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Abstract: In this article, a methodology is developed to solve an interval and a fractional interval
programming problem by converting into a non-interval form for second order cone constraints,
with the objective function and constraints being interval valued functions. We investigate the
parametric and non-parametric forms of the interval valued functions along with their convexity
properties. Two approaches are developed to obtain efficient and properly efficient solutions.
Furthermore, the efficient solutions or Pareto optimal solutions of fractional and non-fractional
programming problems over Rn

+
⋃ {0} are also discussed. The main idea of the present article is to

introduce a new concept for efficiency, called efficient space, caused by the lower and upper bounds
of the respective intervals of the objective function which are shown in different figures. Finally,
some numerical examples are worked through to illustrate the methodology and affirm the validity
of the obtained results.
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1. Introduction

We consider solving fractional interval programming problems with second order cone constraints
with both the objective and constraints being interval valued functions. There are several approaches
in the literature to solve such problems. Nonlinear interval optimization problems have been studied
in several directions by many researchers during the past few decades [1–4]. Most considered models
used quadratic programming problems with interval parameters. A methodology applied to interval
valued convex quadratic programming problems by Bhurjee and Panda [1] which categorized how a
solution of a general optimization problem can exist.

In the past few decades, fractional programming problems have also attracted the interest of
many researchers. These problems have applications in the real physical world such as finance,
production planning, electronic, etc. Fractional programming is being used for modelling real life
problems involving one or more objective(s) such as actual cost/standard cost, inventory/sales and
profit/cost. There are different algorithms to determine solutions of particular fractional programming
problems. For example, Charnes and Cooper [5] converted a linear fractional program (LFP) to a linear
program (LP) by a variable transformation technique. Tantawy [6] proposed an iterative method
based on a conjugate gradient projection method. Dinkelbach [7] considered the same objective
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over a convex feasible set. He also solved the same problem using a sequence of nonlinear convex
programming problems.

On the other hand, we know that the convexity of the SOCP (Second Order Cone Constraints)
problems are definite. The problems such as linear programs, convex quadratic programs and
quadratically constrained convex quadratic programs can be easily converted to SOCP problems;
for several other types of problems not falling into these three categories, see [8,9].

Lobo et al. [9] discussed several applications of SOCP in engineering. Nesterov and Nemirovski [10]
and Lobo et al. [9,11] showed several kinds of problems formulated as SOCP problems, such as filter
design, truss design, grasping force optimization in robotics, etc. In a pioneering paper, Nesterov
and Nemirovski [10] applied the concept of self-concordant barrier to SOCP problems and found
an iteration complexity of

√
m for problems with m second order cone inequalities.

Nestrov and Todd [12,13] were the first to investigate primal-dual interior methods for SOCP
problems in which they investigate their outcome in the form of optimization over self-scaled
cones having second order cones class as an especial case. Alizadeh & Goldfarb [8] considered
and overviewed a large class of SOCP problems. They showed that many optimization problems
such as linear programming (LP), quadratic programming (QP), quadratically constrained quadratic
programming (QCQP) and other types of optimization problems could be rewritten as SOCP problems.
They also demonstrated the method of converting different types of constraints into the form of SOC
inequalities. Furthermore, they described an algebraic foundation of SOCs and showed how robust
least squares and robust linear programming problems could be converted to SOCPs. The authors
of [8] also discussed duality and complementary slackness for SOCP with notions of primal and dual
non-degeneracy and strict complementarity along with logarithmic barrier function and primal-dual
path following interior point methods (IPMs) for SOCPs.

Kim and Kojima [14] showed that semi-definite programming (SDP) and SOCP relaxation
provide exact optimal solutions for a class of non-convex quadratic optimization problems. Moreover,
SDP problems can in fact be formulated as SOCP problems and solved as such. There are a number
of advantages for an SOCP problem. Adding a SOC constraint sometimes leads to negative decision
variables, which usually does not occur with LP problems unless we let the variables be free in sign
and usually get a much better solution, even though the dimension and convexity remain the same.

