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Abstract: In this article the coincidence points of a self map and a sequence of multivalued maps
are found in the settings of complete metric space endowed with a graph. A novel result of Asrifa
and Vetrivel is generalized and as an application we obtain an existence theorem for a special type
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1. Introduction and Preliminaries

For the metric space (X, d), using the notions of Nadler [1] and Hu [2], denote CB(X), C (X)
and 2% by the collection of nonempty closed and bounded, compact and all nonempty subsets
of X respectively. Consider A,B € CB(X) the distance between sets A and B is defined by
d(A,B) = . }‘ni EBul (x,y), which does not allow to enjoy the properties of metric on CB (X) therefore a

well known idea of Hausdorff-Pompeiu distance H on CB(X) induced by d is used to define a metric
on CB (X) as follows:

H(A,B) =inf{e >0: AC N(¢,B),BC N(¢, A)},

where:
N(e,A) ={x € X:d(x,a) <e, forsomea € A}.

In 1969, Nadler [1] proved fixed point results for multivalued mappings in complete metric spaces,
using the Hausdorff distance H, which was the generalization of Banach contraction principle in the
settings of set-valued mappings. Covitz and Nadler [3] extended the idea of multivalued mappings in
the generalized metric spaces. Reich [4] in 1972 published a fixed point result for the multivalued maps
on the compact subsets of a complete metric space and posed the question, “can C (X) be replaced
by CB (X)?”. In 1989, Mizoguchi and Takahashi answered this question in Theorem 5 of [5] and they
also provide some Caristi type theorems for multivalued operators. Whereas Hu [2] in 1980 extended
the multivalued fixed point results from complete metric space to complete e-chainable metric space.
Azam and Arshad [6] have extended the Theorem 6 of [1] by finding the fixed points of a sequence
of locally contractive multivalued maps in e-chainable metric space. Further Feng and Liu [7] used
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the concept of lower semi-continuity and a generalized contractive condition to extend the result of
Nadler [1] and Caristi type theorems as defined in [5]. For more references the readers are referred to
the work of Ciric [8], Klim and Wardowski [9,10] , Nicolae [11].

Jachymski [12] in 2007 unified and extended the work of Nieto [13] and Ran and Reuring [14] by
defining a new class of contractions (G-contraction ) on metric space (X, d) endowed with a graph.
The connectivity of the graph brings more attractions regarding a necessary and sufficient condition
for any G-contractive operator to be a Picard operator.

In the present article, fascinated by [6] the existence of coincidence points of a sequence of
multivalued maps with a self map are taken into account with a generalized form of G-contraction.
This provides a new way to generalize many existing results in the literature (see [1,6] and the
references therein).

Let us recall some definitions from graph theory with the perspective of using them in our ideas
and results. For a metric space (X, d) let A be the diagonal of the Cartesian product X x X. Consider a
directed graph G such that X = V(G), where V(G) is the set of vertices of G. The set E(G) of edges of
G contains all the loops. If G has no parallel edge then we can identify G with the pair (V(G), E(G)).
Further, the graph G can be dealt with as a weighted graph if each edge is assigned by the distance
between its edges.

Consider a directed graph G, then G~! denote the graph obtained from G by reversing the
direction of edges and if we ignore the direction of edges in graph G we get an undirected graph
G. The pair (V’,E’) is said to be a subgraph of G if V/ C V (G) and E' C E (G) and for any edge
(a,b) € E' foralla,b e V'

Recall some fundamental definitions regarding the connectivity of graphs, which can be found
in [15].

Definition 1. A path in G from the vertex p to q of length K, is a sequence {p;} of K + 1 vertices such that
po = p,-...px = q and (pj,l,pj) € E(G) forj=1,2,..,K.

Definition 2. A graph G is called connected if there is a path between any two vertices. Graph G is weakly
connected if G is connected.

Definition 3. For a,band cin V (G), [a]; denote the equivalence class of the relation ~ defined on V (G) by
the rule:
b ~ cif there is a path in G from b to c.

Forv € V(G) and K € NU {0} by [v]X we denote the set
[0]K := {u € V(G) : there is a path of length K from v to u }.
Following is the definition of G-contraction by Jachymski [12].

