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Abstract: In this paper, we investigate the reliability and stochastic properties of an n-component
network under the assumption that the components of the network fail according to a counting
process called a geometric counting process (GCP). The paper has two parts. In the first part, we consider
a two-state network (with states up and down) and we assume that its components are subjected to
failure based on a GCP. Some mixture representations for the network reliability are obtained in terms
of signature of the network and the reliability function of the arrival times of the GCP. Several aging
and stochastic properties of the network are investigated. The reliabilities of two different networks
subjected to the same or different GCPs are compared based on the stochastic order between their
signature vectors. The residual lifetime of the network is also assessed where the components fail
based on a GCP. The second part of the paper is concerned with three-state networks. We consider a
network made up of n components which starts operating at time t = 0. It is assumed that, at any
time t > 0, the network can be in one of three states up, partial performance or down. The components
of the network are subjected to failure on the basis of a GCP, which leads to change of network states.
Under these scenarios, we obtain several stochastic and dependency characteristics of the network
lifetime. Some illustrative examples and plots are also provided throughout the article.

Keywords: two-dimensional signature; multi-state network; totally positive of order 2; stochastic
order; stochastic process

1. Introduction

In recent years, there has been a great growth in the use of networks (systems), such as
communication networks and computer networks, in human life. The networks are a set of nodes
that are connected by a set of links to exchange data through the links, where some particular nodes
in the network are called terminals. Usually, a network can be modeled mathematically as a graph
G(V,E,T) in which V shows the collection of nodes, E shows the set of links and T denotes the set
of terminals. Depending on the purpose of designing a network, the states of the network can be
defined in terms of the connections between the terminals. In the simplest case, the networks have two
states: up and down. However, in some applications, the networks may have several states which are
known, in reliability engineering, as the multi-state networks. Multi-state networks have extensive
applications in various areas of science and technology. From a mathematical point of view, the states
of multi-state networks are usually shown by, K = 0, 1, . . . , M, in which K = 0 shows the complete
failure of the network and K = M shows the perfect functioning of the network. A large number of
research works have been published in literature on the reliability and aging properties of multi-state
networks and systems under different scenarios. For the recent works on various applications and
reliability properties of networks, we refer to [1–10].
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When a network is operating during its mission, its states may change over the time according
to the change of the states of its components. From the reliability viewpoint, the change in the states
of the components may occur based on a specific stochastic mechanism. In a recent book, Gertsbakh
and Shpungin [11] have proposed a new reliability model for a two-state network under the condition
that components (with two states) fail according to a renewal process. Motivated by this, Zarezadeh
and Asadi [12] and Zarezadeh et al. [13] studied the reliability of networks under the assumption
that the components are subject to failure according to a counting process. Under the special case that
the process of the components’ failure is a nonhomogeneous Poisson process (NHPP), they arrived
at some mixture representations for the reliability function of the network lifetime and explored its
stochastic and aging properties under different conditions.

The aim of the present paper is to assess the network reliability under the condition that the
failure of the components appear according to a recently proposed stochastic process called geometric
counting process (GCP). We assume that the nodes of the network are absolutely reliable and, throughout
the paper, whenever we say that the components of the network fail, we mean that the links of the
network fail. Let {ξ(t), t ≥ 0} be a counting process where ξ(t) denotes the number of events in [0, t].
A GCP, introduced in [14], is a subclass of counting process {ξ(t), t ≥ 0}, which satisfies the following
necessary conditions (for the sufficiently small ∆(t))

1. ξ(0) = 0,
2. P(ξ(t + ∆(t))− ξ(t) = 1) = λ(t)∆(t) + o(∆(t)),
3. P(ξ(t + ∆(t))− ξ(t) ≥ 2) = o(∆(t)).

To be more precise, a GCP is a counting process ξ(t), with ξ(0) = 0 such that, for any interval
(t1, t2],

P(ξ(t2)− ξ(t1) = k) =
1

1 + Λ(t2)−Λ(t1)

( Λ(t2)−Λ(t1)

1 + Λ(t2)−Λ(t1)

)k, k = 0, 1, . . . , (1)

where Λ(t) = E(ξ(t)) is the mean value function (MVF) of the process. It is usually assumed that
Λ(t) is a smooth function in the sense that there exists a function λ(t) such that λ(t) = dΛ(t)/dt. The
function λ(t) is called the intensity function of the process. We have to mention here that, as noted
by Cha and Finkelstien [14], the NHPP also lies in the class of counting process satisfying (i)–(iii),
with an additional property that the increments of the process are independent. The motivation of
using the GCP, in comparison with NHPP, is natural in some practical situations as we mention in the
following. The GCP model, like the NHPP model, has a simple form and easy to handle mathematical
characteristics. In an NHPP model, the increments of the process are independent, while, in the GCP
model, the increments of the process have positive dependence. In practice, there are situations in
which there is positive dependence of increments in a process that occurs naturally. For instance,
assume that the components of a railway network destroyed by an earthquake that occurs according
to a counting process. Then, the probability of the next earthquake is often higher if the previous
earthquake has happened recently, compared with the situation that it happened earlier (see [14]).
Furthermore, the NHPP has a limitation that the mean and the variance of the process are equal,
i.e., E(ξ(t)) = Var(ξ(t)), while, in GCP, the variance of the process is always greater than the mean,
i.e., Var(ξ(t)) > E(ξ(t)). This property of the GCP makes it cover many situations that can not be
described and covered by the NHPP. For more details on recent mathematical developments and
applications of the GCP model, see [14,15].

