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Abstract: In this paper, we introduce the notion of (α, β, ψ)-contraction for a pair of mappings (S, T)
defined on a set X. We use our new notion to create and prove a common fixed point theorem for
two mappings defined on a metric space (X, d) under a set of conditions. Furthermore, we employ
our main result to get another new result. Our results are modifications of many existing results in
the literature. An example is included in order to show the authenticity of our main result.
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1. Introduction and Preliminaries

The importance of fixed point theories lies in finding and proving the uniqueness of solutions
for many questions of Applied Sciences such as Physics, Chemistry, Economics, and Engineering.
The pioneer mathematician in the area of fixed point theory was Banach, who established and proved
the first fixed point theorem named the “Banach contraction theorem” [1]. After that, many authors
formulated and established many contractive conditions to modify the Banach contraction theorem
in many different directions. Khan [2] introduced the altering distance mapping to formulate a
new contractive condition in fixed point theory in order to extend the Banach fixed point theorem
to new forms. For some extension to the Banach contraction theorem, we ask the readers to see
References [3–20]. Recently, Abodyeh et al. [21] introduced a new notion, named almost perfect
function, to formulate new contractive conditions to modify and extend some fixed point theorems
known in the literature.

Now, we mention the notions of altering distance function and almost perfect function:

Definition 1 ([2]). A self-function ψ on R+ ∪ {0} is called an altering distance function if ψ satisfies the
following conditions:

1. ψ(s) = 0⇐⇒ s = 0.
2. ψ is a nondecreasing and continuous function.

Definition 2 ([21]). A nondecreasing self-function ψ on R+ ∪ {0} is called an almost perfect function if ψ

satisfies the following conditions:

1. ψ(s) = 0⇐⇒ s = 0.
2. If for all sequence (sn) in R+ ∪ {0} with ψ(sn)→ 0 it holds sn → 0.

One of the most important notions in fixed point theory to derive new contractive conditions is
α-admissibility, which were introduced by Samet et al. [22]. Then, E. Karapıner et al. [23] generated
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the concept of triangular α-admissibility. In meantime, Abdeljawad [24] expanded the notion of
α-admissibility to a pair of functions. For some fixed point theorems on α-admissibility, we direct
readers to read References [25–31].

The notions of α−admissibility mapping and α-admissibility for a pair of mappings are introduced
as follows:

Definition 3 ([22]). Let S be a self-mapping on X and α: X× X → R+ ∪ {0} be a function. Then, S is called
α-admissible if for all v, w ∈ X with α(v, w) ≥ 1 it holds α(Sv, Sw) ≥ 1.

The definition of triangular α-admissibility for a single mapping is:

Definition 4 ([23]). Let S be a self-mapping on X and α: X × X → R+ ∪ {0}. Then, we call S triangular
α-admissible if

1. S is α-admissible; and
2. For all v, w, u ∈ X with α(v, w) ≥ 1 and α(w, u) ≥ 1 it holds α(v, w) ≥ 1.

Definition 5 ([24]). Let S and T be two self mappings on X and α: X× X → R+ ∪ {0} be a function. Then,
the pair (S, T) is called α-admissible if z, w ∈ X and α(z, w) ≥ 1 imply α(Sz, Tw) ≥ 1 and α(Tz, Sw) ≥ 1.

In our work we need the following definitions:

Definition 6 ([30]). Let d be a metric on a set X and α, β: X× X → R+ ∪ {0} be functions. Then, X is called
α, β-complete if and only if {xn} is a Cauchy sequence in X and α(xn, xn+1) ≥ β(xn, xn+1) for all n ∈ N
imply (xn) converges to some x ∈ X.

Definition 7 ([30]). Let d be a metric on a set X and α, η: X× X → R+ ∪ {0} be functions. A self-mapping
T on X is called α, β-continuous if {xn} is a sequence in X, xn → x as n→ ∞ and α(xn, xn+1) ≥ β(xn, xn+1)

for all n ∈ N imply Txn → Tx as n→ ∞.

