Without loss of generality, we assume that s; > 2. By moving a vertex u € Os,

to thelsét of U and adding edges between u and all the other vertices in O;,, we get a new graph
G = Kyiq V (Ky [Os,-1,0s,, -+ ,Os,]). It is easy to check that G e %, m has s; — 1 edges more than
the graph G. By the definition of the monotonic increasing graph invariant, we get I(G) < I(G),
which is obviously another contradiction.

Therefore, G is the join of a complete graph with order m and a complete k-partite graph with
order n — m. That is to say G=KyV (K[Osy, -+, 0s,])-

The proof of the lemma is completed. [

Lemma 2. Let G be an arbitrary graph in 4, ,, and 1(G) be a monotonic decreasing graph invariant.
k ~

Then, there exists k positive integers sq,- - - , s satisfying Y. s; = n —m, such that I(G) > 1(G) holds
i=1

for all graphs G € 9, 1, where G = Ky V (Ki[Os,, -+ ,0s,]) € Gy, with equality holds if and only
ifG=G.

3. Main Results

In this section, we will characterize the graphs with an extremal monotonic increasing (or
decreasing, respectively) graph invariant in %, ,,, ,. Assume that n —m = sk 4 t, where s is a positive
integer and ¢ is a non-negative integer with 0 <t < k.

3.1. The Reformulated First Zagreb Index, Multiplicative-Sum Zagreb Index, and k-Partiteness

The first Zagreb index is used to analyze the structure-dependency of total 7r-electron energy on
the molecular orbitals, introduced by Gutman and Trinajst¢ [8]. It is denoted by:

Mi(G)= ) (dg(u)+dc(v)),
uveE(G)

which can be also calculated as:

MG = ¥ de(u?:
ueV(G)

Todeschini and Consonni [9] considered the multiplicative version of the first Zagreb index in
2010, defined as:
IL(G)= [] de(w)?
ueV(G)
For an edge e = uv € E(G), we define the degree of e as dg(e) = dg(u) + dg(v) — 2.
Milli¢evi¢ et al. [10] introduced the reformulated first Zagreb index, defined as:

Mi(G) = ¥ dge= Y (do(u)+dg(v) —2)%

ecE(G) uveE(G)

Eliasi et al. [11] introduced another multiplicative version of the first Zagreb index, which is called
the multiplicative-sum Zagreb index and defined as:

M(G) = JI (de(u)+dc(v)).

uveE(G)

They are widely used in chemistry to study the heat information of heptanes and octanes. For some
recent results on the fourth Zagreb indices, one can see [12-17].
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Lemma 3. Let G be a graph with u,v € V(G). Ifuv € E(G), then My (G) < M;(G + uv).

Lemma 4. Let G be a graph with u,v € V(G). Ifuv € E(G), then 11} (G) < IT}(G + uv).

k
Note that s1, - - - , s are k positive integers with ) s; =n —m.
i=1

Theorem 1. Let G bea graph of order n > 2, and the join of a complete graph with order m and a complete

k-partite graph with order n — m in 4, 1, i.e., G = Ky V (Ki[Os,, - - -, Os,]). By moving one vertex from the
part ofOSl to the part ofOSZ, we get a new graph G=Ky,V (Ki[Os;-1, 06541, -+ ,Og,])- If 51 =1 > 50 41,
then My (G) > M (G).

Proof.By the definition of the reformulated first Zagreb index M;(G), we can calculate as follows:

oAy L mm—1) 2. v 2 2
M (G) = f(Zn—él) +) msi(2n—s; —3)>+ Y sisi(2n—s;—s;—2)°
i=1 1<i<j<k

Therefore,

Mi(G) — My(G) = m(s1 —1)(2n —s1 —2)% + m(sy +1)(2n — 55 — 4)?
+ (51 —1)(s2+1)(2n — 51 — 55 — 2)> — msy (2n — 51 — 3)?

