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Abstract: In the present paper, we consider the large scale Stein matrix equation with a low-rank
constant term AXB − X + EFT = 0. These matrix equations appear in many applications in
discrete-time control problems, filtering and image restoration and others. The proposed methods
are based on projection onto the extended block Krylov subspace with a Galerkin approach (GA) or
with the minimization of the norm of the residual. We give some results on the residual and error
norms and report some numerical experiments.
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1. Introduction

In this paper, we are interested in the numerical solution of large scale nonsymmetric Stein matrix
equations of the form:

AXB− X + EFT = 0 (1)

where A and B are real, sparse and square matrices of size n× n and s× s, respectively, and E and F
are matrices of size n× r and s× r, respectively.

Stein matrix equations play an important role in many problems in control and filtering theory
for discrete-time large-scale dynamical systems, in each step of Newton’s method for discrete-time
algebraic Riccati equations, model reduction problems, image restoration techniques and other
problems [1–10].

Direct methods for solving the matrix Equation (1), such as those proposed by Bartels–Stewart [11]
and the Hessenberg–Schur [12] algorithms, are attractive if the matrices are of small size. For a general
overview of numerical methods for solving the Stein matrix equation [1,2,13].

The Stein matrix Equation (1) can be formulated as an ns × ns large linear system using the
Kronecker formulation:

(BT ⊗ A− Is ⊗ In)vec(X) = −vec(EFT) (2)

where vec(X) is the vector obtained by stacking all the columns of the matrix X, In is the n-by-n identity
matrix, and the Kronecker product of two matrices A and B is defined by A ⊗ B = [aijB], where
A = [aij]. This product satisfies the properties (A⊗ B)(C⊗ D) = (AC⊗ BD), (A⊗ B)T = AT ⊗ BT

and vec(AXB) = (BT ⊗ A)vec(X). Then, the matrix Equation (1) has a unique solution if and only if
λµ 6= 1 for all λ ∈ σ(A) and µ ∈ σ(B), where σ(A) denotes the spectrum of the matrix A. Throughout
the paper, we assume that this condition is satisfied. Moreover, if both A and B are Schur stable, i.e.,
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σ(A) and σ(B) lie in the open unit disc, and then the solution of Equation (1) can be expressed as the
following infinite matrix series:

X =
∞

∑
i=0

Ai E FT Bi

To solve large linear matrix equations, several Krylov subspace projection methods have been
proposed (see, e.g., [1,13–24] and the references therein). The main idea developed in these methods is
to use a block Krylov subspace or an extended block Krylov subspace and then project the original
large matrix equation onto these Krylov subspaces using a Galerkin condition or a minimization
property of the obtained residual. Hence, we will be interested in these two procedures to get
approximate solutions to the solution of the Stein matrix Equation (1). The rest of the paper is
organized as follows. In the next section, we recall the extended block Krylov subspace and the
extended block Arnoldi (EBA) algorithm with some properties. In Section 3, we will apply the Galerkin
approach (GA) to Stein matrix equations by using the extended Krylov subspaces. In Section 4, we
define the minimal residual (MR) method for Stein matrix equations by using the extended Krylov
subspaces. We finally present some numerical experiments in Section 5.

2. The Extended Block Krylov Subspace Algorithm

In this section, we recall the EBA algorithm applied to (A, V), where V ∈ Rn×r. The block Krylov
subspace associated with (A, V) is defined as:

Km(A, V) = Range({V, AV, A2V, · · · , Am−1V})

The extended block Krylov subspace associated with the pair (A, V) is given as:

Ke
m(A, V) = Range{V, A−1V, AV, A−2V, A2V, · · · , Am−1V, A−mV})

= Km(A, V) +Km(A−1, A−1V)

The EBA Algorithm 1 is defined as follows [15,16,18,23]:

Algorithm 1. The Extended Block Arnoldi (EBA) Algorithm

(1) Inputs: A an n× n matrix, V an n× r matrix and m an integer
(2) Compute the QR decomposition of [V, A−1V], i.e., [V, A−1V] = V1Λ
(3) Set V0 = [ ]
(4) for j = 1, 2, ..., m

(a) Set V(1)
j : first r columns of Vj; V(2)

j : second r columns of Vj

(b) Vj =
[
Vj−1, Vj

]
; V̂j+1 =

[
A V(1)

j , A−1 V(2)
j

]
(c) Orthogonalize V̂j+1 w.r. to Vj to get Vj+1, i.e.