In this paper, we introduce a new contractive condition of type (α, β, ψ)-admissibility for a pair of
mappings (S, T) defined on a set X. We utilize our new contractive condition to formulate and prove a
common fixed point theorem for two self-mappings defined on a metric space (X, d) under a set of
conditions. Then, we utilize our main result to obtain some fixed point results.

This paper is divided into three sections. In the first section, we collect all necessary definitions
and preliminaries that cover the subject of our paper. In Section 2, we give our new definitions and
our main result. In addition, we give an example to validate our main result. In Section 3, we write
our conclusion.

2. Main Results

We begin our work with the following new definition:

Definition 8. Let S, T be two self-mappings on the set X and α, β : X× X → R+ ∪ {0} be functions. We say
that (S, T) is a pair of (α, β)-admissibility if z, w ∈ X and α(z, w) ≥ β(z, w) imply α(Sz, Tw) ≥ β(Sz, Tw)

and α(Tz, Sw) ≥ β(Tz, Sw).

Example 1. Define self-mappings S and T on a set of real numbers by Sv = v2 and

Tv =

{
−v2, if v < 0;
v2, if v ≥ 0.
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Additionally, define α, β : X× X → R+ ∪ {0} via α(v, w) = ev+w and β(v, w) = ev. Then, (S, T) is a pair of
(α, β)-admissibility.

Proof. Let v, w ∈ X such that α(v, w) ≥ β(v, w). Then, ev+w ≥ ev. So v + w ≥ v and hence w is a
nonnegative real number. Therefore

α(Sv, Tw) = α(v2, w2) = ev2+w2 ≥ ev2
= β(Sv, Tw).

Consequently, α(Sv, Tw) ≥ β(Sv, Tw).
Now, if v ≥ 0, then

α(Tv, Sw) = α(v2, w2) = ev2+w2 ≥ ev2
= β(Tv, Sw).

While, if v < 0, then

α(Tv, Sw) = α(−v2, w2) = e−v2+w2 ≥ e−v2
= β(Tv, Sw).

α(Tv, Sw) ≥ β(Tv, Sw).

Definition 9. Let ψ be a nondecreasing function on R+ ∪ {0}. We call ψ a perfect function if the following
conditions hold:

1. ψ(t) = 0⇐⇒ t = 0.
2. If (tn) is a sequence in R+ ∪ {0} and ψ(tn)→ 0 as n→ +∞ implies tn → 0 as n→ +∞.
3. ψ(u + v) ≤ ψ(u) + ψ(v) for all u, v ∈ R+ ∪ {0}.

Example 2. Define the self-function ψ on R+ ∪ {0} by

ψ(u) =

{
ln(1 + u), if u ≤ 1;
1, if u > 1.

Then, ψ is a perfect function.

Our main definition in this paper is:

Definition 10. Let d be a metric on a set X. Let S, T be two self-mappings on X, ψ be a perfect self-mapping on
R+ ∪ {0}, α, β : X × X → R+ ∪ {0} be functions. We say that the pair (S, T) is an (α, β, ψ)-contraction if
there exists k ∈ [0, 1) such that z, w ∈ X and α(z, w) ≥ β(z, w) imply

ψ(d(Sz, Tw)) ≤ max
{

kψ(d(z, w)), kψ(d(z, Sz)), kψ(d(w, Tw)), kψ(d(w, Sz)),
1
2

kψ(d(z, Tw))

}
(1)

and

ψ(d(Tz, Sw)) ≤ max
{

kψ(d(z, w)), kψ(d(z, Tz)), kψ(d(w, Sw)), kψ(w, Tz),
1
2

ψ(d(z, Sw))

}
. (2)

Example 3. Define d : [0, 1
4 ] × [0, 1

4 ] → R+ ∪ {0} by d(v, w) = |v − w| and S, T: [0, 1
4 ] → [0, 1

4 ] by
Su = u2 and Tu = u4. Also define the self-function ψ on R+ ∪ {0} by ψ(s) = s

1+s and the functions α, β:
[0, 1

4 ]× [0, 1
4 ]→ R+ ∪ {0} by α(u, w) = eu and β(u, w) = eu+w. Then, (S, T) is an (α, β, ψ)-contraction.
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Proof. Given v, w ∈ [0, 1
4 ] is such that α(v, w) ≥ β(v, w). Then, ev ≥ ev+w. Therefore, we conclude that

w = 0. Since v ≤ 1
4 , we have

ψ(d(Sv, Tw)) = ψ(d(v2, 0)) = ψ(v2) =
v2

1 + v2 ≤
1
4

v
1 + v

=
1
4

ψ(d(v, w))

and

ψ(d(Tv, Sw)) = ψ(d(v4, 0)) = ψ(v4) =
v4

1 + v4 ≤
1
4

v
1 + v

=
1
4

ψ(d(v, w)).

