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Abstract: There are situations in which one needs to write various kinds of mathematical expressions,
such as practicing tests and school exams. There is a variety of methods to produce such expressions,
but they are usually based on a database. This paper addresses the production of new expressions
using the template ones that can be derived from the evaluation process or entered by users.
With special limitations on the values of parameters, some templates can be dynamically constructed
for the automatic generation of mathematical expressions and represented in the form of classes.
For this purpose, a new type of grammar is proposed. This grammar is similar to Context-Free
Grammar, but it empowers the producer to gain control over the generation of rules for different
expressions. Our work mainly focuses on generating mathematical expressions in a user-oriented
way, using a predefined set of templates of production rules. The production of expressions is not
completely random, and is based on the defined subject.

Keywords: mathematical expression; expression generation; dynamic template; automatic production;
expression template

1. Introduction

With the development of computer systems and their increasing use, it has been easier to see
the effects of technology on several different fields, including education and health. In recent years,
there have been many technological changes in educational practices and materials. The technologies
that have been used have made significant educational changes for both students and teachers. In this
regard, classrooms are equipped with digital learning tools, such as computers and handheld devices.
It is possible to take advantage of independent training without the constraints of time and place.
This has led to the construction of online platforms for participation and increased motivation for
learners. Also, new technologies have provided a new model for communication between students
and teachers in order to support the possibility of personalized education in the shadow of this model.
Generally, technology changes educational practice, changing the way, time, and place that students
learn and empowering them at each stage of education.

Mathematical expressions need to be written for several reasons, such as practicing for school
exams and function optimization algorithms. Some systems may use a database of mathematical
equations where all expressions are written once and then used many times. Solutions or answers of
such equations might be stored in a non-dynamic fashion, which might lead to a lack of variety in types.
Also, there are various methods for the random generation of mathematic expressions. Depending on
the involved operators, operands, and variables, different types of generators can be implemented.

This paper addresses a grammar-directed approach to automatically generate mathematical
expressions. The generation process is closely related to the synthesis of expressions. Synthesis,
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as opposed to analysis, takes the terms of which an expression is composed, and combines them
together, so as to produce that expression. Since both analysis and synthesis involve the description of
a language via grammar rules, it is also possible to use analysis grammars for synthesis to some extent.
However, these activities exhibit two different kinds of indeterminacy; analysis involves determining
which possible representation best fits a particular expression, while synthesis involves determining
which possible expression best fits a particular representation. We can see synthesis as just a matter of
linearization plus grammatical realization rules. In general, compared to analysis, ambiguity is not a
problem in synthesis.

Producing mathematical expressions is an important topic in learning systems. Learners need
to practice and solve various mathematical problems to improve their solving skills. This paper
proposes a mathematical expression generator based on various types of expressions for topics such as
first-degree equations and polynomials.

2. Related Work

In this work, a Context-Free Grammar like (CFG-like grammar) is used to parse and produce
mathematical expressions. String inputs are passed to a parser that verifies their syntax. At the same
time, an Abstract Syntax Tree (AST), which is a suitable data structure to work with mathematical
expressions, is created. This tree serves as the main core part of the proposed approach to apply
various enhancement algorithms on the string input. This structure has been used in other applications,
such as solving mathematical problems [1].

Different systems are developed for expression generation using templates in Natural Language
Generation (NLG). YAG [2] produces Template-Based strings in real time for general purposes.
D2S (Data-to-Speech) [3] has been developed for different applications, such as rout description,
music, soccer reports, and also for different languages, including English. EXEMPLARS [4] is an
object-oriented, rule-based framework that supports dynamic text generation, and is a superset for
JAVA, that can be used as templates of HTML/SGML. XtraGen [5] is an XML- and JAVA-based software
system for NLG, which can be easily integrated with other applications.

Tillman Bechar [6] presents a generation method for template-based NLG, using TAG. This work
focuses on random language generation by integrating Basic Tree Nodes. Of course, random template
generation is not limited to random string generation; e.g., Amruth N. Kumar [7] used templates to
produce problems and programs. Test case generation is another application of random generation.
Takahide Y. et al. [8] designed a tool to generate tests for Just-In-Time (JIT) compilers. The issue of
random generation is also presented in designing automatic tests. Various systems are designed to
help teachers generate questions [9–11]. In [12], Joao et al. generated a system to produce automatic
mathematical tests with simple answers in which some structures have been designed to generate tests.
In [13], Ana Paula designed a system for the automatic generation of mathematics exercises based on
Constraining Logic Programming (CLP). Such systems provide facilities for the automatic generation
of tests in environments such as virtual training systems.

Random production is also considered in Natural Language Processing (NLP), resulting in
different systems being developed under the title of NLG, such as measures taken by Langkilde [14]
using stochastic techniques for NLG. These systems can be divided into two categories: real and
template-based. Kees Van Deemter [15] has compared these categories.

The Microsoft MathWorksheet Generator automatically produces mathematical problems.
This approach is limited to simpler algebraic domains, such as counting and linear and quadratic
equation solving. Also, each domain has its own set of features that needs to be programmed separately.