The reminder of the paper is arranged as follows. In Section 2, we first give the well-known
concept of signature of a network. Then, we consider a two-state network that consists of n components.
We assume that the components of the network fail according to a GCP. We obtain some mixture
representations for the reliability of the network based on the signatures. Several aging and stochastic
properties of the network are explored. Among others, conditions are investigated under which the
monotonicity of the intensity function of the process of component failure implies the monotonicity of
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the network hazard rate. The reliabilities of the lifetimes of the different networks, subjected to the
same or different GCPs, are compared based on the stochastic order between the associated signature
vectors. We also study the stochastic properties of the residual lifetime of the network where the
components fail based on a GCP. Section 3 is devoted to the reliability assessment of the single-step
three-state networks. Recall that a network is said to be single-step if the failure of one component
changes the network state at most by one. First, we give the notion of a two-dimensional signature
associated with three-state networks. Then, we consider an n-component network and assume that the
network has three states up, partial performance and down. We again assume that the components of the
network are subjected to failure on the basis of GCP, which results in the change of network states.
Under these conditions, we obtain several stochastic and dependency characteristics of the networks
based on the two-dimensional signature. Several examples and plots are also provided throughout the
article for illustration purposes.

Before giving the main results of the paper, we give the following definitions that are useful
throughout the paper. For more details, see [16].

Definition 1. Let X and Y be two random variables (RVs) with survival functions F̄X and F̄Y, probability
density functions (PDFs) fX and fY, hazard rates hX and hY, and reversed hazard rates rX and rY, respectively:

• X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y) if F̄X(x) ≤ F̄Y(x) for
all x.

• X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y) if hX(x) ≥ hY(x) for all x.
• X is said to be smaller than Y in the reversed hazard rate order (denoted by X ≤rh Y) if rX(x) ≤ rY(x) for

all x.
• X is said to be smaller than Y in the mean residual life order (denoted by X ≤mrl Y) if E(X− x|X > x) ≤

E(Y− x|Y > x) for all x.
• X is said to be smaller than Y in likelihood ratio order (denoted by X ≤lr Y) if fY(x)/ fX(x) is an

increasing function of x.

It can be shown that, if X ≤lr Y, then X ≤hr Y and X ≤rh Y. In addition, X ≤hr Y implies
X ≤mrl Y and X ≤st Y.

Definition 2. Let X and Y be two random vectors with survival functions F̄X and F̄Y, respectively.

• X is said to be smaller than Y in the upper orthant order (denoted by X ≤uo Y) if F̄X(x) ≤
F̄Y(x) for all x ∈ Rn.

• X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y) if E(ρ(X)) ≤ E(ρ(Y))
for every increasing function ρ(·) for which the expectations exist.

Definition 3.

• The nonnegative function g(x) is called multivariate totally positive of order 2 (MTP2) if g(x)g(y) ≤
g(x ∨ y)g(x ∧ y), for all x, y ∈ Rn, where x ∧ y = (min{x1, y1}, . . . , min{xn, yn}) and x ∨ y =

(max{x1, y1}, . . . , max{xn, yn}).
• The RVs X and Y are said to be positively quadrant dependent (PQD) if, for every pair of increasing

functions ψ1(x) and ψ2(x),
Cov(ψ1(X), ψ2(Y)) ≥ 0.

• The RVs X and Y are said to be associated if for every pair of increasing functions ψ1(x, y) and ψ2(x, y),
Cov(ψ1(X, Y), ψ2(X, Y)) ≥ 0.

In a special case when n = 2, the MTP2 is known as totally positive of order 2 (TP2 ).
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2. Two-State Networks under GCP of Component Failure

In the reliability engineering literature, several approaches have been employed to assess the
reliability of networks and systems. Among various ways that are considered to explore the reliability
and aging properties of the networks, an approach is based on the notion of signature (or D-spectrum).
The concept of signature, which depends only on the network design, has proven very useful in the
analysis of the networks performance particularly for comparisons between networks with different
structures. Consider a network (system) that consists of n components. The signature associated with
the network is a vector s = (s1, s2, . . . , sn), in which the ith element shows the probability that the ith
component failure in the network causes the network failure, under the condition that all permutations
of order of components failure are equally likely. In other words, the ith element si is equal to si = ni/n!,
i = 1, . . . , n, where ni is the number of permutations in which the ith component failure changes
the network state from up to down. For more details on signatures and their applications in the
study of system reliability, see, for example, Refs. [17–20] and references therein. In this section, we
give a signature-based mixture representation for the reliability of the network under the condition
that the components of the network fail according to a GCP {ξ(t), t ≥ 0} with MVF Λ(t). We have
from Equation (1)

P(ξ(t) = k) =
1

1 + Λ(t)
( Λ(t)

1 + Λ(t)
)k, k = 0, 1, . . . .