So the pair (S, T) is an (α, β, ψ)-contraction.

The main result of this paper is:

Theorem 1. On the set X, let α, β : X× X → R+ ∪ {0} be two functions and S, T: X → X be two mappings.
Assume there exists a metric d on X such that the following hypotheses hold:

1. (X, d) is an α, β-complete metric space.
2. S and T are α, β-continuous.
3. (S, T) is an (α, β, ψ)-contraction.
4. (S, T) is a pair of (α, β)-admissibility.
5. If v, w, z ∈ X satisfy the condition α(v, w) ≥ β(v, w) and α(w, z) ≥ β(w, z), then α(v, z) ≥ β(v, z).
6. There exists x0 ∈ X such that α(Sx0, TSx0) ≥ β(Sx0, TSx0) and α(TSx0, Sx0) ≥ β(TSx0, Sx0).

Then, both mappings S and T have a common fixed point.

Proof. In view of hypothesis (6), we start with x0 ∈ X in such a way that α(Sx0, TSx0) ≥ β(Sx0, TSx0)

and α(TSx0, Sx0) ≥ β(TSx0, Sx0). Now, let x1 = Sx0 and x2 = Tx1. Then, α(x0, x1) ≥ β(x0, x1) and
α(x1, x0) ≥ β(x1, x0). In view of hypothesis (4), we have

α(x1, x2) = α(Sx0, Tx1) ≥ β(Sx0, Tx1) = β(x1, x2)

and
α(x2, x1) = α(Tx1, Sx0) ≥ β(Tx1, Sx0) = β(x1, x2).

Again, we put x3 = Sx2. Then, hypothesis (4) implies that

α(x2, x3) = α(Tx1, Sx2) ≥ β(Tx1, Sx2) = β(x2, x3)

and
α(x3, x2) = α(Sx2, Tx1) ≥ β(Sx2, Tx1) = β(x3, x2).

Putting x4 = Tx3 and referring to hypothesis (4), we conclude

α(x3, x4) = α(Sx2, Tx3) ≥ β(Sx2, Tx3) = β(x3, x4)

and
α(x4, x3) = α(Tx3, Sx2) ≥ β(Tx3, Sx2) = β(x4, x3).

Continuing in the same manner, we construct a sequence (xn) in X with x2n+1 = Sx2n and
x2n+2 = Tx2n+1 such that

α(xn, xn+1 ≥ β(xn, xn+1) ∀ n ∈ N

and
α(xn+1, xn) ≥ β(xn+1, xn) ∀ n ∈ N.

From hypothesis (5), we see that
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α(xn, xm) ≥ β(xn, xm) ∀ n, m ∈ N.

If there exists t ∈ N such that x2t = x2t+1, then x2t = Sx2t+1 and hence S has a fixed point.
From contractive condition (1), we have

ψ(d(x2t+1, d(x2t+2)

= ψ(d(Sx2t, Tx2t+1))

≤ max
{

kψ(d(x2t, x2t+1)), kψ(d(x2t, Sx2t+1)),

kψ(d(x2t+1, Tx2t+1)), kψ(d(x2t+1, Sx2t)),
1
2

kψ(d(x2t, Tx2t+1))

}
≤ max

{
kψ(d(x2t+1, x2t+2)),

1
2

kψ(d(x2t, x2t+2))

}
≤ max

{
kψ(d(x2t+1, x2t+2)),

1
2

kψ(d(x2t+1, x2t+2))

}
≤ kψ(d(x2t+1, x2t+2)).