— msz(Zn — Sy — 3)2 —5159(2n —s1 —sp — 2)2

+Zsl—1 (2n —s1 —s;— 1) +Zsz+1 )si(2n — 55 — s; — 3)2

i=3
k k
—Zsls 2n —s1 —s; —2)? Zszs (2n — sy — s; — 2)?
i=3 i=3
=(s1—sp—1)[(5n+3p—12)p+ (n+p —2)?
k k k k
+(7n+8m—12) Y si+ (Y si)?+ Y si(3Y s —4s))
i=3 i=3 = i=3
= (s1—sp — 1)[(n —2)% 4 (7n — 16)m + 4m>
k k k
+ (7n+8m—12) Y s +4() s)? —4) 7]
i=3 i=3 =

> (51— 82— 1)[(n —2)% 4 (4n — 8)m + 4m?]
=(51—sp—1)(n—242m)>>0 0O
Note that we have n —m = sk +t = (k —t)s + t(s + 1), where s is a positive integer and ¢ is

a non-negative integer with 0 < t < k. For simplicity, we write K, V (Kg[{k — t}Os, {s}Os41]) =
Ky V (Kg[Os, - -+, 05,0441, -+ ,Os41]). Then, the extremal value and the corresponding graph of the

k—t t
reformulated first Zagreb index M;(G) can be shown as follows.

Theorem 2. Let G be an arbitrary graph in 4, ,,, .. Then:

M(zn —4)2 4 m(n —m)(6n —3s —11)

+2(n—m)(n—m—s)(n—s—1)
+t(s+1)[—6(n—s5—1)>+n+2m(5—2n+s)+ (t—2)(s+1)],
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with the equality holding if and only if G = Ky, V (Kx[{k — t}Os, {s}Os41]).

Proof. By Lemmas 1, 3, and Theorem 1, the extremal graph having the maximum reformulated first
Zagreb index in ¢, ,,, i is the graph K, V (Ki[{k — t}Os, {s}Os41]).

Let G = Ky, V (Ki[{k — t}Os, {5} Os41])-

Then, we obtain that:

~ m(m—1)

M;(G) = 5 (2n - 4)2 + (k — tyms(2n — s — 3)?

+tm(s+1)(2n—s—4)2—|—@

(k_t)(kz_t_1)52(271—25—2)2+t(k—t)s(s+1)(2n—25—3)2
= @(Zn—4)2+m(n—m)(6n—35—11)
+2(n—m)(n—m—s)(n—s—1)>

+Hs+1)[—6(n—s—1)>+n+2m(5—2n+s)+ (t—2)(s+1)]. O

(s +1)%(2n — 25 — 4)?

+

Theorem 3. Let G bea graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n — m in 4, ,,, ., i.e., G=K,V (Ki[Osy, -+, 0s,.])- If s1 = 1 > sp + 1, by moving
one vertex from the part of Og, to the part of Os,, we get a new graph G = Ky, V (K[Os, -1, Os,41,- -, Os,]).

~ -~

Then, IT; (G) > IT; (G).

Proof. By the definition of the multiplicative-sum Zagreb index ITj (G), it is easy to see that:

~ m(m—1) .
I (G) = (2n—2)" 7 TT_,(2n —s; — 1)l <jcj<i(2n — 5; — ;)%

Hence,
Py
Hl(g) =(2n—s — 52)(31_52_1)7211 —52 - Zam(sl_1>bmsz
I (G) 2n—s1 —1
1
2n—sy —s;—1
1K c1=Dsiprk | gsasirk i Si
=3 i=3 1_3( 2n —s1 — si )
msp 71k $28;
> (ab)"™ 20T _5(cd)®%,
. 2n—sy _ 2n—sp—2 _ __ 2n—sy;—s;+1 _ 2n—sp—s;—1
where a = 2n75171’b T 2n—sp—177 T 2nfslflsl- ’d - 2nfszflsl- .

By a simple calculation, we have:
2n—s1)2n—s—-2)—(2n—s51—1)2n—sp,—1) =s1—s5,—1>0,

2n—s1—s;+1)(2n—sp—s;—1)—(2n—s1 —s;)(2n —sp —s;) =s1—sp — 1 > 0.
113 (G)

Therefore, T e) >1. O

Theorem 4. Let G be an arbitrary graph in 4, ,,, .. Then:

m(m—1)

I(G)<(2n—2) 7 (2n—s— 1)ms(k7t) (2n —s— 2)m(s+1)t

2 (k—t) (k—t—1) (s+1)2¢(t—1)