Then, the survival function of the kth arrival time of process, ϑk, is given as

F̄ϑk (t) :=P(ϑk > t) = P(ξ(t) < k)

=1−
( Λ(t)

1 + Λ(t)
)k, k = 0, 1, . . .

and the PDF of the kth arrival time ϑk is achieved as

fϑk (t) = k
λ(t)

Λ(t)(1 + Λ(t))
( Λ(t)

1 + Λ(t)
)k, k = 0, 1, . . . .

Let T denote the lifetime of a network with n components. The components of network are
subjected to failure based on a GCP with MVF Λ(t). From the reliability modeling proposed by
Zarezadeh and Asadi [12], the reliability of the network lifetime, denoted by F̄T , is represented as

F̄T(t) =
n

∑
i=1

si

(
1−

( Λ(t)
1 + Λ(t)

)i
)

, t > 0, (2)

or equivalently as

F̄T(t) =
1

1 + Λ(t)

n−1

∑
i=0

S̄i
( Λ(t)

1 + Λ(t)
)i, t > 0, (3)

where S̄i = ∑n
k=i+1 sk is the survival signature of the network. Then, the PDF of T is obtained as

fT(t) =
λ(t)

(1 + Λ(t))2

n

∑
i=1

isi
( Λ(t)

1 + Λ(t)
)i−1, t > 0, (4)
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where λ(t) = dΛ(t)/dt. In addition, the hazard rate of network lifetime is given as follows:

hT(t) =
λ(t)

Λ(t)(1 + Λ(t))
.

∑n
i=1 isi

( Λ(t)
1+Λ(t)

)i

∑n
i=1 si

[
1−

( Λ(t)
1+Λ(t)

)i]
=

λ(t)
Λ(t)

∑n
i=1 isi

( Λ(t)
1+Λ(t)

)i

∑n−1
i=0 S̄i

( Λ(t)
1+Λ(t)

)i , t > 0.

With hϑk (t) = fϑk (t)/F̄ϑk (t) as the hazard rate of the kth arrival time of the GCP, it can be seen
that the hazard rate of network lifetime can be also written as

hT(t) =
∑n

k=1 sk fϑk (t)
∑n

k=1 sk F̄ϑk (t)
=

n

∑
k=1

sk(t)hϑk (t), (5)

which is a mixture representation with mixing probability vector s(t) = (s1(t), . . . , sn(t)) where,
for k = 1, . . . , n,

sk(t) =
sk
[
1− ( Λ(t)

1+Λ(t) )
k]

∑n
k=1 sk

[
1− ( Λ(t)

1+Λ(t) )
k
] (6)

=
sk
[
1− ( Λ(t)

1+Λ(t) )
k]

∑n−1
i=0 S̄i(1− Λ(t)

1+Λ(t) )(
Λ(t)

1+Λ(t) )
i
. (7)

One can easily show that sk(t) is the probability that the lifetime of system is equal to the kth
arrival time of the process given that the network lifetime is greater than t.

Let us look at the following example.

Example 1. Consider a network that consists of six nodes and 10 links with the graph depicted in Figure 1.

a

b

c

d

e

f

1

2

3

4

5
6

7 8

9

10

Figure 1. A network with 10 links, and six nodes

The network is assumed to work if there is a connection between some of nodes which we consider them as
terminals. We consider two different sets of terminals for the network:

• First, we consider all nodes as terminals, T = V (all-terminal connectivity). In this case, we can show that
the corresponding signature vector of a network is as follows:

s = (0, 0,
1

30
,

9
70

,
29
90

,
65

126
, 0, 0, 0, 0).
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• Second, assume that the network is working if there is a connection between nodes c and f . That is, the
terminals set is T? = {c, f }. In this case, the signature vector is obtained as

s? = (0, 0,
1

120
,

37
840

,
179

1260
,

379
1260

,
19
70

,
1
6

,
1

15
, 0).

An algorithm for calculating these signatures is available from the authors upon the request.

Assume that, in each case, the network is subjected to failure based on the GCPs with the same MVFs.
Denote the lifetimes of the network corresponding to (a) and (b) by T and T?, respectively. Comparing the
corresponding survival signatures of network for two cases shows that S̄i ≤ S̄?

i , for i = 0, 1, . . . , 9, and
hence based on (3) we have T ≤st T∗ implying that the network with two-terminal connectivity is more
reliable than the network with all-terminal connectivity, as expected intuitively.

Figure 2a gives the plot of network reliability in the case of all-terminal connectivity, T = V, and when
Λ(t) = ta, for different values of a. As seen, the reliability function of network does not order with respect to a
for all t > 0. Of course, this is true in any network when MVF Λ(t) = ta, a > 0. This is so using the fact that

P(ϑk > t; a) =
[
1−

( ta

1 + ta

)k
]

is increasing (decreasing) in a for 0 < t < 1 (t > 1), for a general signature vector s the reliability of the network

P(T > t; a) =
n

∑
k=1

skP(ϑk > t; a),

is also increasing (decreasing) in a for 0 < t < 1 (t > 1). Figure 2b represents the hazard rate of network when
T = V for a = 0.5, 1, 1.5. Figure 3a,b shows the plots of reliability function and hazard rate of the network
lifetime when the terminals set is considered as T? = {c, f }.