The last inequality is correct only if ψ(d(x2t+1, x2t+2)) = 0. The properties of ψ and d imply that
x2t+1 = x2t+2. Hence, x2t = Sx2t = Tx2t. Thus, S and T have a common fixed point of S and T.

If there is a natural number t with x2t+1 = x2t+2, then x2t+1 = Tx2t+1 and hence T has a
fixed point. From contractive condition (2), we have

ψ(d(x2t+2, d(x2t+3)

= ψ(d(Tx2t+1, Sx2t+2))

≤ max
{

kψ(d(x2t+1, x2t+2)), kψ(d(x2t+1, Tx2t+1)), kψ(d(x2t+2, Sx2t+2)),

kψ(d(x2t+2, Tx2t+1)),
1
2

kψ(d(x2t+1, Sx2t+2))

}
≤ max

{
kψ(d(x2t+2, x2t+3)),

1
2

kψ(d(x2t+1, x2t+3))

}
≤ max

{
kψ(d(x2t+2, x2t+3)),

1
2

kψ(d(x2t+2, x2t+3))

}
≤ kψ(d(x2t+2, x2t+3)).

The last inequality holds only if ψ(d(x2t+2, x2t+3)) = 0. The properties of ψ and d imply that
x2t+2 = x2t+3. Hence x2t+1 = Sx2t+1 = Tx2t+1. Thus, we conclude that x2t+1 is a common fixed point
of S and T.

Now, assume that xn 6= xn+1 ∀ n ∈ N.
For n ∈ N∪ {0}, we get

ψ(d(x2n+1, x2n+2))

= ψ(d(Sx2n, Tx2n+1))

≤ max
{

kψ(d(x2n, x2n+1)), kψ(d(x2n, Sx2n)), kψ(d(x2n+1, Tx2n+1)),

kψ(d(x2n+1, Sx2n)),
1
2

kψ(d(x2n, Tx2n+1))

}
= max

{
kψ(d(x2n, x2n+1)), kψ(d(x2n+1, x2n+2)),

1
2

kψ(d(x2n, x2n+2))

}
= max

{
kψ(d(x2n, x2n+1)), kψ(d(x2n+1, x2n+2))

}
.
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Thus, if

max{kψ(d(x2n, x2n+1)), kψ(d(x2n+1, x2n+2))} = kψ(d(x2n+1, x2n+2)),

then ψ(d(x2n+1, x2n+2)) ≤ kψ(d(x2n+1, x2n+2)). Since k < 1, condition (1) on ψ implies that
x2n+1 = x2n+2, a contradiction. Therefore,

max{kψ(d(x2n, x2n+1)), kψ(d(x2n+1, x2n+2))} = kψ(d(x2n, x2n+1)).

Hence,

ψ(d(x2n+1, x2n+2)) ≤ kψ(d(x2n, x2n+1)). (3)

Using arguments similar to the above, we may show that

ψ(d(x2n, x2n+1)) ≤ kψ(d(x2n−1, x2n)). (4)

Combining Equations (3) and (4) together, we reach

ψ(d(xn, xn+1)) ≤ kψ(d(xn−1, xn)). (5)

By recurring Equation (5) n-times, we deduce

ψ(d(xn, xn+1)) ≤ kψ(d(xn−1, xn))

≤ k2ψ(d(xn−2, xn−1))

...

≤ knψ(d(x0, x1)). (6)

On allowing n→ +∞ in Equation (6), we get

lim
n→+∞

ψ(d(xn, xn+1)) = 0. (7)

Condition (2) on the function ψ implies that

lim
n→+∞

d(xn, xn+1) = 0. (8)

We intend to prove that (xn) is a Cauchy sequence in X, take n, m ∈ N with m > n. We divide the
proof into four cases:

Case 1: n is an odd integer and m is an even integer.
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Therefore, there exist s ∈ N and an odd integer h such that n = 2s + 1 and m = n + h = 2s + 1+ h.
Since α(xn, xm) ≥ β(xn, xm), we have

ψ(d(xn, xm))

= ψ(d(x2s+1, x2s+1+h))

= ψ(d(Sx2s, Tx2s+h))