(2n—2s)" 2 (2n—25s—2) 2  (2n—2s—1)5HDIkD),

with the equality holding if and only if G = K, V (Ki[{k — t}Os, {s}Os+1])-
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Proof. By Lemmas 1, 4, and Theorem 3, the extremal graph having the maximum multiplicative-sum
Zagreb index in ¥, ,, x should be the graph K;, V (Ki[{k — t}Os, {s}Os1]).
Let G = Ky, V (Ki[{k — t}Os, {s}O441]). We get that,
I (G) = (21 —2) ™ (2n — s — 1)) (25 — 5 — 2ymls+Dt

2 (k—t) (k—t—1) (s+1)2¢(t—1)

(2n—2s)" 2 (2n—2s—2) 2  (2n—2s—1)CDI=D O

3.2. The General Laplacian-Energy-Like Invariant and k-Partiteness

The general Laplacian-energy-like invariant (also called the sum of powers of the Laplacian
eigenvalues) of a graph G is defined by Zhou [18] as:

n—1
S«(G) = 2 His
i=1

where « is an arbitrary real number.

S«(G) is the Laplacian-energy-like invariant [19], and the Laplacian energy [20] when & = 3
and a = 2, respectively. For « = —1, nS_1(G) is equal to the Kirchhoff index [21], and & = 1, 151 (G)
is equal to the number of edges in G. For some recent results on the general Laplacian-energy-like
invariant, one can see [22-25].

Lemma 5. [18] Let G be a graph with u,v € V(G). Ifuv € E(G), then So(G) > Sy(G + uv) for a < 0,
and Sy (G) < Sa(G + uv) for a« > 0.

Lemma 6. [26] If p1 > -+ > pj_q1 > p; = 0 are the Laplacian eigenvalues of graph G and yy > --- >
pi_y > p; = 0 are the Laplacian eigenvalues of graph G', then the Laplacian eigenvalues of GV G' are:

R A R AR R Ty AT A A A\

It is well known that Laplacian eigenvalues of the complete graph Kj, are 0, p, - - - , p, and Laplacian
eigenvalues of O, are 0,0,---,0. Then, the Laplacian eigenvalues of Ky, 5, = Os; V Os, are s; +
52,82, ,82,51,* - ,51,0, where the multiplicity of s, is 51 — 1 and the multiplicity of s; is s — 1.
The Laplacian eigenvalues of K, s,s, = K5, V Os, are sq 4 sy + 53,51 + 5 + 53,52 +83,- -+ ,52 +
53,51 + 53, -+ ,51 + 53,0, where the multiplicity of s, 4 53 is 57 — 1 and the multiplicity of s; + s3 is
Sy — 1.

k k k
By induction, we have that the Laplacian eigenvalues of K ... s, are ). s;,---, Y s;, ) 8; —
i=1 i=1  i=1
k k k k
S1,° ", 3 85 =51, ", 2, 85 — Sk, 2 Si — Sk, 0, where the multiplicity of ) s; is k — 1 and the
i=1 i=1 i=1 =1

k

multiplicity of }_ s; —s;jiss; —1,for1 <j <k
i=1

From Lemma 6 and the above analysis, we obtain the following lemma.

Lemma 7. Let G be a graph of order n, and the join of a complete graph with order m and a complete
k-partite graph with order n — m i.e., G = Ky V (K¢[Os,, - - -, Os,]). Then, the Laplacian eigenvalues of G
aren,--- ,A,N—S,- - ,N—51, - ,0—5Sk, - ,n— sk, 0, where the multiplicity of n is m + k — 1 and the
multiplicity of n —sjis s; — 1, for 1 < j <k.

Theorem 5. Let G be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n — m in G, i, i.e., G = Ky V (K¢[Os,, - -+, Os,]). If s1 — 1 > 83 + 1, by moving
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one vertex from the part of Os, to the part of Os,, we get a new graph G = Ky V (Ki[Os, 1,05, 11, -+ , Os,]).
Then, S,(G) < Su(G) for & < 0, and S,(G) > S (G) for 0 < & < 1.