(a) (b)

Figure 2. The plots of (a) the reliability function; (b) the hazard rate of network lifetime when the
terminals set is T = V.
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(a) (b)

Figure 3. The plots of (a) the reliability function; (b) the hazard rate of network lifetime when the
terminals set is T? = {c, f }.

It is interesting to compare the network reliability when the failure of components appear
according to a GCP and the network reliability when the failure of components occur based on
an NHPP. In the sequel, we show that, if the network has a series structure, then the reliability of the
network in the GCP model dominates the reliability of the network in an NHPP model. Consider a
two-state series network with the property that the first and the last components are considered to be
terminals. We assume that the network fails if the linkage between the two terminals are disconnected.
This occurs at the time of the first component failure. Let TNP and TGP denote the lifetimes of the
network when the component failure appears according to NHPP and GCP with the same MVF Λ(t),
respectively. If ϑ1,NP and ϑ1,GP denote the arrival times of the first component failure based on NHPP
and GCP, respectively, then, from inequality ex > (1 + x), x > 0, we can write

P(ϑ1,NP > t) = e−Λ(t) <
1

1 + Λ(t)
= P(ϑ1,GP > t).

Hence, based on the fact that, for a series network s = (1, 0, . . . , 0), relation (2) implies that
TNP ≤st TGP.

The following example reveals that the above result, proved for the series network, is not
necessarily true for any network.

Example 2. Consider the network described in Example 1. Figure 4 shows that the reliability functions of the
network for part (a). As the plots show the reliability functions are not ordered in NHPP and GCP models with
the same MVFs Λ(t) = t. The reliability of the network in the NHPP model is higher than the GCP model for
the early times of operating of the network. However, when the time goes ahead, the network reliability in NHPP
declines rapidly and stays below the reliability of the GCP model.
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Figure 4. The reliability of network in Example 2.

The next theorem explores the monotonicity relation of the intensity function of the process and
the hazard rate of the network.

Theorem 1. Let the components of a network fail based on a GCP with increasing intensity function λ(t).
Then, the hazard rate of network is increasing if and only if ψ(u) is increasing in u where

ψ(u) =
∑n−1

k=0 (k + 1)sk+1uk

∑n−1
k=0 S̄kuk

. (8)

Proof. From (3) and (4), the hazard rate of network can be written as

hT(t) =
fT(t)
F̄T(t)

= λ(t)ψ(µ(t)), (9)

where ψ(·) is defined in (8) and µ(t) = Λ(t)/(1+ Λ(t)) is increasing in t. If ψ(t) is increasing, from (9),
it can be easily seen that hT(t) is increasing. This completes the ‘if’ part of the theorem. To prove ‘only
if’ part of the theorem, let hT(t) be increasing and ψ(t) be decreasing in the interval (a, b). For MVF
Λ(t) = ct, c > 0, and hence λ(t) = c as an increasing function, we conclude that hT(t) is decreasing
on interval (a, b), which contradicts with the assumption that the hazard rate of network is increasing
for all t.

Theorem 2. Let T and T? denote the lifetimes of two networks with signature vectors s = (s1, . . . , sn) and
s? = (s?1 , . . . , s?n), respectively. Suppose that the components of networks fail based on GCPs with MVFs Λ(t)
and Λ?(t), respectively. If s ≤st s? and Λ(t) ≥ Λ?(t) for all t ≥ 0, then T ≤st T?.

Proof. Let ϑk and ϑ?
k denote the kth arrival times of the two processes, k = 1, ..., n. Since P(ϑk ≤

ϑk+1) = 1, then, from Theorem 1.A.1 of [16], we can write ϑk ≤st ϑk+1. Hence,

P(T > t) =
n

∑
k=1

sk F̄ϑk (t) ≤
n

∑
k=1

s?k F̄ϑk (t). (10)
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In addition, the condition Λ(t) ≥ Λ?(t) for all t ≥ 0 implies that ϑk ≤st ϑ?
k , k = 1, ..., n. Then,

we get

n

∑
k=1

s?k F̄ϑk (t) ≤
n

∑
k=1

s?k F̄ϑ?k
(t) = P(T? > t). (11)

Hence, the result follows from (10) and (11).

Theorem 3. For two networks as described in Theorem 2, assume that the failure of components of both networks
appear according to the same GCPs:

1. If s ≤st s?, then T ≤st T?,
2. If s ≤hr s?, then T ≤hr T?,
3. If s ≤rh s?, then T ≤rh T?,
4. If s ≤lr s?, then T ≤lr T?.

Proof. It can be easily shown that ϑk ≤lr ϑk+1 k = 1, 2, . . . . Since lr-ordering implies hr-, rh- and
st-ordering, parts (i), (ii), (iii), and (iv) are proved, by using (2), from Theorems 1.A.6, 1.B.14, 1.B.52,
and 1.C.17 of [16], respectively.

From part (ii) of Theorem 3, since hr-ordering implies mrl-ordering, we conclude that if s ≤hr s?

then T ≤mrl T?. However, the following example shows that the assumption s ≤hr s? can not be
replaced with s ≤mrl s? to have T ≤mrl T?.