≤ max
{

kψ(d(x2s, x2s+h)), kψ(d(x2s, Sx2s)), kψ(d(x2s+h, Tx2s+h)),

kψ(d(x2s+h, Sx2s)),
1
2

kψ(d(x2s, Tx2s+h))

}
≤ max

{
kψ

( 2s+h−1

∑
j=2s

d(xj, xj+1)

)
, kψ(d(x2s, x2s+1)), kψ(d(x2s+h, x2s+h+1)),

kψ(d(x2s+h, x2s+1)),
1
2

kψ(d(x2s, x2s+h+1))

}
≤ max

{
k

2s+h−1

∑
j=2s

ψ(d(xj, xj+1)), kψ(d(x2s, x2s+1)), kψ(d(x2s+h, x2s+h+1)),

kψ

( 2s+h−1

∑
j=2s+1

d(xj, xj+1)

)
,

1
2

kψ

( 2s+h

∑
j=2s

d(xj, xj+1)

)}

≤ max
{

k
2s+h−1

∑
j=2s

ψ(d(xj, xj+1)), kψ(d(x2s, x2s+1)), kψ(d(x2s+h, x2s+h+1)),

k
2s+h−1

∑
j=2s+1

ψ(d(xj, xj+1)),
1
2

k
2s+h

∑
j=2s

ψ(d(xj, xj+1))

}

≤ max
{

k
+∞

∑
j=2s

ψ(d(xj, xj+1)), kψ(d(x2s, x2s+1)), kψ(d(x2s+h, x2s+h+1))

}

≤ max
{

k2s+1

1− k
ψ(d(x0, x1)), kψ(d(x2s, Sx2s)), kψ(d(x2s+h, Sx2s+h))

}
.

By permitting n, m→ +∞ in above inequalities and considering Equation (7), we have

lim
n→+∞

ψ(d(xn, xm)) = 0.

The properties of ψ imply that

lim
n→+∞

d(xn, xm) = 0. (9)

Case 2: n and m are both even integers.
Applying the triangular inequality of the metric d, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm).

Letting n→ +∞ and in view of Equations (8) and (9), we get limn,m→+∞ d(xn, xm) = 0.

Case 3: n is an even integer and m is an odd integer.
Applying the triangular inequality of the metric d, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm−1) + d(xm−1, xm).
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On permitting n→ +∞ and considering Equations (8) and (9), we get limn,m→+∞ d(xn, xm) = 0.

Case 4: n and m are both odd integers. Applying the triangular inequality of the metric d, we have

d(xn, xm) ≤ d(xn, xm−1) + d(xm−1, xm).

On permitting n→ +∞ and in view of Equations (8) and (9), we get limn,m→+∞ d(xn, xm) = 0.
Combining all cases with each other, we conclude that

lim
n,m→+∞

d(xn, xm) = 0.

Thus, we conclude that (xn) is a Cauchy sequence in X. The α, β-completeness of the metric space
(X, d) ensures that there is x ∈ X such that xn → x. Using the α, β-continuity of the mappings S and T,
we deduce that
x2n+1 = Sx2n → Sx and x2n+2 = Tx2n+1 → Tx. By uniqueness of limit, we obtain Sx = Tx = x. Thus,
x is a fixed point of S.

Corollary 1. Let d be a metric on the set X, let α, β: X×X → R+ ∪{0} be functions and S, T be self-mappings
on X. Assume following hypotheses:

1. (X, d) is an α, β-complete metric space.
2. S and T are α, β-continuous.
3. (S, T) is a pair of (α, β)-admissibility.
4. There exist positive numbers a1, a2, a3, a4 and a5 with a1 + a2 + a3 + a4 + 2a5 < 1 and a perfect function

ψ such that if z, w ∈ X are so that α(z, w) ≥ β(z, w), then

ψ(d(Sz, Tw)) ≤ a1ψ(d(z, w)) + a2ψ(d(z, Sz)) + a3ψ(d(w, Tw)) + a4ψ(d(w, Sz)) + a5ψ(d(z, Tw))

and

ψ(d(Tz, Sw)) ≤ a1ψ(d(z, w)) + a2ψ(d(z, Tz)) + a3ψ(d(w, Sw)) + a4ψ(d(w, Tz)) + a5ψ(d(z, Sw)).