∗ for i = 1, 2, . . . , j
∗ Hi,j = VT

i V̂j+1;
∗ V̂j+1 = V̂j+1 −Vi Hi,j
∗ End for

(d) Compute the QR decomposition of V̂j+1, i.e., V̂j+1 = Vj+1 Hj+1,j

(5) End For

This algorithm allows us to construct an orthonormal matrix Vm = [V1, V2, . . . , Vm] that is a basis
of the block extended Krylov subspace Ke

m(A, V). The restriction of the matrix A to the block extended
Krylov subspace Ke

m(A, V) is given by Tm = VT
m AVm.
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Let T̄m = VT
m+1 AVm. Then, we have the following relations [25]:

AVm = Vm+1T̄m

= VmTm + Vm+1Tm+1,mET
m

where Em = [02r×2(m−1)r, I2r]
T is the matrix of the last 2r columns of the identity matrix I2mr [23,25].

In the next section, we will define the GA for solving Stein matrix equations.

3. Galerkin-Based Methods

In this section, we will apply the Galerkin projection method to obtain low-rank approximate
solutions of the nonsymmetric Stein matrix Equation (1). This approach has been applied for Lyapunov,
Sylvester or Riccati matrix equations [1,14,15,19–21,23,25,26].

3.1. The Case: Both A and B Are Large Matrices

We consider here a nonsymmetric Stein matrix equation, where A and B are large and sparse
matrices with r � n and r � s. We project the initial problem by using the extended block Krylov
subspaces Ke

m(A, E) and Ke
m(BT , F) associated with the pairs (A, E) and (BT , F), respectively, and get

orthonormal bases {V1, V2, ..., Vm} and {W1, W2, ..., Wm}. We then consider approximate solutions of
the Stein matrix Equation (1) that have the low-rank form:

XGA
m = VmYGA

m WT
m (3)

where Vm = [V1, V2, ..., Vm] and Wm = [W1, W2, ..., Wm].
The matrix YGA

m is determined from the following Galerkin orthogonality condition:

VT
mRGA

m Wm = VT
m(AXGA

m B− XGA
m + EFT)Wm = 0 (4)

Now, replacing XGA
m = VmYGA

m WT
m in Equation (4), we obtain the reduced Stein matrix equation:

TAYGA
m (TB)

T −YGA
m + ẼF̃T = 0 (5)

where Ẽ = VT
mE, F̃ = WT

mF, TA = VT
m AVm, and TB = WT

mBTWm.
Assuming that λi(TA)λj(TB) 6= 1 for any i = 1, 2, ..., 2mr and j = 1, 2, ..., 2mr, the solution Ym of

the low-order Stein Equation (5) can be obtained by a direct method such as those described in [11].
The following result on the norm of the residualRm allows us to stop the iterations without having to
compute the approximation XGA

m .

Theorem 1. Let XGA
m be the approximation obtained at step m by the EBA algorithm. Then, the Frobenius

norm of the residualRG
m associated to the approximation XGA

m is given by:

‖RG
m‖F =

√
α2

m + β2
m + γ2

m (6)

where αm =
∥∥∥TA

mYmEm(TB
m+1,m)

T
∥∥∥

F
, βm =

∥∥∥TA
m+1,mET

m(TB
m)

T
∥∥∥

F
, and:

γm =
∥∥∥TA

m+1,mET
mYmEm(TB

m+1,m)
T
∥∥∥

F

Proof. The proof is similar to the one given at proposition 6 in [17].

In the following result, we give an upper bound for the norm of the error X− XGA
m .



Mathematics 2017, 5, 21 4 of 13

Theorem 2. Assume that ‖A‖2 < 1 and ‖B‖2 < 1, and let YGA
m be the exact solution of projected Stein matrix

Equation (5) and XGA
m be the approximate solution given by running m steps of the EBA algorithm. Then:

‖X− XGA
m ‖2 ≤

‖A‖2‖TB
m+1,m‖2 + ‖B‖2‖TA

m+1,m‖2 + ‖TA
m+1,m‖2‖TB

m+1,m‖2

1− ‖A‖2‖B‖2
‖Ym‖2 (7)

Proof. The proof is similar to the one given at Theorem 2 in [27].