Most of the studies addressed above refer to the generation of text phrases, particularly offering
solutions for producing text using NLP patterns. These studies deal with such issues as finding
real-time text structures, creating text and matching it with speech, and constructing test cases for
programming languages and other systems. However, they do not have a suitable systematic structure
for producing some specific mathematical expressions. Similarly, other research has been done to
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generate or design expressions using templates created for terms or specific issues. Users cannot use the
designed templates to produce some other kinds of expressions. In addition, there are some commercial
applications that have been developed to support mathematical requirements. The literature has no
information about their underlying algorithms and data structures. They work in a non-user controlled
way of automatic expression generation and are only open to evaluations from the perspective of users.

The method presented in this article is grammatically oriented. So, with a change in the rules of the
grammar, new patterns can be created as appropriate templates for generating distinct mathematical
expressions. This provides a useful way to produce and design any common mathematical expressions
or other phrases in various research sciences. Using the proposed method, users can design and tailor
grammar for their subject matter and create their own expressions.

3. Traditional Methods for Generating Expression

This section will look at the various ways in which the expressions are produced. One of the
important issues in generating mathematical expressions is that the generated phrases should be
designed as needed. In this section, the problems that are associated with the production of arbitrary
expressions with specific features are examined and evaluated, and the need for a structured method
is discussed.

3.1. Iterative Methods

The simple way to produce random math expressions is to use a well-formed generation algorithm
in the domain of operators and numbers as shown in Listing 1.

The algorithm generates algebraic expressions by randomly selecting an operator from the set
[+, −, *, /] and numeric operands. An example expression would be “23 + 5 × 3 − 2/3 + 10”.

A similar algorithm is given for polynomial expressions in Listing 2. With an initial value of
degree n, the algorithm can generate polynomials that can have up to n terms. A typical example is
the polynomial “3x5 − 8x2 + 9”.

Listing 1. An algorithm for the random generation of arithmetic expressions.

Str← generate a random number
while condition

Operator← select a random operator from {+, -, ×, /}
Operand← generate a random number

Str← Str.Operator.Operand

These algorithms can be improved by adding other attributes, such as parentheses. However,
in this case, the generation process for expressions must be held under control to conduct different
kinds of evaluation or interpretation.

Listing 2. An algorithm for the random generation of polynomial expressions.

n← Number of terms in the polynomial
c← Generate a random number
polyExp← c. ‘xn’
n - -
while n > 0

c← Generate a random number
if c > 0: polyExp← polyExp. ‘+’. c. ‘xn’
if c == 0;
if c < 0: polyExp← polyExp. ‘-’. c. ‘xn’
n - -
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3.2. Rule-Based Methods

In general, we need a special structure in accordance with the recursive nature of generating
expressions. This structure must have all of the properties of binary trees. Figure 1 shows the expression
tree of “((x + y)/2) × (a + b) − 12”.
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The binary tree is a suitable data structure that supports the inclusion of algebraic operators and
single parameter functions. It provides a simple way to represent operator precedence. Besides this,
it is easy to convert a tree to other data structures for the requirements of document formatters. Another
advantage is that it supports the development of formal grammars, because the evaluation of each tree
node resembles a recursive invocation of the head (parent) and body (children) of a grammar rule.

Figure 2 shows a block diagram of the mathematical components that are required to create a
random mathematical expression using trees.
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In Figure 2, the Randomizer is a rule selector that first places the beginning rule of a grammar
into an AST and then recursively expands the non-terminals in that rule, replacing them with the other
possible rules until encountering a non-expandable rule. Table 1 shows an example of grammar rules
that can be placed into an indexed table for easy selection.

Table 1. Grammar rules for randomly generating mathematical expressions.

Non-Terminals Rule

S E
E E + E
E E − E
E E * E
E E/E
E Sin(E)
E Ln(E)

. . .
E D
E V

. . .
D 0|1|2| . . . |9

Note that the rules presented in Table 1 do not consider the precedence of operators, which will
be considered in the evaluation phase. Listing 3 displays the main algorithm used by the Randomizer
component in Figure 2.
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Listing 3. The random expression generating algorithm.

AST← Start symbol
While a Non-Terminal exists in AST

E ← Select a non-Terminal in AST
sub ← Expand E using a random rule
AST ← Replace E with sub in AST

In-order traverse the AST and print mathematical expression

In Listing 3, it is possible to invoke a sequence of the non-terminals; thus, rules S, E, and D in the
specified order. For example, a resulting AST and expression would be Num(7) and “7”, respectively.

One problem with the current algorithm is that rules can create an unlimited number of
non-terminals, e.g., “S→ E→ E + E→ E + E + E→ E + E + E + E . . . ”. Stochastic Grammars [16] can
be used to control the status of the invoked rules. Initializing an invocation probability for each rule in
the algorithm, controlled through the expression steps, we can restrict the number of non-terminals
expanded for an AST to a finite value. Some restrictions can be imposed on the following parameters:

• The length of output expression
• The number of nodes in the AST
• The number of levels in the AST.

These parameters determine the expression level of the AST, generating mathematical expressions
of the desired characteristics. Listing 4 shows an improved version of the algorithm presented in
Listing 3.

Listing 4. An improved algorithm based on the one in Listing 3.