In our work here, we establish two results concerning efficient and properly efficient solutions of
interval programming problems constrained with a second order cone constraint. The remainder of
our work is organized as follows. In Section 2, the definitions and notations are provided. The interval
valued functions in parametric and non-parametric forms along with their convexity properties
are discussed in Section 3. In Section 4, we explain the existence of solutions for interval valued
optimization problems and establish certain results concerning the efficient and properly efficient
solutions of the interval problems involving SOC constraints. We also investigate the efficient solution
for interval fractional and non-fractional programming problems in Rn

+
⋃ {0}. In Section 5, some

numerical examples are worked through to verify the results on efficient and properly efficient solutions
using MATLAB software environment. We conclude in Section 6.

2. Definitions and Notations

Let I(R) be represented as the class of all closed intervals. A closed interval is shown by
M = [m, m̄], where m and m̄ are respectively the lower and upper bounds of M. For closed intervals
M, N, and k ∈ R, we have:

(i) M + N = {m + n : m ∈ M, n ∈ N} = [m + n, m̄ + n̄],
(ii) −M = {−m : m ∈ M},
(iii) kM = {km : m ∈ M}.
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Definition 1. If M = [m, m̄] and N = [n, n̄] are bounded, real valued intervals, then the multiplication of M
and N is defined to be

MN = {min{mn, mn̄, m̄n, m̄n̄}, max{mn, mn̄, m̄n, m̄n̄}}.

Let F(x) = F(x1, · · · , xn) be a closed interval in R, for each x ∈ Rn. The interval-valued function
F may be represented as F(x) = [F(x), F̄(x)], where F and F̄ are real-valued functions defined on Rn

and satisfy F(x) ≤ F̄(x), for every x ∈ Rn. We say that the interval-valued function F is differentiable
at x0 ∈ Rn if and only if the real-valued functions F(x) and F̄(x) are differentiable at x0. To know more,
see [2].

Let M = [m, m̄] and N = [n, n̄] be two closed intervals in R and the relation “�” be a partial
ordering on I(R). We write M � N if and only if m ≤ n and m̄ ≤ n̄. We also write M ≺ N if and only
if M � N and M 6= N, meaning that M is inferior to N, or N is superior to M.

A second order cone is defined as follows:

Qn = {x = (x1; x) ∈ Rn : x1 ≥‖ x ‖},

where ‖ · ‖ is the standard Euclidean norm, and n is the dimension of Qn; n is usually dropped from
the subscript. We refer to inequality x �Q 0 as the second-order cone inequality.

For the cone Q, let
bdQ = {x ∈ Q : x1 =‖ x ‖ and x 6= 0}

denote the boundary of Q without the origin 0. In addition, let

intQ = {x ∈ Q : x1 >‖ x ‖ }

denote the interior of Q.
We continue to present an overview of the SOCP problem. A standard form of an SOCP problem

is given by
(P1) : Min cT

1 x1 + . . . + cT
mxm

s.t. A1x1 + . . . + Amxm = b,
xi ∈ Qni i = 1, . . . , m,

with its dual being
(D1) : Max bTy

s.t. AT
i y + zi = ci, i = 1, . . . , m,

zi ∈ Qni , i = 1, . . . , m,

where Ai ∈ Rr×ni , b ∈ Rr, m is the number of blocks, n = ∑m
i=1 ni is the dimension of the problem,

ci, zi, xi ∈ Rni and y ∈ Rr [8].
We make the following assumptions regarding the primal-dual pair (P1) and (D1) [8].

Assumption 1. The matrix A = (A1, . . . , Am) has r linearly independent rows.

Assumption 2. Due to the strict feasibility of both primal and dual, there exists a vector x = (x1; . . . ; xm) for
every xi �Q 0, for i = 1, . . . , m, and dual-feasible y and z = (z1; . . . ; zm) such that zi �Q 0, for i = 1, . . . , m.