Proof. By the definition of the general Laplacian-energy-like invariant S,(G) and Lemma 7,

we conclude that:
k

Se(G) = (m+k—1n"+ Y (s; — 1)(n—s;)".
i=1

Therefore:

S«(G) — S,X(CA;) =(s1—2)(n—s1+1)*+s2(n—s, —1)*

For a < 0, we have:

Su(G) = 5a(G) < (51 =2)[(n =51 +1)* = (n —51)"] + (s2 = )[(n =52 = 1)* — (1 — 5)"]
(51 =2)[(n =514+ 1) = (n—51)" + (n =52 = 1)" = (n — 52)"]
(51— 2DIf(n —51) — f(n —52 - 1)},
where f(x) = (x +1)* —x%, f/(x) = a(x+1)* 1 —ax*1 > 0.
Then, f(n —s1) < f(n—s; —1),and S4(G) < Su(G).
For0 < a < 1, we have:

<
<

Su(G) = Su(G) > (51 =2)[(n =51+ 1)* = (n = 1)"] + (52 = 1)[(n =52 = 1)* = (n = 52)"]
(so—1)[(n—s1+1)*—(n—s1)"+(n—sp—1)" — (n—52)"]

= (s2=Df(n=s1) = f(n =52 =1)],

where f(x) = (x +1)* — x%, f'(x) = a(x + 1)4x:1 — o(xtle <0.

Then, f(n—s1) > f(n —s; —1),and Su(G) > Su(G). O

>
>

Theorem 6. Let G be an arbitrary graph in ¥, ,,, . Then,

fora <0,5,(G) > (m+k—1)n*+ (k—t)(s—1)(n—s)*+ts(n—s—1)%,
for0<a <1,5,(G) < (m+k—1n*+ (k—t)(s—1)(n—s)*+ts(n—s—1)%,
with the equality holding if and only if G = Ky, V (Kg[{k — t}Os, {s}Os41])-

Proof. By Lemmas 1, 2, and Theorem 5, the extremal graph having the extremal value of the general
Laplacian-energy-like invariant in ¢, ,, y should be the graph K;, V (Ki[{k — t}Os, {s}Os1]).

Let G = Ky, V (Ki[{k — t}Os, {s}Os41]), then we can verify that
Su(G) = (m+k—1)n*+ (k—t)(s—1)(n—s) +ts(n—s—1)*. O

3.3. The General Zeroth-Order Randi¢ Index and k-Partiteness

The general zeroth-order Randi¢ index is introduced by Li [27] as:

Ru(G) = ) (dg(n))",

ueV(G)

where « is a non-zero real number.
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OR, (G) is the inverse degree [28], the zeroth-Randi¢ index [29], the first Zagreb index [30], and the
forgotten index [31] whena = —1,0 = — %, « = 2, and a = 3, respectively. For some recent results on
the general zeroth-order Randi¢ index, one can see [32-34].

Lemma 8. Let G be a graph with u,v € V(G). If uv € E(G), then "Ry (G) >Ry (G + uv) for « < 0,
and "Ry (G) <Ry (G + uv) for a > 0.

Theorem 7. Let G be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n — m in 4, ,,, , i.e., G=K,V (Ki[Osy, -+, 0s,])- If s1 = 1 > sp + 1, by moving
one vertex from the part of Os, to the part of Os,, we get a new graph G = Ky V (Kg[Os,-1,05,11, -+, Os,]).
Then, °R,(G) <Ry (G) for & < 0, and "Ry (G) >R, (G) for 0 < a < 1.

Proof. By the definition of the general zeroth-order Randi¢ index OR, (G), we have:

k

OR(G) =m(n—1)% + Y si(n —s;)*

i=1

Then,

"Re(G) = Ra(G) = (s1 = 1)(n — 51+ 1)* —s1(n —57)"
+(s2+1)(n—sp—1)* —sp(n—sp)*

=m—s—1)"— (n—s7)"

(

+ (=D —s1+1)% = (n=s51)* ]+ 52[(n =52 = 1)" = (n —52)"].