AST← Start symbol
N ← Number of maximum nodes
n ← 0
While a Non-Terminal exists in AST

E ← Select a non-Terminal in AST
if (n < N) then sub ← Expand E using a random rule
else sub ← Expand E using a random rule without a non-terminal
AST ← Replace E with sub in AST

In-order traverse the AST and print mathematical expression

3.3. Type-Specific Grammars for Expressions

The generating and evaluating methods of expressions vary widely from one subject of
mathematics to another. Therefore, it is clear that a different kind of expression would require a
different grammar. In this section, we first focus on the linear (first-degree) and quadratic equations
and then introduce a new grammar called a rule-iterated context-free grammar.

3.3.1. Grammars for First-Degree Equations

In a first-degree equation, the degree of the terms on the left- and right-hand sides of the symbol
“=“ is 1 for x. A first-degree polynomial can be constructed in a few ways. Listing 5 presents a
CFG grammar that considers all possible ways of generating polynomials of degree 1. For example,
the expression “(x − 1)/(1 − x) = −1” generated by the grammar would correspond to the first-degree
equation “x − 1 = 1 − x”.
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Listing 5. A Context-Free grammar for first-degree equations.

Mathematics 2018, 6, x 6 of 18 

 

Listing 5. A Context-Free grammar for first-degree equations. 

G = {N, T, P, S} 
N = {E, E’, S, var, number, digit} ⊆ Σ 
T = {x, +, −, *} ⊆ Σ  
S      ⟶ E “=“ E|E “/” E “=“ E’ 
E      ⟶ E “+” E|E “−” E|number|var 
E      ⟶ E “*” E’|E’ “*” E 
E’     ⟶ E’ “+” E’|E’ “−” E’|E’ “*” E’|Number  
Var    ⟶ x 
Number ⟶ “−”? [digit] + [“.” [digit]+]? 
digit    ⟶ [“0” − “9”] 

3.3.2. Grammars for Quadratic Equations 

Note that the alternative production rule of E with the division operator (/) represents an 
equation with a constant number on the right-hand side. Another grammar is given for quadratic 
equations in Listing 6. 

Listing 6. A CFG grammar for quadratic equations. 

G = {N, T, P, S} 
N = {E, E’, E’’, S, var, number, digit} 
T = {x, +, −, *, /, ^} 
S     ⟶ E “=“ E 
E     ⟶ E “+” E|E “−” E|number|var|var^2  
E     ⟶ E’ “*” E’|E “*” E’’|E’’ “*” E 
E’     ⟶ E’ “+” E’ |E’ “−” E’|E’ “*” E’’|E’’ “*” E’|number|var 
E’’    ⟶ E’’ “+” E’’|E’’ “−” E|E’’ “*” E’’|Number  
var    ⟶ x 
number ⟶ “−”? (digit)+ [“.” (digit)+]? 
digit   ⟶ [“0”–”9”] 

Listing 6 explains the grammar for the first degree and quadratic equations, and how the CFG 
grammar works in generating a polynomial of degree 1. 

The equations generated by the grammars in Listing 5 and Listing 6 do not have structural 
control on either the length of the output expression or the number of the operators. The restrictions 
that were discussed in the previous section must be considered to hold the expression generation 
under control.  

3.4. Statistical Space Analysis 

A mathematical expression that is generated by the discussed grammar can be selected 
randomly or can be selected from an infinite number of expressions. If we limit the expression-
generating space by measurable parameters, such as the maximum number of nodes or levels of the 
tree, it is possible to convert the infinite space of the problem to a finite one. 

Suppose that the limit of producing mathematical expressions is related to the number of nodes. 
For a tree with n nodes, one of these nodes is the root node, and the rest of the n − 1 internal nodes 
are children or parents of underlying nodes. Obviously, there is one way to make a binary tree with 
zero or one node. Equation (1) calculates the number of binary trees with n nodes, shortly called 
Catalan Numbers [16]. 𝑆௡ = 1𝑛 + 1 . ቀ2𝑛𝑛 ቁ = 2𝑛!𝑛! (𝑛 + 1)! (1) 

The total number of trees, which can contain up to n nodes, is calculated by Equation (2) 

3.3.2. Grammars for Quadratic Equations

Note that the alternative production rule of E with the division operator (/) represents an equation
with a constant number on the right-hand side. Another grammar is given for quadratic equations in
Listing 6.

Listing 6. A CFG grammar for quadratic equations.

Mathematics 2018, 6, x 6 of 18 

 

Listing 5. A Context-Free grammar for first-degree equations. 

G = {N, T, P, S} 
N = {E, E’, S, var, number, digit} ⊆ Σ 
T = {x, +, −, *} ⊆ Σ  
S      ⟶ E “=“ E|E “/” E “=“ E’ 
E      ⟶ E “+” E|E “−” E|number|var 
E      ⟶ E “*” E’|E’ “*” E 
E’     ⟶ E’ “+” E’|E’ “−” E’|E’ “*” E’|Number  
Var    ⟶ x 
Number ⟶ “−”? [digit] + [“.” [digit]+]? 
digit    ⟶ [“0” − “9”] 

3.3.2. Grammars for Quadratic Equations 

Note that the alternative production rule of E with the division operator (/) represents an 
equation with a constant number on the right-hand side. Another grammar is given for quadratic 
equations in Listing 6. 