Definition 4. [12] Let (X, d) be a metric space endowed with a graph G. We say that a mapping T : X — X is
a G-contraction if T preserves edges of G i.e.,

YV (x,y) € E(G) = (Tx, Ty) € E(G),
x,yeX

and there exists some « € [0,1) such that:

Vex(x,y) € E(G) = d(Tx, Ty) < ad(x,y).
XYy

Mizoguchi and Takahashi [5] had defined a MT —function as follows:
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Definition 5. [16] A function ¢: [0, +c0) — [0,1) is said to be a MT—function if it satisfies Mizoguchi
and Takahashi’s condition (i.e., lim sup ¢(r) < 1 forall t € [0, +o0)). Clearly, if ¢: [0,4+00) — [0,1) is a

r—tt
nondecreasing function or a nonincreasing function, then it is a M'T —function.

Now we state some results from the basic theory of multivalued mappings.

Lemma 1. [17] Let (X, d) be a metric space and A,B € CB(X), with H(A, B) < €, then for each a € A,
there exists an element b € B such that:
d(a,b) <e.

Lemma 2. [18] Let (X, d) be a metric space and A, B € CB(X), then for each a € A:
d(a,B) < H(A,B).
Lemma 3. [19] Let { A, } be a sequence in CB(X) and there exists A € CB(X) such that lijrl H(An, A) — 0.
n—oo

Ifx, € Ay (n=1,2,3,...) and there exists x € X such that 1i_r>n d(xy,x) — 0 then x € A.
n o0

2. Main Results
Definition 6. [20] A multivalued mapping F : X — CB (X)) is said to be Mizoguchi-Takahashi G-contraction
if forall x, y in X, x # y with (x,y) € E(G) :

i) H(F(x),F(y) <¢d(xy)d(xy);
(i)) Ifu € F(x)andv € F (y) are such that d (u,v) < d(x,y), then (u,v) € E(G).

Motivated by the Definition 2.1 of [20], in a more general settings, we define the sequence of
multivalued G¢-contraction as follows:

Definition 7. Let f : X — X be a edge preserving surjection . A sequence of multivalued mappings { Tq};":1
from X into CB(X) is said to be sequence of multivalued Gg-contraction if (fu, fv) € E(G), implies:

H(Ty(u), T,(0)) < p(d(fu, fo))d(fu, fo), forallg,r € N. M

For x € Ty(u) and y € T,(v) satisfying d(fx, fy) < d(fu, fv) implies (fx, fy) € E(G), where p:
[0,00) — [0,1) is a MT-function.

The next theorem provides the way to find the coincidence of a self map and a sequence of
multivalued maps.

Theorem 1. Let (X, d) a complete metric space,{T, 20:1 a sequence of multivalued Gg-contraction from X into
CB(X) and f : X — X a surjection. If there exist m € N and vy € X, such that:

(i) Ti(vo) N [fvolg # ¢
(ii)  For any sequence {v,} in X, if vy, — v and v, € Ty(v,_1) N [0,-1]¢ for all n € N, then there exists a
subsequence {vy, } such that (vy,,v) € E(G) forall k € N.

Then f and sequence of mappings {T; 2":1 have a coincidence point, i.e., there exists v* € X such that

for e N Ty(o").
geN

Proof. Choose any v; € X such that fo; € Ty(vg) N [fv) G then there exists a path from fuy to foy, ie.,
fog = fu(()l), ...fug,}) = fv; € T1(vp), and (ful(l),fuﬁ)l) € E(G) foralli=0,1,2,..m—1. O
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Without any loss of generality, assume that f uk ;ﬁ fu foreachk,j € {0,1,2,..,m} with k # j.
Since (fu0 ,fu1 ) € E(G), so

H(T i), o)) < w@(ful”, ul)aceul, ful)
< u@(ralV, fu)drul®, )
< d(fu), ful))

Rename fv; as fu(gz). As fuéz) € Tl(u(() )) and using Lemma 1 one can find some fu1 € T(uy (1 ))

such that:

d(fu?, ful®) < da(full, ful),
Since (fugl),fugl)) € E(G), so
H(Lw), ) < p@d(ral?, fu)aceul, ful))
< d(fugl),fugl)).

Similarly since f u1 ) e To(uy ( )) again using Lemma 1 one can find some f uéz) € Tz(ugn) such that:

a(ful®, ful?y < (V) Fulh).
Thus we obtain {fuéz),fugz),fuf), e ,fu,(nz)} of m + 1 vertices of X such that fu(()z) en (u(()l)) and
fus(z) € Tz(ugl)) fors=1,2,....,m, with:
d(pul?, fuly) < acpul, full)y),