Remark 1. If problem (P1) has only one second order cone constraint, then the standard SOCP problem can be
written as

(P2) : Min cTx
s.t. Ax = b,

x ∈ Qn,

with its corresponding dual as
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(D2) : Max bTy
s.t. ATy + z = c,

z ∈ Qn.

Over time, we have seen a rapid development in improvement of software packages that can be
applied to the problems such as SOCPs and mixed SOCP problems. SeDuMi [11] is a widely available
package based on the Nesterov–Todd method.

3. Interval Valued Function

The definition of interval function in terms of functions of one and more intervals is given by
see [2–4]. Walster and Hansen and Moore [2] defined an interval function as a function of one or more
interval arguments onto an interval. Wu considered the interval valued function F : Rn −→ I(R) as
F(x) = [F(x), F̄(x)], where F, F̄ : Rn −→ R, F(x) ≤ F̄(x), ∀x ∈ Rn.

These functions may be defined on one or more interval arguments or maybe interval extension
of real valued functions. The interval valued function in parametric form, introduced by [4], is as
follows. For m(t) ∈ Mk

ν, let fm(t) : Rn −→ R. Then, for a given interval vector Mk
ν, an interval valued

function FMk
ν

: Rn −→ I(R) is defined

FMk
ν
(x) = { fm(t)(x)| fm(t) : Rn −→ R, m(t) ∈ Mk

ν}.

For every fixed x, if fm(t)(x) is continuous in t, then mint∈[0;1]k fm(t)(x) and maxt∈[0;1]k fc(t)(x)
exist. Then,

FMk
ν
(x) = [mint∈[0;1]k fm(t)(x), maxt∈[0;1]k fm(t)(x)].

If fm(t)(x) is linear in t, then mint∈[0,1]k fm(t)(x) and maxt∈[0,1]k fm(t)(x) exist. If fm(t)(x) is
monotonically increasing in t, then FMk

ν
= [ fm(0)(x), fm(1)(x)].

3.1. Interval Valued Convex Function

Interval valued convex function has the important property to guarantee the existence of solution
of the interval optimization problem.

Definition 2. [4] An interval valued function FMk
ν

: Rn −→ I(R) is said to be convex regarding� on a convex
set N ⊆ Rn, if for every x1, x2 ∈ N and 0 ≤ λ ≤ 1, we have

FMk
ν
(λx1 + (1− λ)x2) � λFMk

ν
(x1)⊕ (1− λ)FMk

ν
(x2).

Remark 2. From Definition 2, one may observe that FMk
ν

is convex regarding �, meaning that

fm(t)(λx1 + (1− λ)x2) ≤ λ fm(t)(x1) + (1− λ) fm(t)(x2),

for all t ∈ [0, 1]k; we can realize that FMk
ν
(x) is convex with respect to � iff fm(t)(x) is a convex function on N,

for every t.

3.2. Interval Valued Function in the Parametric Form

Let a binary operation on the set of real numbers be represented by ∗ ∈ {+, −, ., /}. The binary
operation ~ between two intervals M = [m, m̄] and N = [n, n̄] in I(R), denoted by M ~ N, is the
set {m ∗ n|m ∈ M, n ∈ N}. In the case of division, M/N, it is to be noted that 0 /∈ N. An interval
may be shown as a parameter form in several disciplines. Any point in M may be expressed as m(t),
where m(t) = m + t(m̄−m). Throughout our work, we consider a specific parametric representation
of an interval as M = [m, m̄] = {m(t)|t ∈ [0, 1]}. The algebraic operations over classical intervals can
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be represented as either lower or upper bounds of the intervals [1]. The parametric form of interval
operations can be represented as follows:

M ~ N = {m(t1) ∗ n(t2)|t1, t2 ∈ [0, 1]}.

In addition, Mk
ν ∈ (I(R))k, Mk

ν = (M1, M2, . . . , Mk)
T , can be expressed in terms of parameters as

Mk
ν = {m(t)|m(t) = (m1(t1), m2(t2), . . . , mk(tk))

T},

where mj(tj) ∈ Mj, mj(0) = ml
j, mj(1) = mu

j , t = (t1, t2, . . . , tk)
T , 0 ≤ tj ≤ 1.