Listing 6. A CFG grammar for quadratic equations. 

G = {N, T, P, S} 
N = {E, E’, E’’, S, var, number, digit} 
T = {x, +, −, *, /, ^} 
S     ⟶ E “=“ E 
E     ⟶ E “+” E|E “−” E|number|var|var^2  
E     ⟶ E’ “*” E’|E “*” E’’|E’’ “*” E 
E’     ⟶ E’ “+” E’ |E’ “−” E’|E’ “*” E’’|E’’ “*” E’|number|var 
E’’    ⟶ E’’ “+” E’’|E’’ “−” E|E’’ “*” E’’|Number  
var    ⟶ x 
number ⟶ “−”? (digit)+ [“.” (digit)+]? 
digit   ⟶ [“0”–”9”] 

Listing 6 explains the grammar for the first degree and quadratic equations, and how the CFG 
grammar works in generating a polynomial of degree 1. 

The equations generated by the grammars in Listing 5 and Listing 6 do not have structural 
control on either the length of the output expression or the number of the operators. The restrictions 
that were discussed in the previous section must be considered to hold the expression generation 
under control.  

3.4. Statistical Space Analysis 

A mathematical expression that is generated by the discussed grammar can be selected 
randomly or can be selected from an infinite number of expressions. If we limit the expression-
generating space by measurable parameters, such as the maximum number of nodes or levels of the 
tree, it is possible to convert the infinite space of the problem to a finite one. 

Suppose that the limit of producing mathematical expressions is related to the number of nodes. 
For a tree with n nodes, one of these nodes is the root node, and the rest of the n − 1 internal nodes 
are children or parents of underlying nodes. Obviously, there is one way to make a binary tree with 
zero or one node. Equation (1) calculates the number of binary trees with n nodes, shortly called 
Catalan Numbers [16]. 𝑆௡ = 1𝑛 + 1 . ቀ2𝑛𝑛 ቁ = 2𝑛!𝑛! (𝑛 + 1)! (1) 

The total number of trees, which can contain up to n nodes, is calculated by Equation (2) 

Listing 6 explains the grammar for the first degree and quadratic equations, and how the CFG
grammar works in generating a polynomial of degree 1.

The equations generated by the grammars in Listings 5 and 6 do not have structural control on
either the length of the output expression or the number of the operators. The restrictions that were
discussed in the previous section must be considered to hold the expression generation under control.

3.4. Statistical Space Analysis

A mathematical expression that is generated by the discussed grammar can be selected randomly
or can be selected from an infinite number of expressions. If we limit the expression-generating space
by measurable parameters, such as the maximum number of nodes or levels of the tree, it is possible to
convert the infinite space of the problem to a finite one.

Suppose that the limit of producing mathematical expressions is related to the number of nodes.
For a tree with n nodes, one of these nodes is the root node, and the rest of the n − 1 internal nodes are
children or parents of underlying nodes. Obviously, there is one way to make a binary tree with zero
or one node. Equation (1) calculates the number of binary trees with n nodes, shortly called Catalan
Numbers [16].

Sn =
1

n + 1
.

(
2n
n

)
=

2n!
n!(n + 1)!

(1)
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The total number of trees, which can contain up to n nodes, is calculated by Equation (2)

Stotal =
N

∑
n=1

2n!
n!(n + 1)!

(2)

where N denotes the maximum number of nodes. Based on the type and location of operators,
operands, and functions in an AST, there can arise various combinations that lead to different
mathematical expressions. It is not easy to calculate the variations of an AST using only the number of
nodes. We can determine it in terms of the depth of the tree.

The Equation (3) calculates the number of possible ASTs at a single level.

S1 = v + d (3)

where v and d are the numbers of variables and integers, respectively, which can construct a single leaf
of the AST. Figure 3 shows a possible AST for a maximum of up to two levels.
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So, the number of ASTs can be given as Equation (4).

S2 = S1(1 + F + P× S1) (4)

where F is the number of functions, such as sin and ln, and P is the number of operators, such as “+”
and “*”. Figure 4 demonstrates the ASTs constructed through up to three levels.
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The relation in Equation (5) would calculate the number of such ASTs.

S3 = S2(1 + F + P× S2) (5)

In general, we can give the following relation for the number of possible ASTs based on up to L
levels as Equation (6).

SL =

{
v + d L = 1
SL−1(1 + F + P× SL−1) L > 1

(6)

Table 2 shows the number of the ASTs for some small values of L, assuming that there are P = 5
operators, F = 8 functions, v = 1 variable, and d = 100 digits.
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Table 2. The numbers of possible ASTs with some different levels.

Level Number of Trees

1 102
2 52,938
3 14,012,635,662

...
7 6.743220307892116 × 10172

8 2.273551006038432 × 10346

The amount of ASTs that can be created at eight levels is incredibly high. It means that the method
can produce many different ASTs. However, some ASTs would contain expressions that are not worth
constructing. With this aspect, it uses an algorithm that generates expressions without using ASTs.
On the other hand, we need some control rather than the number of nodes or levels in a generated
expression. For example, the rule-invoking steps must end in a reasonable amount of time, without
waiting for the generation of a particular type of expression. Next, we propose a new method to
address these issues. The main purpose is that it explains that the division operator with the sign (/)
represents an equation with a number on the right-hand side.