Example 3. Consider two networks with signature vectors s = (0, 2/3, 1/3) and s? = (1/3, 0, 2/3). It is
easy to see that s ≤mrl s?. However, s �st s? and hence s �hr s?. Assume that the components of both
networks fail based on the same GCPs with MVF Λ(t) = t2. Then, a straightforward calculation gives
E(T) = 2.5525 > E(T?) = 2.4871, which, in turn, implies that T �mrl T?.

2.1. Residual Lifetime of a Working Network

Let T denote the lifetime of a network whose components are subjected to failure based on a GCP
with MVF Λ(t). If the network is up at time t, then the residual lifetime of the network is presented by
the conditional RV (T − t|T > t) with conditional reliability function given as

P(T − t > x|T > t) =
1

P(T > t)

n

∑
k=1

skP(ϑk > t + x)

=
n

∑
k=1

sk(t)P(ϑk − t > x|ϑk > t),

where sk(t) is the kth element of vector sk(t) as defined in (6). This shows that the reliability function
of the residual lifetime of the network is a mixture of the reliability functions of residual lifetimes of
the first n arrival times of GCP, where the mixing probability vector is s(t) = (s1(t), . . . , sn(t)). As
we have already mentioned, sk(t) is in fact the probability that the kth component failure causes the
failure of the network, given that the lifetime of the network is more than t; that is,

sk(t) = P(T = ϑk|T > t), k = 1, 2, ..., n.

In what follows, we call the vector s(t) as the conditional signature of the network. In the sequel,
we give some stochastic properties of the conditional signature of network under the condition that
the components of the network fail based on GCP model.

Theorem 4. Consider a network with signature vector s = (s1, s2, . . . , sn). With M = max{i|si > 0},
limt→0 s(t) = s and limt→∞ s(t) = s̃ where s̃ = (s̃1, . . . , s̃M) and s̃i =

isi
∑n

k=1 ksk
, i = 1, . . . , n.
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Proof. From (6), we can write

si(t) =
si
[
1− ( Λ(t)

1+Λ(t) )
i]

∑M
k=1 sk

[
1− ( Λ(t)

1+Λ(t) )
k
] , i = 1, . . . , n.

Then, it is easily seen that, for any i, limt→0 si(t) = si and hence

lim
t→0

s(t) = s.

On the other hand, for i = 1, . . . , n,

lim
t→∞

si(t) = lim
u→1

si(1− ui)

∑n
k=1 sk(1− uk)

,

= lim
u→1

isiui−1

∑n
k=1 kskuk−1 =

isi

∑n
k=1 ksk

,

and consequently the result follows.

Example 4. For the network in Example 1, with Λ(t) = ta, we have

hϑi (t) =
aktak

(1 + ta)
[
(1 + ta)k − tak

] , i = 1, 2, . . . .

Hence, it is easily seen that limt→∞ hϑi (t) = 0. Thus, based on (5) and Theorem 4, we have
limt→∞ hT(t) = 0 for any network structure.

Theorem 5. Consider a network whose components fail based on two different GCPs with MVFs Λ(t)
and Λ?(t), respectively. Denote by s(t) and s?(t) the corresponding conditional signatures of the two
networks. Then,

• s(t) and s?(t) are increasing in the sense of st-ordering with respect to t;
• Λ(t) ≤ Λ?(t) implies that s(t) ≤st s?(t) for all t ≥ 0.

Proof. With δ(i, u) = 1− ui, from (6), for each MVF Λ(t), si(t) can be written as

si(t) =
siδ(i, µ(Λ(t)))

∑n
i=1 siδ(i, µ(Λ(t))

, i = 1, . . . , n, (12)

where µ(v) = v/(1 + v). Then, we have

n

∑
i=k

si(t) = βk(µ(Λ(t))),

in which

βk(u) =
∑n

i=k si[1− ui]

∑n
i=1 si[1− ui]

.
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For i1 ≤ i2,

δ(i2, u)
δ(i1, u)

=
1− ui2

1− ui1
=

∑i2−1
j=0 uj

∑i1−1
j=0 uj

=
∑i1−1

j=0 uj + ∑i2−1
j=i1

uj

∑i1−1
j=0 uj

=1 +
i2−1

∑
j′=i1

1

∑i1−1
j=0 uj−j′

(13)

is increasing in u and hence δ(i, u) is TP2 in i and u. Using this fact and Lemma 2.4 of [13]:

• Since µ(u) is increasing in u, then, for an arbitrary MVF Λ(·), we have

n

∑
i=k

si(t) ≤
n

∑
i=k

si(t′), t ≤ t′.

• Since µ(u) is increasing in u, and Λ(t) ≤ Λ?(t) for all t ≥ 0, then

n

∑
i=k

si(t) ≤
n

∑
i=k

s?i (t), t ≥ 0.

Therefore, the proof of the theorem is complete.

The following lemma from [13] is useful to get some stochastic properties of conditional signature
expressed in (6). Before expressing the lemma, we recall that a non-negative function f (x), x ≥ 0, is
said to be upside-down bathtub-shaped if it is increasing on [0, a], is constant on [a, b] and is decreasing
on [b, ∞) where 0 ≤ a ≤ b ≤ ∞.