4. Existence of Solutions

In this section, we consider the interval optimization problem as follows:

(P3) : minimize (min) FMk
ν
(x)

such that(s.t.) G
jN

mj
ν
(x) � Bj, j = 1, 2, . . . , p,

where Bj ∈ I(R), and the interval valued functions FMk
ν
, G

jN
mj
ν

: Rn −→ I(R) are the sets FMk
ν
(x) =

{ fm(t)(x)| fm(t) : Rn −→ R, m(t) ∈ Mk
ν} and G

jN
mj
ν

= {gjn(t′j)
(x)|gjn(t′j)

(x) : Rn −→ R, n(t′j) ∈ D
mj
ν }.

Discussion of the partial ordering is seen in Section 2, and the feasible space of (P3) is expressed
as the following set:

χ = {x ∈ Rn|G
jN

mj
ν
(x) � Bj, j = 1, 2, . . . , p}.

Definition 3. x∗ ∈ χ is said to be an efficient solution of (P3), if there does not exist any x ∈ χ with
fm(t)(x) ≤ fm(t)(x∗), ∀t ∈ [0; 1]k, and FMk

ν
(x) 6= FMk

ν
(x∗) [4].

Definition 4. x∗ ∈ χ is said to be a properly efficient solution of (P3), if x∗ ∈ χ is an efficient solution and
there exists a real number µ > 0 such that for some t ∈ [0; 1]k and all x ∈ χ with fm(t)(x) < fm(t)(x∗), at least
there is one t′ ∈ [0, 1]k, t 6= t′, exists with fm(t′)(x) > fm(t′)(x∗) and

fm(t)(x∗)− fm(t)(x)
fm(t′)(x)− fm(t′)(x∗)

≤ µ.

Consider the following optimization problem with respect to a weight function ω : [0, 1]k −→ R+ :

(P4) : minx∈χ

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ω(t) fm(t)(x)dt1dt2 . . . dtk,

where ω(t) = ω(t1, t2, . . . , tk). Here, t1, t2, . . . , tk are mutually independent and each ti varies from 0 to 1.
Thus,

∫ 1
0

∫ 1
0 · · ·

∫ 1
0 ω(t) fm(t)(x)dt1dt2 . . . dtk is a function of x only, say h(x). Thus, (P4) as minx∈χh(x)

is a general nonlinear programming problem free from interval uncertainty. The problem can be solved by a
nonlinear programming technique. The following theorem establishes the relationship between the solution of the
transformed problem (P4) and the original problem (P3) [4].

Theorem 1. If x∗ ∈ χ is an optimal solution of (P4), then x∗ is a properly efficient solution of (P3).

Proof. See [4].
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4.1. Alternative Method for Solving an Interval Problem with an SOC Constraint

Here, we consider a problem by applying the order relation “�” for the constraints as follows:

(P5) : Min F(x) = [F(x), F̄(x)]
s.t. Gi(x) � [bL

i , bU
i ], i = 1, 2, . . . , m,

x ∈ Qn,

where the Gi(x) = [Gi(x), Ḡi(x)] are interval-valued constraints. A point x = (x1, . . . , xn) is a feasible
solution of problem (P5), if Gi(x) � [bL

i , bU
i ], for i = 1, . . . , m, or equivalently, Gi(x) 6 bL

i and
Ḡi(x) 6 bU

i , for i = 1, 2, . . . , m. Then, the auxiliary interval-valued optimization problem (P5) can be
rewritten as follows:

(P6) : Min F(x) = [F(x), F̄(x)]
s.t. Gi(x) 6 bL

i , i = 1, 2, . . . , m,
Ḡi(x) 6 bU

i , i = 1, 2, . . . , m,
x ∈ Qn.

It is obvious that the feasible regions of problems (P5) and (P6) are the same and, since their
objective function is also the same, we have the same solution for both problems. The interval property
of problem (P6) incurs a very important concept called efficient space which is a new concept from
the optimization point of view.