4. Materials and Methods

4.1. Rule-Iterated Context-Free Grammar (RI-CFG)

The grammars in Listings 5 and 6 have the potential to produce an unlimited number of equations.
The production process must guarantee to terminate by using a deterministic grammar in terms of rule
invocations. The rule-based grammars, such as a CFG, do not have convenient structures to limit the
number of rule invocations to some certain value. Such a grammar is given in Listing 7. A comparison
with other types of grammars goes outside the scope of the paper.

Listing 7. A sample grammar with no specific control structures.

E→ E + E|D
D→ 0|1|...|9

Therefore, we propose a rule-iterated context free grammar, shortly called RI-CFG.
An RI-CFG is represented by G = <T, N, P, S>, where T and N are disjoint finite non-empty sets of

terminals and non-terminals respectively; S ∈ N is the start symbol; and P is a non-empty finite set of
rules. Each set of rules in P has the form of “u→ v, n”, where u ∈ N, v ∈ (N ∪ T) *, and n is a positive
integer that indicates the number of rule selections in a non-terminal expression. Let n be the number
of rule-specific selections. In this case, for n = 1, the system behaves like a CFG. Listing 8 shows a small
example of an RI-CFG grammar for addition expressions.

Listing 8. A sample rule-iterated context free (RI-CFG) grammar.

S→ DT, 1
T→ +D, 2
D→ 0|1|...|9, 2

Using the grammar in Listing 8, the expression “12 + 63 + 47” can be derived as seen in Table 3.
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Table 3. A sample derivation with the grammar in Listing 8.

Production Rule

S -
DT S→ DT,1
D + D + D T→ +D,2
12 + D + D D→ 0|1|...|9, 2
12 + 63 + D D→ 0|1|...|9, 2
12 + 63 + 47 D→ 0|1|...|9, 2

The derived expression in Table 3 is demonstrated as a tree in Figure 5.Mathematics 2018, 6, x 9 of 18 
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The use of RI-CFG grammars facilitates the control of the generating process. Through iterations
of the rules, it is possible to generate mathematical expressions of desired types. An iterative grammar
looks like the step-by-step sequential arrangement of its rules in terms of given iteration numbers.
In this way, it requires that CFG grammars must be transformed into an iterative form.

4.1.1. Grammar Manipulation

As with parsing expressions, expression generation must also be controlled via functions that
can be individually defined for each non-terminal of a grammar. Each of these functions is typically
implemented as a loop with a certain number of iterations. Listing 9 shows a typical implementation
of such a function, called repeater(), where a class Rule holds a list of grammar rules.

Listing 9. An implementation for a generating function called repeater().

public Rule[] repeater(Rule r)
out← []
for i = 1 to r.n

out.push(r.v)
return out

Expression generation can be customized through the iterations of grammar rules. For example,
by assigning different values to x, we can obtain different types of expressions, such as first-degree
and quadratic equations. A particular type of expression is represented by a class in which a value is
set for the number of iterations of grammar rules. It is possible to define various classes that represent
distinct types of expressions. With modified rules of the grammar shown in Listing 10, a new one is
given in Listing 4.
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Listing 10. An enhanced version of the grammar in Listing 4.

AST← Start Symbol
N ← Number of maximum nodes
n ← 0
While a Non-Terminal exists in AST

E ← Select a non-Terminal in AST
if (n < N)

sub ← Expand E using a random rule
else

sub ← Expand E using a random rule without a non-terminal
sub ← repeater(sub, E.n) # Using Listing 9
AST ← Replace E with sub in AST

In-order traverse the AST and print mathematical expression

4.1.2. CFG versus RI-CFG

In this section, we compare CFG and RI-CFG grammars through some particular examples.
Even though the RI-CFG grammar is almost identical to CFG for some cases, they have noticeable
differences in complex expressions. Table 4 shows an example of CFG and RI-CFG grammars that
produce the sentences of the same language. Note that RI-CFG rules have a controlled number
of iterations.

Table 4. CFG and RI-CFG grammars for the language anbn.

CFG RI-CFG

S→ aSb S→ aSb, 1
S→ λ S→ λ, 1

Another comparative example is shown in Table 5. Note that, unlike CFG, the RI-CFG grammar
contains additional non-terminals, A and B. Although this increases the number of non-terminals,
a RI-CFG that accepts the same language as CFG (e.g., as with anb2n) can easily be derived. Another
important point for such grammars is that the number of iterations of a rule can change dynamically
at runtime. Thus, an extension of the grammar can always be constructed without changing the
existing ones.

Table 5. CFG and RI-CFG grammars for the language a3nb3n.

CFG RI-CFG

S→ aaaSbbb
S→ λ

S→ ASB, 1
A→ a, 3
B→ b, 3
S→ λ, 1

A CFG grammar with specific restrictions requires complex structures and various controls over a
generated string. However, it is easy to apply such restrictions via the proposed grammar. Table 6
shows the grammar of first-degree equations in CFG and RI-CFG notations.