Lemma 1. Let α(.) and β(.) be non-negative discrete functions and γ be positive and real-valued. Define

τ(u) =
γ ∑k′

i=l′ α(i)u
i

∑k
i=l α(i)β(i)ui

, u > 0, (14)

where l ≤ l′, l′ < k′ and k′ ≤ k. Assume that β(.) is a non-constant decreasing (increasing) function on
{l′, l′ + 1, ..., k′}. Then, for l = l′ and k′ < k(k = k′ and l′ > l), we have

1. τ(u) is upside-down bathtub-shaped with a single change-point;
2. τ(u) is bounded above by γ/β(k′) (γ/β(l′)).

Now, we have the following theorem.

Theorem 6. For a network with signature vector s = (s1, . . . , sn),

1. sm(t) is decreasing in t and sM(t) is increasing in t where m = min{i|si > 0} and M = max{i|si > 0};
2. sj(t), m ≤ j ≤ M, is upside-down bathtub-shaped with a single change-point;
3. sj(t), m ≤ j ≤ M, is bounded above by sj/S̄j−1;
4. The maximum value of sj(t), m ≤ j ≤ M, does not depend on the MVF Λ(t).

Proof. Assume that µ(t) = t/(1 + t). From (12), we can write

sm(t) = sm

( M

∑
i=m

si
δ(i, µ(Λ(t)))

δ(m, µ(Λ(t)))

)−1
sM(t) = sM

( M

∑
i=m

si
δ(i, µ(Λ(t)))

δ(M, µ(Λ(t)))

)−1
. (15)
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As seen in (13), δ(i2, x)/δ(i1, x), for i2 ≥ i1, is increasing in x. Since µ(Λ(t)) is increasing in t, then
it can be concluded that δ(i2, µ(Λ(t)))/δ(i1, µ(Λ(t))) is also increasing in t, for i2 ≥ i1. Based on this
fact and (15), we observe that sm(t) is a decreasing function of t and sM(t) is an increasing function of
t. This completes the proof of part (a).

From relation (7), we have

sj(t) =
sj ∑

j−1
i=0

(
µ(Λ(t))

)i

∑n−1
i=0 S̄i

(
µ(Λ(t))

)i .

With γ = sj, α(i) = 1, β(i) = S̄i, l = l′ = 0, k′ = j− 1 and k = n− 1 in (14), define ωj(u) := τ(u).
Then, we can write

sj(t) = ωj
(
µ
(
Λ(t)

))
.

Since µ
(
Λ(t)

)
is increasing in t, parts (b) and (c) follow from parts (i) and (ii) of Lemma 1.

Part (d) can be proved from the fact that

max
t>0

sj(t) = max
t>0

ωj
(
µ
(
Λ(t)

))
= max

t>0
ωj(t).

The following theorem compares the performance of two used networks based on their
conditional signatures.

Theorem 7. Let s(t) and s?(t) be the conditional signatures of two networks with lifetimes T and T?,
respectively. Suppose that the component failure in both networks appear based on the same GCPs.

1. If s(t) ≤st s?(t), then (T − t|T > t) ≤st (T? − t|T? > t);
2. If s(t) ≤hr s?(t), then (T − t|T > t) ≤hr (T? − t|T? > t);
3. If s(t) ≤rh s?(t), then (T − t|T > t) ≤rh (T? − t|T? > t);
4. If s(t) ≤lr s?(t), then (T − t|T > t) ≤lr (T? − t|T? > t).

Proof. It can be easily seen that ϑk ≤lr ϑk+1, k = 1, . . . , n− 1. Then, from Theorem 1.C.6 of [16], we
have, for k = 1, . . . , n− 1 and t ≥ 0,

(ϑk − t|ϑk > t) ≤lr (ϑk+1 − t|ϑk+1 > t).

Hence, these residual lifetimes are also hr-, rh- and st-ordered. Since s(t) ≤st s?(t), from
Theorem 1.A.6 of [16], we have, for all x > 0,

P(T − t > x|T > t) =
n

∑
k=1

sk(t)P(ϑk − t > x|ϑk > t)

≤
n

∑
k=1

s?k (t)P(ϑk − t > x|ϑk > t) = P(T? − t > x|T? > t).

This establishes part (a). The proof of parts (b), (c) and (d) are obtained similarly by using
Theorems 1.B.14, 1.B.52, and 1.C.17 of [16], respectively.

3. Three-State Networks under GCP of Component Failure

In this section, we study the reliability of the lifetimes of the networks with three states under
the condition that the components fail according to a GCP with MVF Λ(t) = λt. In order to develop
the results, we need the notion of two-dimensional signature that has been defined for single-step
three-state networks by Gertsbakh and Shpungin [11]. Throughout this section, we are dealing with a
single-step three-state network consisting of n binary components where we assume that the network
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has three states: up (denoted by K = 2), partial performance (denoted by K = 1) and down (denoted by
K = 0). Suppose that the network starts to operate at time t = 0 where it is in state K = 2. Denote by
T1 the time that the network remains in state K = 2 and by T2 the network lifetime i.e., the entrance
time into state K = 0. Let I (J) be the number of failed components when the network enters into state
K = 1 (K = 0). Gertsbakh and Shpunging [11] introduced the notion of two-dimensional signature as

si,j = P(I = i, J = j) =
ni,j

n
, 1 ≤ i < j ≤ n, (16)

where ni,j represents the number of permutations in which the ith and the jth components failure
change the network states from K = 2 to K = 1 and from K = 1 to K = 0, respectively. We denote by
matrix S the two-dimensional signature with elements defined in (16). In the following, we first obtain
the joint reliability function of (T1, T2). Under the assumption that all orders of components failure are
equally probable, we have