fors =0,1,2,....,m—1. As (fus ,fusH) E(G) foralls =0,1,2,....,m — 1, thus (fus /f”s+1)
E(G)foraHS:012 m—1.
(2) _ : — @ 2 2 e (2) :
Let fuy’ = fos. Thus the set of points fv; = fuy”’, fuy”, fuy”, -+, fuy’ = fvy € To(v1) is a path
from fv; to fv,. Rename fo; as f u(()3). Then by the same procedure we obtain a path:

fvz = fu(()3)/fu§3)rfug3)/' .. /fugr?) — fvg c T3(U2)

from fov, to fvs. Inductively, obtained:

fon f“o oy ,fu 1h+l)rf”£h+l)/' e rf”%lﬂ) = fop41 € Tpga(vn)

with: . 0 . .
1 1
d(ful" ™ Ty < a(ru, ), @)

hence (futhH) futhH)) € EG)fort=0,1,2,....,m—1.
Consequently, construct a sequence {fv, };° ; of points of X with:

fop = fug,}) = fu(()z) € T1(vg),
fo, = fu,(,f) = fugj) € Tr(vr),
fvg = fu,(,,?) = fu(()4) & T3 (Uz),

foyr = fulltV = fug ") € Ty (o),
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forallh € N.
Foreacht € {0,1,2,..,m — 1}, and from (2), clearly {d(f ugh), f ugi)l)};f’zl is a decreasing sequence
of non-negative real numbers and so there exists a; > 0 such that:

. h h
lim d(fuf”, full)) = o

By assumption, lim SUP;_, 4+ u(t) < 1, so there exists k; € N such that y(d(fugh),fug?l)) < w(ay)
forall i > k; where limsup,_, u(t) <w(ay) < 1.
Now put:

.....

Then, for every h > k;, consider:

V@, s nacfu®, fu)

d(fu™V, pultt)y <
< elad(rul, ful)
< @td(f”t /f”t+1)
< (@)d(fu"", fui )
< ..
< (@) d(fu, full)).

Putting g = max{k; : t =0,1,2,..,m — 1}, gives:

d(fon, fonpr) = d(ful™, ity

h1 hl
deut“futﬁ>

IN

m—1
< Y (@t)hd(fugl),fugl), forall h > g.
t=0

Now for p > h > g, consider:

d(fop, fop) < d(fvh/fvhH) +d(fony1, fona) +- '1' +d(fop-1, fop)
< Z f”t /f”Sr)l) ) (@) 1d(fut1)'fut+1)

t=0

®)

Since ©; < 1forallt € {0,1,2,..,m — 1}, it follows that {fv;, = fu,(,il)} is a Cauchy sequence.
Using completeness of X, find v* € X such that fv, — fv*. Now using the fact that fv, € T (v,,-1) N
[fon—1]¢ forall n € N, find a subsequence { fvy, } of {fv),} such that (fvy,, fv*) € E(G) forallk € N.
Now for any g € N :

d (fv", Ty(v")) d (fo*, fonpr) +d (fopgr, Ty (v))
d (fv", fope1) + H (Thga (vp), Ty (0%))

d (fo*, fonr) + p (d (fop, fo7)) d (fon, fo7).

Letting /1 — oo in the above inequality, gives d (fv*, T;(v*)) — 0, which implies fv* € T, (v*) for
all g € N. Hence, fo* € N T,(v*) as required.
qeN

INIA A



Mathematics 2017, 5, 30 6 of 10

Example 1. Let X = {0} U {;7 :neNU {O}}for q € N. Consider the graph G such that V (G) = X and
forall xand y in X :

E(G)={(xy):x#y}.
Forq € N, let T; : X — CB(X) be defined by:

{o.1+1,1} if x=0,
T,(x)={ {Ar+11} ifx=7} nen,
{1+1} ifx=1

If we assume f : X — X as an identity map then sequence of multivalued mappings {T, 1 from X into
CB(X) is a sequence of multivalued G-contraction.

It satisfies the conditions of Theorem 1 and 1 € X is the fixed point of sequence of multivalued
maps Tj for g € N.
The next theorem provides a way to find the coincidence point of a hybrid pair.

Theorem 2. Let (X,d) be a complete metric space, T : X — CB(X) and f : X — X a surjection. If
u,v € X (with u # v) such that (fu, fv) € E(G), implies:

H(T(u), T(v)) < u(d(fu, fo))d(fu, fo), @
where y : [0,00) — [0,1) is a MT-function, if there exist m € N and vy € X, such that:

(i) T(vo) N [foolg # ¢;

(i) For any sequence {v, } in X, if v, — vand v, € T(v,_1) N [vy_1]G foralln € Nand j = 1,2, ..., then
there exists a subsequence {vy, } such that (v,,,v) € E(G) forall k € N.
Then f and T have a coincidence point, i.e., there exists v* € X such that fo* € T(v*).