5. If v, w, z are in X, with α(v, w) ≥ β(v, w) and α(w, z) ≥ β(w, z), then α(v, z) ≥ β(v, z).
6. There exists x0 ∈ X such that

α(Sx0, TSx0) ≥ β(Sx0, TSx0) and α(TSx0, Sx0) ≥ β(TSx0, Sx0).

Then S and T have a common fixed point.

Example 4. Define d : [0,+∞)× [0,+∞)→ [0,+∞) by

d(z, w) =

{
max{z, w}, if z 6= w;
0, if z = w.

Let S, T be two self-mappings on [0,+∞) defined by Sz = 1
2 sin2(z) and Tz = 1

4 sin2(z). In addition, define the
function ψ: [0,+∞)→ [0,+∞) by ψ(s) = s

1+s .
Furthermore, we define the functions α, β : X× X → [0,+∞) by

α(s, t) =

{
es+t, if s, t ∈ [0, 1];
0, if s > 1 or t > 1,

and
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β(s, t) =

{
es, if s, t ∈ [0, 1];
1, if s > 1 or t > 1.

Then:

1. ψ is a perfect function.
2. There exists x0 ∈ X such that

α(Sx0, S2x0) ≥ β(Sx0, S2x0)) and α(S2x0, Sx0) ≥ β(S2x0, Sx0)).

3. (S, T) is a pair of (α, β)-admissibility.
4. S and T are α, β-continuous.
5. (X, d) is an α, β-complete metric space.
6. (S, T) is an (α, β, ψ)-contraction.

Proof. It is an easy matter to see Equations (1)–(3). To prove Equation (4), let (xn) be any sequence
in [0,+∞) such that xn → x ∈ [0,+∞) and α(xn, xn+1) ≥ β(xn, xn+1) for all n ∈ N. Thus, xn ∈ [0, 1]
for all n ∈ N. If xn = x for all but finitely many, we conclude that Sxn → Sx as n → +∞. If
xn 6= x for all but finitely many, we notice that x = 0. Hence, xn → 0 in ([0, 1], |.|). Therefore,
max{ 1

2 sin2 xn, 0} → 0 = Sx in ([0,+∞), d); that is, S is α, β-continuous.
To prove (5), let (xn) be a Cauchy sequence in ([0,+∞), d) such that α(xn, xn+1 ≥ β(xn, xn+1).

Then, xn ∈ [0, 1] for all n ∈ N. If there exists x ∈ [0, 1] such that xn = x for all but finitely many,
then xn → x as n → +∞. Now, suppose the elements of (xn) are distinct for all but finitely many.
Given ε > 0, since (xn) is a Cauchy sequence in ([0,+∞), d), then there exists n0 ∈ N such that
max{xn, xm} < ε for all m > n ≥ n0. Therefore, max{xn, 0} < ε for all n ≥ n0. So, xn → 0 in
([0,+∞), d). Thus, ([0,+∞), d) is an α, β-complete metric space.

To prove (6), let z, w ∈ X be such that α(z, w) ≥ β(z, w). Then, z, w ∈ [0, 1]. So

ψ(d(Sz, Tw)) = ψ

(
d
(

1
2

sin2z,
1
4

sin2w
))

= ψ

(
max

{
1
2

sin2z,
1
4

sin2w
})

=

max
{

1
2 sin2z, 1

4 sin2w
}

1 + max
{

1
2 sin2z, 1

4 sin2w
}

=

max
{

sin2z, 1
2 sin2w

}
2 + max

{
sin2z, 1

2 sin2w
}

≤ 4
5

( max
{

sin2z, sin2w
}

1 + max
{

sin2z, sin2w
})

≤ 4
5

(
max{z, w}

1 + max{z, w}

)
=

4
5

ψ(d(z, w))

≤ max
{

4
5

ψ(d(z, w)),
4
5

ψ(d(z, Sz)),
4
5

ψ(d(w, Tw)),
4
5

d(w, Sz),
4

10
d(z, Tw)]

)}
.
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Similarly, we can show that

ψ(d(Tz, Sw)) ≤ max
{

4
5

ψ(d(z, w)),
4
5

ψ(d(z, Tz)),
4
5

ψ(d(w, Sw)),
4
5

d(w, Tz),
4
10

d(z, Sw)]

)}
.