P(T1 > t1, T2 > t2) =
n

∑
i=0

n

∑
j=i+1

P(I = i, J = j)P(ξ(t1) < i, ξ(t2) < j|I = i, J = j)

=
n

∑
i=0

n

∑
j=i+1

si,jP(ξ(t1) < i, ξ(t2) < j),

in which the second equality follows from the fact that the event {I = i, J = j} depends only on the
network structure and does not depend on the mechanism of the components failure. In addition, it
can be shown, by changing the order of summations, that

P(T1 > t1, T2 > t) =
n

∑
i=0

n

∑
j=i

S̄i,jP(ξ(t1) = i, ξ(t2) = j), (17)

where S̄i,j = ∑n−1
k=i+1 ∑n

j=max{k,j}+1 sk,l .
Suppose that the component failures occur at random times ϑ1, . . . , ϑn that are corresponding to

the first n arrival times of the GCP {ξ(t), t ≥ 0}. Using the fact that the event (ξ(t) = i) occurs if and
only if (ϑi ≤ t < ϑi+1), it can be shown that

P(T1 > t1, T2 > t2) =
n

∑
i=0

n

∑
j=i+1

si,jP(ϑi > t1, ϑj > t). (18)

Assuming that the MVF of the GCP is Λ(t) = λt, Di Crescenzo and Pellerey [15] obtained the
PDF of (ϑ1, . . . , ϑn) as

fϑ1,...,ϑn(t1, . . . , tn) =
n!λn

(1 + λtn)n+1 , 0 < t1 < · · · < tn. (19)

Using (19), the joint PDF of ϑi and ϑj is achieved as

fϑi ,ϑj(ti, tj) =
j!λj

(1 + λtj)j+1

ti−1
i (tj − ti)

j−i−1

(i− 1)!(j− i− 1)!
, 0 < ti < tj. (20)

In the following, we present an example of a three-state network whose components fail according
to a GCP with MVF Λ(t) = λt.

Example 5. Consider a network with a graph as depicted in Figure 5. The network has 14 links and eight nodes
in which the dark nodes are considered to be terminals. Suppose that the nodes are absolutely reliable and the
links are subjected to failure.



Mathematics 2018, 6, 197 14 of 17

Figure 5. The network with eight nodes, and 14 links.

Assume that the network is in up state if all terminals are connected, in partial performance state if
two terminals are connected and in down state if all terminals are disconnected. Let the network components
fail according to a GCP with intensity function λ(t) = 1 and all orders of links failure are equally likely.
Figure 6 presents the plot of joint reliability function of the network lifetimes (T1, T2). The elements si;j of the
two-dimensional signature are calculated using an algorithm by the authors, which can be provided to the readers
upon the request.

Figure 6. The joint reliability function of (T1, T2) in Example 5.

In the following theorem, we compare the state lifetimes of two three-state networks. In order to
do this, we need the following Lemma.

Lemma 2. Assume that {ξ1(t), t ≥ 0} and {ξ2(t), t ≥ 0} are two GCPs with intensity functions λ1(t) =
λ1 > 0, and λ2(t) = λ2 > 0, respectively. Let ϑ1,1, ϑ1,2, . . . and ϑ2,1, ϑ2,2, . . . denote the arrival times
corresponding to the two processes, respectively. If λ1 ≥ λ2, then (ϑ1,1, . . . , ϑ1,n) ≤st (ϑ2,1, . . . , ϑ2,n) for every
n ≥ 1.

Proof. Using relation (19), it can be seen that fϑi,1,...,ϑi,n is MTP2, which implies that ϑi,1, . . . , ϑi,n are
associated, i = 1, 2. In addition, we have

fϑ2,1,...,ϑ2,n(t1, . . . , tn)

fϑ1,1,...,ϑ1,n(t1, . . . , tn)
= (

λ2

λ1
)n(

1 + λ1tn

1 + λ2tn
)n+1, 0 < t1 < · · · < tn,

which is increasing in (t1, . . . , tn). Therefore, the required result is concluded from Theorem 6.B.8
of [16].
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Theorem 8. Consider two three-state networks that each consist of n components having signature matrices
S1 and S2, respectively. Let the components of ith network fail according to GCP {ξi(t), t ≥ 0}, i = 1, 2 with
intensity function Λi(t) = λi. Let ϑi,1, ϑi,2, ... denote the arrival times corresponding to {ξi(t), t ≥ 0}. Suppose
that (T (1)

1 , T (1)
2 ) and (T (2)

1 , T (2)
2 ) are the corresponding state lifetimes of the two networks, respectively:

• If λ1 ≥ λ2 and S1 ≤uo S2, then (T (1)
1 , T (1)

2 ) ≤uo (T (2)
1 , T (2)

2 ),
• If λ1 ≥ λ2 and S1 ≤st S2, then (T (1)

1 , T (1)
2 ) ≤st (T (2)

1 , T (2)
2 ).