The grammar in Table 6 produces first-degree equations of n terms. As mentioned before, integer
n can be entered during the implementation or even at runtime to change the number of terms. Besides,
one can select a random integer value for n from na to nb.

By adding, modifying, or replacing some rules, we can easily transform the grammar in Table 6
into another one. For example, the grammar would start to yield quadratic equations with the addition
of a rule “T→ Dx2”.
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Table 6. The grammar of first-degree equations in the CFG and RI-CFG notations.

CFG RI-CFG

S → E = E
E → E + E|E − E
|Number|Var
E → E * F|F * E
F → F + F|F − F
|F * F|Number
Var→ x
Number→−?[digit]+[.[digit]+]?
digit→ [0–9]

S→ TE = TE, 1
E→ [+T|−T], n
T→ Number(x)?, 1
Number→−?[digit]+[.[digit]+]?,1
digit→ [0–9], 1

4.2. A Methodology for Expression Generation

In previous sections, we discussed the importance of generating random mathematical
expressions. This section presents a grammar-based approach that uses expression templates to
produce different types of expressions.

4.2.1. RI-CFG-Based Production of Expressions

The proposed approach manages the expression generation process via RI-CFG grammars. Using
the approach, a considerable number of expression templates can easily be embedded. Figure 6 shows
the steps of the approach.
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In Figure 6, the grammar pool contains various RI-CFG templates for first-degree equations,
quadratic equations, polynomials, trigonometric equations, etc. We have developed a class called
RICFG, which has the core implementations of Rule, Grammar, and other classes. This RICFG class is
extended by every expression template.

Grammar Development

In this approach, first we develop an RI-CFG grammar specialized for the target mathematical
expressions. Listing 11 shows a typical example of such a grammar.

In Listing 11, @ni is an attribute of the grammar that controls the number of generated terms.
This attribute controls the iterations of the related rules for a limited number of times. The other
components of the approach shown in Listing 11 are described in the following sections.

Listing 11. An example of an RI-CFG grammar.

S→ DT, 1
T→ [+D|−D], @n1
D→ [0|1|2...|9], @n2

Class Definition

In our analysis of expressions, each grammar rule is represented with a class that can be
defined using any object-oriented programming language. We code the rules in the Java language,
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extending the RI-CFG class. The superclass RI-CFG contains methods such as hasNonTerminal(),
SelectRandomRule(), and generate(). Here, we give one of its methods, generate(), in Listing 12.

Listing 12. A method, generate(), of the RICFG class.

public Exp generate(){
ArrayList< Object > list = new ArrayList< > ();

list.add (START);
while(hasNonTerminal (list)){
Rule nt = getFirstNonTerminal(list);

replaceOnce(list, SelectRandomRule(nt).repeat());
}

return getAST(list);
}

The flowchart corresponding to the method presented in Listing 12 is given in Figure 7.Mathematics 2018, 6, x 12 of 18 
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Given the grammar rules in Listing 12, the non-terminals T and D are represented by the class
NonTerminal. The rules, together with their alternatives, are implemented as the objects of the class
Rule. Listing 13 demonstrates the class implementations of the rules.

Listing 13. Class definitions of templates.

// S→ DT, 1 // T→ [+D|−D], @n1 // D
→ [0|1|2...|9], @n2
public class ExampleGrammar extends RICFG {

public void ExampleGrammar (Range n1, Range n2) {
NonTerminal T = NonTerminal.get(“T”);
NonTerminal D = NonTerminal.get(“D”);
pool = new ArrayList< >()
pool.add (new Rule (START, new Object[] {D, T}, 1));
pool.add (new Rule (T, new Object[] {“+”, D}, n1));
pool.add (new Rule (T, new Object[] {“−“, D}, n1));
pool.add (new Rule (D, “0”, n2));
pool.add (new Rule(D, “1”, n2));
pool.add (new Rule(D, “2”, n2));
...
pool.add (new Rule(D, “9”, n2));

}
}
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In Listing 13, the class ExampleGrammar can be supported with additional methods for simplicity
and customization.

The Listing 14 displays the pseudo code of Listing 13.

Listing 14. The pseudo code for class definitions of templates.

Definition:
Struct Range {

min as double
max as double

}
Pseudo code:
1. make a rule list
2. Add each rule into the list
3. Set a range for each rule
4. return list

Template Construction

Expression templates are in fact implemented as objects of the related classes of RICFGs in which
the attributes are set to proper values. It is adequate to manipulate the object attributes with the aim of
generating various forms of expressions. A collection of templates can be packaged as a framework to
support various forms of mathematical expressions. Listing 15 displays some expression templates for
the rules defined in Listing 13.

The usage of expression templates is a metaprogramming technique that builds structures
representing a computation at compile time, where expression is evaluated only as they are needed to
produce efficient code for the entire computation. The key idea for the expression is to create reusable
and efficient code.

Listing 15. The definitions of some expression templates.

// expressions with two digits
ExampleGrammar term 1 = new ExampleGrammar (new Range (1, 5), new Range (2, 2));
// expressions with 3 to 10 terms
ExampleGrammar term 2 = new ExampleGrammar (new Range (3, 10), new Range (1, 4));

Production of Expressions

The method generate() listed in Listing 12 produces an AST. Working with AST is easy as it can
provide useful methods to deal with mathematical expressions. For example, we can define specific
methods on ASTs to convert their content into human-readable strings in MathMl and LaTex. Listing
16 shows the outputs of the templates given in Listing 15.