Therefore, the interval-valued optimization problem (P6) is easily converted to a common form
as below:

(P7) : Min F(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

hi(x) ≤ 0, i = 1, 2, . . . , m,
x ∈ Qn,

where F : Rn → I(R) is an interval-valued function, and gi : Rn → R and hi : Rn → R, i = 1, . . . , m, are
real-valued functions. Let M = [m, m̄] and N = [n, n̄] be two closed intervals in R. We write M � N if
and only if m ≤ n and m̄ ≤ n̄, and we write M ≺ N iff N � N and M 6= N. Equivalently, M ≺ N iff{

m < n
m̄ ≤ n̄

or

{
m ≤ n
m̄ < n̄

or

{
m < n

m̄ < n̄.
(1)

We need to interpret the meaning of minimization for (P7). Since � is a partial ordering, not
a total ordering on I(R), we may follow the similar solution concept (efficient solution) used in
multi-objective programming problem to interpret the meaning of minimization in the primal problem
(P7). For the minimization problem (P7), we say that the feasible solution x is better than (dominates)
the feasible solution x∗, if F(x) < F(x∗). Therefore, we propose the following definition.

Definition 5. Let x∗ be a feasible solution of the primal problem (P7). We say that x∗ is an efficient solution of
(P7) if there exists no x ∈ X such that F(x) ≺ F(x∗). In this case, F(x∗) is called the efficient objective value
of F.

We denote the set of all efficient objective values of problem (P7) by Min(F, X). More precisely,
we write

Min(F, X) = {F(x∗)},

where x∗ is an efficient solution of (P7). Let m be a real number. Then, it can be represented as an interval
[m, m]. Let M = [m, m̄] be a closed interval. By M + m, we mean M + [m, m] = [m + m, m̄ + m].
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Now, consider the following optimization problem:

(P8) : Min f (x) = F(x) + F̄(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

hi(x) ≤ 0, i = 1, 2, . . . , m,
x ∈ Qn.

Obviously, if x∗ is an optimal solution of problem (P8), then x∗ is a nondominated solution of
problem (P7); see [4]. We may now focus here on the two results given as Theorems 2 and 3 below,
by which the optimal solutions of the problems (P9) and (P10) are indeed the efficient solutions of the
problem (P7):

(P9) : Min f (x) = F(x)F̄(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , m

hi(x) ≤ 0, i = 1, 2, . . . , m
F(x) > 0,

x ∈ Qn,

(P10) : Min f (x) = αF(x) + βF̄(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , m

hi(x) ≤ 0, i = 1, 2, . . . , m
x ∈ Qn,

where α and β are positive scalars.

Theorem 2. If x∗ is an optimal solution of problem (P9), then x∗ is an efficient solution of problem (P7).

Proof. We see that problems (P9) and (P7) have the same feasible region. Suppose that x∗ is not an efficient
solution. Then, there exists a feasible solution x such that F(x) ≺ F(x∗). From inequation (1), it means that{

F(x) < F(x∗)
F̄(x) ≤ F̄(x∗)

, or

{
F(x) ≤ F(x∗)
F̄(x) < F̄(x∗)

, or

{
F(x) < F(x∗)
F̄(x) < F̄(x∗)

.

This also shows that f (x) < f (x∗), which contradicts the fact that x∗ is an optimal solution of
problem (P7). This completes the proof.

Theorem 3. If x∗ is an optimal solution of problem (P10), then x∗ is an efficient solution of problem (P7).

Proof. We see that problems (P10) and (P7) have the same feasible region. Suppose that x∗ is not an efficient
solution. Then, there exists a feasible solution x such that F(x) ≺ F(x∗). From (1), it means that{

F(x) < F(x∗)
F̄(x) ≤ F̄(x∗)

or

{
F(x) ≤ F(x∗)
F̄(x) < F̄(x∗).

or

{
F(x) < F(x∗)

F̄(x) < F̄(x∗).