Hence, S and T satisfy Definition 2.3 for k = 4
5 . Therefore, S and T satisfy all the conditions of

Theorem 1. Therefore, S and T have a common fixed point.

Remark 1

1. By taking S = T in Theorem 1 and Corollary 1, we can formulate and get some fixed point results.
2. By Defining the self-function ψ on [0,+∞) via ψ(t) = t, and the two functions α, β: X× X → [0,+∞)

via α(s, t) = β(s, t) = 1 in Theorem 1 and Corollary 1, we may formulate and get some common fixed
point results.

3. Conclusions

New notions of (α, β)-admissibility and (α, β)-contraction for a pair of self-mappings on a set X
are given. According to these notions, we introduced and proved our main result. Additionally, we
gave an example to validate our main result.

Acknowledgments: The author thanks the reviewers for their valuable remarks on our paper. Also, the author
thanks Prince Sultan University for supporting this paper through the research group Nonlinear Analysis Methods
in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math.
1922, 3, 133–181. [CrossRef]

2. Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust.
Math. Soc. 1984, 30, 1–9. [CrossRef]

3. Alsamir, H.; Noorani, M.S.; Shatanawi, W. On fixed points of (η, θ)-quasicontraction mappings in generalized
metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4651–4658. [CrossRef]

4. Cho, Y.J.; Rhoades, B.E.; Saadati, R.; Samet, B.; Shatanawi, W. Nonlinear coupled fixed point theorems in
ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012, 8, 1–14. [CrossRef]

5. Aydi, H.; Postolache, M.; Shatanawi, W. Coupled fixed point results for (ψ, φ)-weakly contractive mappings
in ordered G-metric spaces. Comput. Math. Appl. 2012, 63, 298–309. [CrossRef]

6. Karapinar, E. Generalizations of Caristi Kirks Theorem on Partial Metric Spaces. Fixed Point Theory Appl.
2011, 4, 1–7.

7. Karapinar, E. Discussion on α − ψ Contractions on Generalized Metric Spaces. Abstr. Appl. Anal. 2014.
[CrossRef]

8. Mustafa, Z.; Aydi, H.; Karapinar, E. Mixed g-monotone property and quadruple fixed point theorems in
partially ordered metric spaces. Fixed Point Theory Appl. 2012, 71, 1–19. [CrossRef]

9. Alharbi, A.S.S.; Alsulami, H.H.; Karapinar, E. On the Power of Simulation and Admissible Functions in
Metric Fixed Point Theory. J. Funct. Spaces. 2017. [CrossRef]

10. Karapinar, E.; Samet, B. A note on ψ-Geraghty type contractions. Fixed Point Theory Appl. 2014, 26, 1–5.
[CrossRef]

11. Du, WS.; Karapinar, E. A note on Caristi-type cyclic maps: Related results and applications. Fixed Point
Theory Appl. 2013, 344, 1–13. [CrossRef]

12. Ding, HS.; Karapinar, E. Meir-Keeler type contractions in partially ordered G-metric spaces. Fixed Point
Theory Appl. 2013, 35, 1–10. [CrossRef]

13. Isik, H.; Turkoglu, D. Common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric
spaces. Fixed Point Theory Appl. 2013, 131, 1–6.

http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1017/S0004972700001659
http://dx.doi.org/10.22436/jnsa.009.06.104
http://dx.doi.org/10.1186/1687-1812-2012-8
http://dx.doi.org/10.1016/j.camwa.2011.11.022
http://dx.doi.org/10.1155/2014/962784
http://dx.doi.org/10.1186/1687-1812-2012-71
http://dx.doi.org/10.1155/2017/2068163
http://dx.doi.org/10.1186/1687-1812-2014-26
http://dx.doi.org/10.1186/1687-1812-2013-344
http://dx.doi.org/10.1186/1687-1812-2013-35


Mathematics 2018, 6, 261 11 of 11

14. Abdeljawad, T.; Alzabut, J.; Mukheimer, A.; Zaidan, Y. Best Proximity Points For Cyclical Contraction
Mappings With 0-Boundedly Compact Decompositions. J. Comput. Anal. Appl. 2013, 15, 678–685.