Listing 16. The outputs of the templates in Listing 15.

// output of term 1
12 + 49 − 30
51 − 25
// output of term2
782 + 63 + 4 − 5120 + 8 + 1 − 576 + 23
7 + 163 − 2 + 87

4.2.2. Applications

A class that implements a template serves as a generator for a certain type of expression
represented by that template. An expression template can use a set of other templates. In this
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section, we will demonstrate some applications of the methodology for generating polynomials using
templates. The Java notation is used for code demonstration.

Polynomials

Polynomials are composed of different terms or monomials added or subtracted from each other.
Each monomial has a well-known structure. Polynomial expressions can be defined by the RI-CFG
grammar given in Listing 17.

Listing 17. A RI-CFG grammar for polynomial expressions.

S→ MT, 1
T→ [+M|−M], @n1
M→ DP, 1
P→ [xR|x], 1
R→ [*x], @n2
D→ [0|1|2...|9], @n2

In Listing 17, N is the number of monomials, P is the maximum exponential, and C is the range
of values for coefficients. These three attributes are used to control the production of polynomial
expressions. A class named TPolynomial is defined to implement the grammar of polynomials as seen
in Listing 18.

Listing 18. Code implementation of Listing 17.

public class TPolynomial extends RICFG {
public Range count = new Range ();
public Range exponential = new Range ();
public Range coefficient = new Range ();
public Tpolynomial () {

NonTerminal T = NonTerminal.get (“T”);
NonTerminal M = NonTerminal.get (“M”);
NonTerminal P = NonTerminal.get (“P”);
NonTerminal R = NonTerminal.get (“R”);
NonTerminal D = NonTerminal.get (“D”);
pool = new ArrayList< > ()
pool.add (new Rule(START, new Object[] {M, T}, 1));
pool.add (new Rule(T, new Object[] {“+”, M}, n1));
pool.add (new Rule(T, new Object[] {“-“, M}, n1));
pool.add (new Rule(M, new Object[] {D, P}, 1));
pool.add (new Rule(P, new Object[] {“x“, R}, 1));
pool.add (new Rule(P, “x”, 1));
pool.add (new Rule(R, new Object[] {“*“, “x”}, n2));
pool.add (new Rule(D, null, n2));

}
}

For example, let us create a polynomial template with the attributes listed in Table 7.

Table 7. A sample template for polynomials.

Attribute Value

Number of monomials (N) (3, 5)
Exponentials (P) (2, 6)
Coefficients (C) (−5, 10)

Listing 19 shows a method that produces random polynomial expressions using the attributes in
Table 7.
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Listing 19. A random polynomial generator using templates.

TPolynomial poly = new TPolynomial ();
poly.count.set (3, 5);
poly.exponential.set (2, 6);
poly.coefficient.set (−5, 10);
Exp ast = poly.generate ();

In the template given in Listing 19, the count, exponential, and coefficient values of the class are
initialized, and then, by calling the generate function, a random polynomial expression is generated
under the desired conditions. We can use this template to generate some mathematical expressions.
The examples of re-usability of template classes using Listing 18 are shown below:

Example 1. Generate First-Degree and Quadratic Expressions.

To do so, an exponential polynomial has to be set to (0, 2). The related equations must be
constructed based on the structure of each equation. Listing 20 shows an example of constructing
quadratic equations.

Listing 20. A random quadratic equation using Listing 19.

poly.exponential.set(0, 2);
Exp left = poly.generate();
Exp right = poly.generate();
Exp quad = new Equ(left, right);

Figure 8 show the flowchart of a random quadratic equation using the polynomial template class.

Example 2. Generate dividable polynomials, such as “P(x)/Q(x)”, where P(x) and Q(x) are polynomials.
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Let us consider two polynomials P(x) = a2x2 + a1x + a0 and Q(x) = k × b1x + k × b0, where
P(x) is dividable with “b1x + b0” and k is an arbitrary integer. To do so, two polynomials S1 and S2

are generated, where deg(S1) = deg(S2) = 1. Simplifying S1 and S2 will result in S1= c1x + c0 and
S2 = b1x + b0. Assuming “P(x) = S1 × S2” and “Q = k × S2” where k = [–7, 7]. Listing 21 shows an
implementation of this example.
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Listing 21. An example of dividable polynomials using templates.

poly.exponential.set (0, 1);
Exp S1 = poly.generate ();
Exp S2 = poly.generate ();
Exp K = new Rand(−7, 7).get ();
Exp P = new Times(S1, S2).Simplify ();
Exp Q = new Times(k, S1).Simplify ();
Exp div = new Div(P, Q).Simplify ();

The required polynomials in Listing 21 are of degree 1. Therefore, the exponential field is set to
(0, 1) and then two polynomials S1 and S2 are generated. Next, an AST is obtained by multiplying
the two generated expressions using Times (S1, S2) and simplifying it. Similarly, the expression S2

is multiplied and simplified with a random number in the range of −7 to 7. Finally, the two nodes
obtained are divided into a node using Div (P, Q). The resulting AST is a random expression matching
the desired attributes.