Then, we have{
αF(x) < αF(x∗)
βF̄(x) ≤ βF̄(x∗)

, or

{
αF(x) ≤ αF(x∗)
βF̄(x) < βF̄(x∗)

, or

{
αF(x) < αF(x∗)
βF̄(x) < βF̄(x∗)

.

This also shows that f (x) < f (x∗), which contradicts the fact that x∗ is an optimal solution of
problem (P7). This completes the proof.
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4.2. Interval Valued Convex Linear Programming Problem with SOC Constraint

An interval valued optimization problem (P3) is said to be an interval valued convex programming
problem, if FMk

ν
and G

jN
mj
ν

are convex functions with respect to � .

If (P3) is an interval valued convex programming problem, then P4 is a convex programming problem.
A general interval linear programming problem (P3) has the following form:

(P11) : Min Mk
ν♦x

s.t. Amx � Bp
ν ,

x ∈ Qn,

where Mk
ν ∈ (I(R))n, Bp

ν ∈ (I(R))n and Am = (Aij)p×n is an interval valued matrix with Aij = [al
ij, au

ij]

and Mk
ν♦x = ∑k

j=1 Mjxj, the product of a real vector x ∈ Rk and an interval vector Mk
ν ∈ (I(R)k).

5. Numerical Results

In this section, we consider three examples having various dimensions to illustrate the obtained
results. In order to solve problems using both theorems, we use the fmincon command of Matlab.
Notations are given in Table 1 and the results are summarized in Tables 2–4 and the corresponding
diagrams. We generate problems with different dimensions and report the required CPU times.
All computations are performed on MATLAB R2015a (8.5) using a laptop with Intel(R) Core i3 CPU
2.53 GHz and 5.00 GB of RAM.

We present computational results on Examples 1 and 2 to compare the results due to Theorems 2
and 3. To compare the obtained results for the numerical examples, we use different diagrams and
tables to show the advantages of the given Theorems 2 and 3 by showing that any solution of the
problem (P9) or (P10) is an efficient solution of the problem (P7). In addition, the efficient space for
different pairs of (α, β) is also shown, with the generated nonzero elements α taken randomly in the
interval (0, 1) and elements of vector β given in (0, n) with step length 1.

Example 1. Consider the interval programming problem with SOC constraint as follows:

(P12) : Min [ 7x1+x2
3x1+4x2+36 , 7x1+x2

3x1+4x2+12 ]

s.t. x1 + x2 ≤ 7,
4x1 − 9x2 ≤ 3,
x1 + 2x2 ≥ 1.5,
x ∈ Q2.

Example 2. Consider the interval programming problem with SOC constraint as follows:

(P13) : Min [ x1+3x2+1.5x3+3.5
x1+x2+2x3+1 , 2x1+7x2+2.5x3+4

.5x1+.75x2+7/8x3+.5 ]

s.t. x1 + 2x2 − x3 ≤ 6,
−2x1 + 3x2 + x3 ≤ 8,
x1 + x2 + x3 ≤ 13,
x ∈ Q3.

Example 3. Consider the interval programming problem with SOC constraint as follows:

(P14) : Min [−10,−6]x1 + [2, 3]x2

s.t. [1, 2]x1 + 3x2 � [1, 10],
[−2, 8]x1 + [4, 6]x2 � [4, 6],
x ∈ Q2.
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Table 1. Notations.

n Number of pairs corresponding to α and β related to Theorem 3
Exwsoc1 Example 1 without SOC constraint
Exsoc1 Example 1 with SOC constraint

Exwsoc2 Example 2 without SOC constraint
Exsoc2 Example 2 with SOC constraint
CPU CPU time in seconds

CPU.ratio The ratio of CPU times consumed by problem due to SOC constraint over without SOC constraint

Table 2. Objective function values using Theorems 2 and 3.