Proof. From Lemma 2, if λ1 ≥ λ2, then (ϑ1,1, . . . , ϑ1,n) ≤st (ϑ2,1, . . . , ϑ2,n), which implies
(ϑ1,i, ϑ1,j) ≤st(uo) (ϑ2,i, ϑ2,j) for all 1 ≤ i < j ≤ n.

• Using representation (17), we have

P(T (1)
1 > t1, T (1)

2 > t2) =
n

∑
i=0

n

∑
j=i

S̄1,i,jP(ξ1(t1) = i, ξ1(t2) = j)

≤
n

∑
i=0

n

∑
j=i

S̄2,i,jP(ξ1(t1) = i, ξ1(t2) = j)

=
n

∑
i=0

n

∑
j=i+1

s2,i,jP(ϑ1,i > t1, ϑ1,j > t2)

≤
n

∑
i=0

n

∑
j=i+1

s2,i,jP(ϑ2,i > t1, ϑ2,j > t2)

= P(T (2)
1 > t1, T (2)

2 > t2),

where the first inequality follows from the assumption that S1 ≤uo S2 and the second inequality
follows from (ϑ1,i, ϑ1,j) ≤uo (ϑ2,i, ϑ2,j) for 1 ≤ i < j ≤ n.

• Using the fact that (ϑ1,i, ϑ1,j) ≤st (ϑ2,i, ϑ2,j) for all i < j and the assumption that S1 ≤st S2, the
required result is concluded from Theorem 3.3 of [21].

In the sequel, we investigate the dependency between T1 and T2 based on the dependency
between RVs I and J. In fact, we show that, if I and J are PQD (associated), then T1 and T2 are also
PQD (associated). Before that, let

s(1)i = P(I = i), s(2)j = P(J = j),

and S̄(k)
i = ∑n

l=i+1 s(k)l , k = 1, 2.

Theorem 9. Let T1 be the lifetime of a three-state network in state K = 2 and T2 be the lifetime of the network.
Let the components failure of the network appear according to the GCP {ξ(t), t ≥ 0} with arrival times
ϑ1, . . . , ϑn.

• If I and J are PQD, then T1 and T2 are PQD.
• If I and J are associated, then T1 and T2 are associated.

Proof. From representation (20), one can show that fϑi ,ϑj(ti, tj) is TP2, which implies that ϑi and ϑj are
associated and PQD.
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(a) Let φ(·) and ψ(·) be two increasing functions. From representation (18), we have

E(φ(T1)ψ(T2)) =
n−1

∑
i=1

n

∑
j=i+1

si,jE(φ(ϑi)ψ(ϑj))

≥
n−1

∑
i=1

n

∑
j=i+1

si,jE(φ(ϑi))E(ψ(ϑj))

≥
n

∑
i=1

s(1)i E(φ(ϑi))
n

∑
j=1

s(2)j E(ψ(ϑj))

= E(φ(T1))E(ψ(T2)),

where the first inequality follows from the fact that ϑi and ϑj are PQD and the second inequality
follows from the assumption that I and J are PQD.

(b) Proof of part (b) is the same as the proof of part (a) using the fact that, for every two-variate
increasing functions φ′(·, ·) and ψ′(·, ·),

E(φ′(T1, T2)ψ
′(T1, T2)) =

n−1

∑
i=1

n

∑
j=i+1

si,jE(φ′(ϑi, ϑj)ψ
′(ϑi, ϑj)).

The results of the theorem are interesting in the sense that the PQD (associated) property of I and
J, which is non-aging and depends only on the structure of the network, is transferred to the PQD
(associated) property of T1 and T2, which is the aging characteristic of the network.

Example 6. Consider again the network presented in Example 5. It can be seen that, for every i, j = 1, . . . , 14,
S̄i,j ≥ S̄(1)

i S̄(2)
j . This implies that I and J are PQD. Hence, if the components fail according to a GCP, then T1

and T2 are PQD.

4. Conclusions

In this article, we studied the reliability, aging and stochastic characteristics of an n-component
network whose components were subjected to failure according to a geometric counting process
(GCP). We first considered the case that the network has two states (up and down). Some mixture
representations of the network reliability were obtained in terms of signature of the network and
the reliability functions of the arrival times of the GCP. We studied the conditions under which the
hazard rate of the network is increasing in the case that intensity function of the process is increasing.
Stochastic comparisons were made between the lifetimes of different networks, subjected to GCPs,
based on the stochastic comparisons between their signatures. The residual lifetime of the network
was also explored. In the second part of the paper, we considered the networks with three states: up,
partial performance, and down. The components of the network were assumed to fail based on a
GCP with mean value function Λ(t) = λt, which leads to the change of the network states. Under
these circumstances, we arrived at several stochastic and dependency properties of the networks with
the same and different structures. The results of Section 3 were obtained under the special case that
the MVF of the GCP is Λ(t) = λt. The developments of the paper were mainly dependent on the
notions of signature and two-dimensional signature. The results of the paper were illustrated by
several examples.
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