For a < 0, we have:

ORW(G) ="Ru(G) < (s1 = D)[(n—s1+1)% — (n—s51)" 4+ (n— 55 —1)* — (n — 5)*]
=(s1-D[f(n—s1) = f(n—52—1)],

where f(x) = (x4+1)* —x%, f'(x) = a(x + 1)1 —ax*1 > 0. Then, f(n—s1) < f(n—sy—1),
OR,(G) <O Ry (G).
For 0 < a < 1, we have:

"Ra(G) =" Ru(C) > saf(n = 51+ 1)* = (= 51)* + (n = s2 = 1)* = (n = 52)"]
=s[f(n—s1)— f(n—s,—1)],

where f(x) = (x +1)* —x%, f'(x) = a(x + 1)* " —ax*"1 <0.
Then, f(n —s1) > f(n—s2 — 1), Ra(G) > Re(G). DO

Theorem 8. Let G be an arbitrary graph in 4, ,,, . Then,

fora < 0,°Ry(G) >m(n—1)*+ (k—t)s(n —s)* +t(s +1)(n —s—1)%,
for0<a<1,°Ry(G) <m(n—1)*+ (k—t)s(n—s)* +t(s+1)(n—s—1)%,
with the equality holding if and only if G = Ky, V (Kx[{k — t}Os, {s}Os41]).

Proof. By Lemma 8 and Theorem 7, in view of Lemmas 1 and 2, the extremal graph having the
extremal value of the general zeroth-order Randi¢ index in &, ,,, , should be the graph K, V (Ki[{k —
10, {5}0..1))

Let G = Ky, V (K [{k — t}Os, {s}Os1]). By a simple calculation, we have
ORW(G) =m(n—1)*+ (k—t)s(n—s)¥+ (s +1)(n—s—1)~ O



Mathematics 2018, 6, 271 9of 11

3.4. The Modified-Wiener Index and k-Partiteness

The modified-Wiener index is defined by Gutman [35] as:

Wi(G) = Y, dg(uo),
uw,veV(G)

where A is a non-zero real number.

Lemma 9. Let G be a graph with u,v € V(G). If uv € E(G), then Wy (G) < W) (G + uv) for A < 0,
and W) (G) > W) (G + uv) for A > 0.

Theorem 9. Let G be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n — m in 9, i, i.e., G = Ky V (K¢[Os,, - - -, Os,]). If s — 1 > 55 + 1, by moving

one vertex from the part of Os, to the part of Os,, we get a new graph G = Ky V (KOs, -1, O5, 41, -+, Og,]).
Then, Wy, (G) > Wy (G) for A < 0, and W, (G) < W, (G) for A > 0.

Proof. By the definition of the modified-Wiener index W) (G), we have the following result.

Wy(G) = m( i DFY + stz + ) s

i=1 1<1<]<k
Then,

WA(G) = Wa(G) = b1 1)2(51 — 20 (o2 —;1)52

2/\ + m(51 - 1)

k k
+m(so+1)+(s1—1)(s2+1)+ ZS1—1)S,'+Z(52+1)SZ
i=3 i=3

si(s1—1) 0 s2(s2—1) 5 :
— 5 2% — > 2 —77151—m52—5152—gs15i—25251

=(s1—sy—1)(1—2").
For A > 0, we have W, (G) < W, (G). For A < 0, we have W, (G) > W, (G). O

Theorem 10. Let G be an arbitrary graph in 4, ,, . Then,

fora <0, Wy(G) < J[m(m—1)+(n—m)(n+m—s)— (s+1)t+s(n—m+t—k)2"],
fora>0,Wy(G) > 3[m(m—1)+ (n—m)(n+m—s) — (s + 1)t +s(n—m+t—k)2"],
with the equality holding if and only if G = Ky, V (Kg[{k — t}Os, {s}Os+1])-

Proof. By Lemma 9 and Theorem 9, in view of Lemmas 1 and 2, the extremal graph having the extremal
value of the modified-Wiener index in ¥, ,, x should be the graph K, V (Ki[{k — t}Os, {s}O541]).
Let G = Ky, V (Ki[{k — t}Os, {s}Os41]). Consequently, we have that:

m—1)

Wy(@) = "D t)s(sz_l)

2Nt 2M tm(s4+1) + (k — t)ms

s(s+1)
2
:%[m(m—l)—k(n—m)(n—i—m—s)—(s+1)t+s(n—m+t—k)2A]. O

4. Conclusions

In this paper, we consider connected graphs of order n with vertex k-partiteness not more than
m and characterize some extremal monotonic graph invariants such as the reformulated first Zagreb
index, the multiplicative-sum Zagreb indeXx, the general Laplacian-energy-like invariant, the general
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zeroth-order Randi¢ index, and the modified-Wiener index among these graphs, and we investigate
the corresponding extremal graphs of these invariants.
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