Applying Theorem 2 Applying Theorem 3

Example 1 −12 −0.003973
Example 2 4.0454 171.31

Table 3. CPU times corresponding to Example 1.

n CPU Time for Exwsoc1 CPU Time for Exsoc1 cpu.ratio

10 0.975 0.764 1.2762
50 4.013 2.760 1.454

100 7.353 5.320 1.3821
150 11.079 8.137 1.36155
200 14.674 10.543 1.392
250 18.435 12.890 1.43018
300 21.828 15.439 1.413822
350 25.269 18.388 1.37421
400 28.601 20.714 1.38076
450 32.044 22.860 1.40174
500 36.385 25.750 1.413
600 42.514 30.776 1.38140
700 49.899 35.852 1.39180
800 56.713 40.976 1.38405
900 64.219 45.873 1.39993
1000 71.645 51.256 1.398

Table 4. CPU times corresponding to Example 2.

n CPU Time for Exwsoc2 CPU Time for Exsoc2 cpu.ratio

10 1.621 1.225 1.32327
50 5.076 4.814 1.05442

100 9.608 9.154 1.0496
150 14.424 13.018 1.10800
200 18.695 17.185 1.02804
250 22.747 21.714 1.04752
300 26.842 25.866 1.03773
350 32.512 31.570 1.02983
400 36.399 33.455 1.0880
450 40.249 38.412 1.04782
500 45.471 42.775 1. 06303
600 54.623 52.015 1.05014
700 62.414 59.653 1.04628
800 71.676 68.400 1.04790
900 79.980 79.956 1.00030
1000 90.243 82.616 1.09231
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By our described methodology, we get a properly efficient solution. Here, t = (t1, t2)
T , tj ∈ [0, 1].

fm(t)(x) = (−10 + 4t1)x1 + (2 + t2)x2 and χ = {(x1, x2)|2x1 + 3x2 ≤ 1, 8x1 + 6x2 ≤ 4}.
For some ω(t) : R2 −→ R, the corresponding problem (P4) becomes:

(P15) : Minχ

∫ 1

0

∫ 1

0
ω(t)[(−10 + 4t1)x1 + (2 + t2)]x2dt1dt2.

This problem is an SOCP problem and can be solved by an interior point method.
If ω(t) = 2t1, then the properly efficient solution is x∗ = [0.2, 0.2] and the optimal interval is

[−1.6,−0.6] and efficient solution obtained by Theorem 2 is x∗ = [0.2, 0.2].
Table 2 shows the objective function values obtained using Theorems 2 and 3.
We see the results for various values of n in Table 3. The results for different values of n are

summarized in Tables 3 and 4. We observe that the CPU times for problems with SOC constraints is
lower than the ones for problems without SOC constraint.

Efficient spaces for Example 3 with SOC constraint for different n’s is given in the Figures 1–3 and
without SOC constraint for different n’s is illustrated in the Figures 4–6, where efficient space is a new
concept in efficiency literature.
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Figure 1. Efficient space for Example 3 with SOC constraint using n = 20.
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Figure 2. Efficient space for Example 3 with SOC constraint using n = 100.
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Figure 3. Efficient space for Example 3 with SOC constraint using n = 1000.
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Figure 4. Efficient space for Example 3 without SOC constraint using n = 20.
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Figure 5. Efficient space for Example 3 without SOC constraint using n = 100.
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Figure 6. Efficient space for Example 3 without SOC constraint using n = 1000.

6. Conclusions

A very important concept of SOCP is investigated here. We have paid our attention to consider the
interval fractional programming problem with second order cone constraints. To solve such problems,
we established two important results concerning the efficient and properly efficient solutions of the
second-order cone constrained interval programming problems. In addition and furthermore, a new
notion of efficiency called efficient space was proposed due to interval form of the objective function
and the corresponding obtained results were summarized in Tables 3 and 4 and simultaneously in
Figures 1–6 with efficient spaces related to upper and lower bound properties of the interval problem.
To illustrate the performance of our methodology, a few numerical examples were worked through to
represent the importance of the study. The numerical results showed that the CPU times needed for
solving problems with second order cone constraints are less than the ones for the problem without
second-order cone constraints, which is a very important issue.
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