Proof. Take T; := T for all g € N in Theorem 1 and proof is following the same procedure. [

Corollary 1. Let (X, d) be a complete metric space,{T; }2* , a sequence of the self mappings on X and f : X — X
a surjection. If u,v € X (with u # v) such that (fu, fv) € E(G), implies:

d(Ty(u), Ty (v)) < u(d(fu, fv))d(fu, fo), )
forall q,r € N, where p : [0,00) — [0,1) is a MT function, if there exist m € N and vy € X, such that:

(i) Ti(vo) N [foolt # ¢;
(ii)  For any sequence {v,} in X, if v, — v and vy, = Ty(v,—1) N [v,_1]¢ foralln € N,

then there exists a subsequence {vy, } such that (vy,,v) € E(G) forall k € N.

Then f and sequence of mappings {Tq};":1 have a coincidence point, i.e., there exists v* € X such
that fo* = N T,(v").
geN

Corollary 2. Let (X,d) be a complete metric space, T : X — CB(X) and if u,v € X (with u # v) such that
(u,v) € E(G), implies:
H(T(u), T(v)) < p(d(u,0))d(u,0), (6)

where p: [0,00) — [0,1) is a MT-function, if there exist m € N and vy € X, such that:
(i) T(vo) N [volG # ¢;
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(ii)  For any sequence {v, } in X, if v, — vand v, € T(v,_1) N [vy_1]G foralln € Nand j = 1,2, ..., then
there exists a subsequence {vy, } such that (v, ,v) € E(G) forall k € N.

Then T has a fixed point, i.e., v* = T(v*).
The following are the consequence of the Theorem 1 and Theorem 2 for the case of self mappings.

Corollary 3. Let (X,d) be a complete metric space, T : X — X and f : X — X a surjection.
Ifu,v € X (withu # v) such that (fu, fv) € E(G), implies:

d(T(u), T(v)) < p(d(fu, fo))d(fu, fo), )
where y : [0,00) — [0,1) is a MT function, if there exist m € N and vy € X, such that:

(i) T(vo) N [foolg # ¢;
(i) For any sequence {v,} in X, if v, — v and vy, = T(v,—1) N [v,_1]¢ foralln € Nand j = 1,2, .., then
there exists a subsequence {vy, } such that (v,,,v) € E(G) forall k € N.

Then f and T have a coincidence point, i.e., there exists v* € X such that fv* = T(v*).

Corollary 4. Let (X,d) be a complete metric space, T : X — X and if u,v € X (with u # v) such that
(u,v) € E(G), implies:
d(T(u), T(v)) < p(d(u,0))d(u,v), ®)

where y : [0,00) — [0,1) is a MT-function, if there exist m € N and vy € X, such that:
(i) T(vo) N[oolg # ¢

(ii)  For any sequence {v,} in X, if vy, — vand vy = T(vy—1) N [vy_1]¢ foralln € Nand j = 1,2, ..., then
there exists a subsequence {vy, } such that (v,,,v) € E(G) forall k € N.

Then T has a fixed point, i.e., v* = T(v*).

The next remark highlights the applications of all the above results in settings of complete metric
spaces, complete metric spaces endowed with partial order and e-chainable complete metric spaces.

Remark 1. Consider the following cases:
R1. Let (X,d) be a complete metric space, consider the graph Go with:
E(Gyp) = X x X.
R2. Let (X,d) be a complete metric space with partial order < on X, consider the graphs Gy and G, with:
E(G)={(x,y) e XxX:x =y},

and:
E(G)={(x,y) e XxX:x=<yory 2 x}.

R3. Lete > 0and (X,d) be a complete e-chainable metric space, consider the graph:
Gy ={(xvy) e XxX:0<d(xy) <eg, fore >0}.
We remark that all above results are valid under the above construction of remarks (R1), (R2) and (R3) .

Further, in an application of Theorem 1 we generalize the Theorem 6 of [20]. It establishes the
convergence of successive approximations of operators on a Banach space, which consequently yields
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the Kelisky-Rivlin theorem on iterates of Bernstein operators on the space C (I), where I is the closed
unit interval.

Theorem 3. Let X be a Banach space and X be a closed subspace of X. Let T, f : X — X be maps such that f
is surjection and:

ITx = Ty|l < ¢ ([Ifx = fyll) [l fx = fyll whenever fx — fy € Xo, x # . ©)

If (I-f)(X) € Xoand (f—T)(X) C Xo, then for all x € X, {T"x} converges to Coin{T,f},
where Coin {T,f} = {x € X: Tx = fx}.