15. Abdeljawad, T.; Alzabut, J.; Mukheimer, A.; Zaidan, Y. Banach contraction principle for cyclical mappings
on partial metric spaces. Fixed Point Theory Appl. 2012, 154, 1–7. [CrossRef]

16. Shatanawi, W.; Al-Rawashdeh, A. Common fixed points of almost generalized (ψ, φ)-contractive mappings
in ordered metric spaces. Fixed Point Theory Appl. 2012, 80, 1–14.

17. Shatanawi, W.; Noorani, MS.; Alsamir, H.; Bataihah, A. Fixed and common fixed point theorems in partially
ordered quasimetric spaces. J. Math. Computer Sci. 2016, 16, 516–528. [CrossRef]

18. Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered
metric spaces. Fixed Point Theory Appl. 2011, 68, 1–15. [CrossRef]

19. Shatanawi, W.; Samet, B. On (ψ, φ)-weakly contractive condition in partially ordered metric spaces. Comput.
Math. Appl. 2011, 62, 3204–3214. [CrossRef]

20. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction
condition based on ultra distance functions. Nonlinear Anal. Model. Control 2018, 23, 724–748. [CrossRef]

21. Abodayeh, K.; Shatanawi, W.; Bataihah, A.; Ansari, AH.; Some fixed point and common fixed point results
through Ω-distance under nonlinear contractions. GU J. Sci. 2017, 30, 293–302.

22. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for a α-ψ-contractive type mappings. Nonlinear Anal. 2012,
75, 2154–2165. [CrossRef]

23. Karapınar, E.; Kumam P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013,
94, 1–13. [CrossRef]

24. Abdeljawad, T. Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl.
2013, 19, 1–10.

25. Al-Rawashdeha, A.; Aydi, H.; Abdelbasset, F.; Sahmim, S.; Shatanawi, W. On common fixed points for
α-F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [CrossRef]

26. Ansari, AH.; Kaewcharoen, J. C-Class Functions and fixed point theorems for generalized
α-η-ψ-ϕ-F-contraction type mapping in α-η-complete metric space. Nonlinear Sci. Appl. 2016, 9, 4177–4190.
[CrossRef]

27. Shatanawi, W.; Abodayeh, K. Common fixed point for mapping under contractive condition based on almost
perfect functions and α-admissibility. Nonlinear Funct. Anal. Appl. 2018, 23, 247–257.

28. Hussain, N.; Arshad, M.; Shoaib, A. Common fixed point results for α-ψ-contractions on a metric space
endowed with graph. J. Inequal. Appl. 2014, 136, 1–14.

29. Hussain, N.; Salimi, P.; Latif, A. Fixed point results for single and set-valued a α-η-ψ- contractive mappings.
Fixed Point Theory Appl. 2013, 212, 1–23. [CrossRef]

30. Hussain, N.; Kutbi, MA.; Salimi, P. Fixed Point Theory in α-complete metric spaces with applications.
Abstr. Appl. Anal. 2014. [CrossRef]

31. Salimi, P.; Latif, A.; Hussain, N. Modified a α-ψ-Contractive mappings with applications. Fixed Point Theory
Appl. 2013, 151, 1–19. [CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1687-1812-2012-154
http://dx.doi.org/10.22436/jmcs.016.04.05
http://dx.doi.org/10.1186/1687-1812-2011-68
http://dx.doi.org/10.1016/j.camwa.2011.08.033
http://dx.doi.org/10.15388/NA.2018.5.6
http://dx.doi.org/10.1016/j.na.2011.10.014
http://dx.doi.org/10.1186/1687-1812-2013-94
http://dx.doi.org/10.22436/jnsa.009.05.128
http://dx.doi.org/10.22436/jnsa.009.06.60
http://dx.doi.org/10.1186/1687-1812-2013-212
http://dx.doi.org/10.1155/2014/280817
http://dx.doi.org/10.1186/1687-1812-2013-151
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Main Results
	Conclusions
	References