Example 3. Generate expressions which “f(x) = a3k3x3 + a2k2x2 + a1kx + a0”.

To do so, F(x) and G(x) are generated, where F(x) = a3x3 + a2x2 + a1x + a0, G(x) = kx, and k is
an arbitrary integer. Simplifying F(x) and then creating (FoG)(x) will produce expressions with the
required patterns. Listing 22 shows an implementation of this example, where k = [7, 7].

Listing 22. An example of polynomials using templates.

Poly.exponential.set (0, 3);
Exp F = poly.generate().Simplify ();
Exp K = new Rand(−7, 7).get ();
Exp G = new Times (K, Var.X ());
Exp div = F.eval (G).Simplify ();

In the example shown in Listing 22, it first sets up a polynomial, including a term with a maximum
power of 3, and then produces polynomials. By multiplying a polynomial in a random number in the
range of −7 to 7, a new expression is generated that should be simplified using the Simplify method.

Indeterminate Limits

Expressions such as “lim f (x), x→v” can be produced using Exp class, which is discussed in the
previous Section, where lim is an extended class of Exp and accepts v and f (x) as parameters. F(x) is
generated using other templates that are associated with the kind of expression one may need. Listing
23 shows an implementation of the limit where f (x) is a polynomial expression.

Listing 23. An example of the limit using Listing 22.

Exp F = poly.generate ().Simplify();
Exp v = new Rand (−6, 8).get ();
Exp lim = new Limit (v, F);
Exp div = F.eval (G).Simplify ();

In the example of Listing 23, a random polynomial is created and a random number is connected
to the Limit node in the range from −6 to 8. Finally, the resulting statement has been simplified.

The common indeterminate forms of limits are denoted 0/0, ∞/∞, 0*∞, 00, and ∞0. Of these
forms, we will handle the ratio of two functions that both tend to zero in limit, referred to as “the form
0/0”. To generate the expressions of this form, the following steps can be used for the limit of f (x) as x
approaches v.
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1. Define an expression “(x − v)” where v is a number.
2. Generate P(x) and Q(x), where P and Q are two polynomials.
3. Multiply P(x) and Q(x) by “(x − v)”.
4. Replace the resulting P(x) and Q(x) by their simplifications.
5. Set f (x) to the ratio of P(x) over Q(x).

Listing 24 shows an implementation of these steps.

Listing 24. An example of an indeterminate limit expression.

Exp T = new Minus (Var.X (), v);
Exp P = poly.generate ().Simplify ();
Exp Q = poly.generate ().Simplify ();
P = new Times (T, P).Simplify ();
Q = new Times (T, Q).Simplify ();
Exp fx = new Div (P, Q).Simplify ();

5. Evaluation

To investigate the performance of the proposed approach, we generate some mathematical
expressions and classify them in terms of some features derived from their graphs in the Cartesian
coordinate system. The quality of a polynomial function is assessed through analyzing eight features,
namely degree (or type), the number of zeros, end behavior, the number of turning points, increasing,
decreasing, concave up, and concave down. The same features are also shared by other kinds of
expressions, such as first-degree and quadratic equations and indeterminate limits.

The produced expressions are categorized into four groups (excellent, good, average, and poor
quality). Out of the eight features given above, a polynomial with at least six ones is identified as being
of excellent quality, and a polynomial with at most three ones is identified as being of poor quality.
The results are shown in Table 8. Note that, for indeterminate limits, there are three expressions that
have been identified as poor ones, as a result that the similarity of the numerator and denominator
polynomials is also evaluated.

Table 8. Evaluation of produced expressions.

Product Type Total Excellent Good Average Poor

Polynomial 100 65 25 10 0
First-Degree Equation 100 80 18 2 0

Quadratic Equation 100 73 20 7 0
Indeterminate Limit 100 57 29 11 3

6. Conclusions

In this paper, we propose a grammar-based approach for producing mathematical expressions
that can be used to generate exam materials and practicing exercises to improve students’ skills in
mathematics. Different forms of mathematical expressions need to have different sets of grammar
rules and symbols. First degree and quadratic equations, polynomials, and other mathematical
expressions are represented by a formal language that can be modeled by context free grammars (CFG).
However, CFGs cannot control the generation process of expressions which meet various requirements
in math problems.

The approach imposes some restrictions on the expressions, including the number of terms, the
degree of variables, and the range of coefficients. To control these restrictions, we modify the rule
structure of CFG grammars, calling it RI-CFG. Unlike CFG grammars, RI-CFGs have an interactive
structure where the grammar rules iterate in a way that is directed by the related restrictions during
the generation of expressions.
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The RI-CFG rules, implemented as classes in the Java programming language, serve as expression
templates, for which we can develop new templates, inheriting from the class of an existing
one. The behavior of expression templates can be modified by setting the class attributes that
are obtained from RI-CFG rules. Each attribute provides a different way of producing random
mathematical expressions.

For example, a template of polynomial expressions can be used in various ways as a well-contained
one. By limiting the maximum degree of variable x to 1 or 2, first degree or quadratic equations can be
generated, respectively. A similar process can also be repeated for other mathematical expressions to
produce other RICFG grammars and related templates.
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