Proof. Consider the graph G = (V(G),E(G)) where V(G) = X and E(G) =
{(x,y) € Xx X:x—y € Xo}. Clearly, A C E(G), G = G and G has no parallel edges. Consider
(xy) € E(G), then fx—fy = (y—fy) — (x— fx) + (x —y) € Xo, since (I f)(X) C Xo.
Hence and by given contractive condition (9), we see that V (x,y) € E(G) with x # y, (6) holds.
Also Tx — Ty = (fy — Ty) — (fx — Tx) + (fx — fy) € Xo, since (f — T) (X) C Xo.

The use of (f — T) (X) C Xo, implies that (fx, Tx) € E (G) for x in X. Therefore condition (i) of
Corollary 4 holds with x = vy = xg and N = 1. Thus we are able to generate a sequence such that
Tx,_1 = fxy foralln € N. Assume that Tx, — v* € X but since f is surjection so there exists some v in
X such that o* = fo. Here also Tx, € [Tx,_1]¢ for all n € N, which implies that (Tx,, Tx, 1) € E (G)
for all n € N. Now using the outline of the proof of Theorem 4.1 of [12], (Txy, fv) € E(G) foralln € N.
Now assume:

Ifo=Toll < |fo—fxuuall + || fxu1 — To| (10)

Ifo = fnull + | Txn = Tol.
Since(Txy, fv) € E(G) for all n € N, thus from (9) and (10) we have:
Ifo=Tol| < |[fo = fxaall + @ (Il fxn = foll) [ fxn = fol -

Asn — oo, we get fv = Tv. Thus v is the coincidence point of f and T, by using Corollary 4.
For the uniqueness of the coincidence point we let two coincidence points u, v of f and T, then:

|Tu — T
(L= ([[fu— foll)) [ Tu — To|

This implies that Tu = Tv. O

¢ ([|fu = foll) |fu = fol

<
< 0

In the next result, we discussed the generalization of fractional differential equation described
in [21]. For the closed interval I = [0,1], assume function § € C(,LR)and f : IXR — Risa
continuous function. The fractional differential equation is given as follows:

Dx(t)+ f(t,g(x(£))=0 (0<t<1 a>1) (11)

with boundary conditions x (0) = x (1) = 0. It is to be noted that associated Green'’s function with the
problem (11) is:

s <t

t

tA—sH)*T—(t—s)*1 0 1,
G(t,s) = { 1—g))a-1
(t( r(S;X))) 0 1.

IN A

INIA
IN A

S

where I' (.) represents the Gamma function.

Theorem 4. Consider the surjective function g € C (I, R) and f : I x R — R satisfies:
@ |(f(s,8(x () = f s8I =< lg (x(s)) =8 (y ()| forall's € I;
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1
(ii)  sup,; /G (t,5)ds <k <1.
0

Then, problem (11) has a unique solution.

Proof. Assume space X = C(I,R), and we have d (x,y) = m[ax] |x (t) —y (£)| for x and y in X. It is
te[01

well known that x € X is a solution of (11) if and only if it is a solution of the integral equation:

1
x(t) = /G (t,s) f (s,(gx)(s))dsforall t € I.
0

Define the operator F : X — X by:

1
Fx(t) = / G (t,s) f (s, (gx) (s)) ds forall t € I,
0

and S : X — X by:
Sx = gx, with (Sx) (t) = (gx) (t) fort € L.

Thus, for finding a solution of (11), it is sufficient to show that F has a coincidence point with g.
Now let x,y € C (I) for all s € I. Here we have:

1
[Fx(t) = Fy (1)] = /G(f/S)(f(S/(gX)(S))—f(sf(gy)(S)))dS
0

1
< [GU9I0 (5 (5) (<)) ~ £ (s (59) ()] s
:
< [G9)1(e0) ()~ (gy) (3]s
‘i
< [Gt9)1(5x) () - (59) () ds
:
< G (t,s)d (Sx,Sy)ds
!

1
< d(Sx,Sy)sup [ G (t,s)ds

tel 0
< kd (Sx,Sy).
This implies that for each x,y € X, we have:

d (Fx,Fy) < kd (Sx,Sy) .

Now the use of Corollary 3 with graph G = Gy, we have x* € X such that Fx* = Sx* with
(Sx*) (t) = (gx*) (t) for t € I. Thus x* is the required coincidence point of Fand g. [

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approve
the final manuscript.
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