The approximate solution XGA
m can be given as a product of two matrices of low rank. Consider the

singular value decomposition of the 2mr× 2mr matrix:

YGA
m = Ỹ1Σ ỸT

2

where Σ is the diagonal matrix of the singular values of YMR
m sorted in decreasing order. Let Y1,l and

Y2,l be the 2mr × l matrices of the first l columns of Ỹ1 and Ỹ2, respectively, corresponding to the l
singular values of magnitude greater than some tolerance. We obtain the truncated singular value
decomposition:

YGA
m ≈ U1,l Σl U2,l

T

where Σl = diag[σ1, . . . , σl ]. Setting Z1,m = Vm U1,l Σ1/2
l , and Z2,m = Wm U2,l Σ1/2

l , it follows that:

XGA
m ≈ Z1,m ZT

2,m (8)

This is very important for large problems when one doesn’t need to compute and store the
approximation Xm at each iteration.

The GA is given in Algorithm 2:

Algorithm 2. Galerkin Approach (GA) for the Stein Matrix Equations

(1) Inputs: A an n× n matrix, B an s× s matrix, E an n× r matrix and F an s× r matrix.
(2) Choose a tolerance tol > 0, a maximum number of itermax iterations.
(3) For m = 1, 2, 3, ..., itermax
(4) Compute Vm, TA

m, by Algorithm 1 applied to (A, E).
(5) Compute Wm, TB

m, by Algorithm 1 applied to (BT , F).
(6) Solve the low order Stein Equation (5) and compute ‖Rm‖F given by Equation (6)
(7) if ‖Rm‖F ≤ tol, stop,
(8) Using Equation (8), the approximate solution XGA

m is given by XGA
m ≈ Z1,m ZT

2,m.

In the next section, we consider the case where the matrix A is large while B has a moderate or a
small size.

3.2. The Case: A Large and B Small

In this section, we consider the Stein matrix equation:

AXB− X + E = 0 (9)

where E is a matrix of size n× s with s << n.
In this case, we will consider approximations of the exact solution X as:

Xm = VmYm
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where Vm is the orthonormal basis obtained by applying the extended block Krylov subspaceKe
m(A, E).

The orthogonality Galerkin condition gives:

VT
mRm = 0 (10)

where Rm is the m-th residual given by Rm = AXmB− Xm + E. Therefore, we obtain the projected
Stein matrix equation:

TAYGA
m B−YGA

m + Ẽ = 0 (11)

where TA = VT
m AVm and Ẽ = VT

mE.
The next result gives a useful expression of the norm of the residual.

Theorem 3. Let YGA
m the exact solution of the reduced Stein matrix Equation (11) and let XGA

m = VmYGA
m be

the approximate solution of Equation (9) withRm = R(XGA
m ) the corresponding residual. Then:

‖Rm‖F =
∥∥∥TA

m+1,mET
mYGA

m B
∥∥∥

F
(12)

Proof. The residual is given by Rm = AXGA
m B − XGA

m + E. Since E is belonging to Ke
m(A, E),

then VmVT
mE = E. Using the relation AVm = Vm+1T̄A

m, we have:

‖Rm‖F =
∥∥∥AVmYGA

m B−VmYGA
m + E

∥∥∥
F

=
∥∥∥Vm+1T̄A

mYGA
m B−VmYGA

m +VmVT
mE
∥∥∥

F

=

∥∥∥∥∥Vm+1T̄A
mYGA

m B−Vm+1

(
I
0

)
YGA

m +Vm+1

(
I
0

)
Ẽ

∥∥∥∥∥
F

=

∥∥∥∥∥Vm+1

[
T̄A

mYGA
m B−

(
I
0

)
YGA

m +

(
Ẽ
0

)]∥∥∥∥∥
F

As the matrix Vm+1 is orthogonal and TA
m =

[
TA

m
TA

m+1,mET
m

]
, we have:

‖Rm‖F =

∥∥∥∥∥
[[

TA
m

TA
m+1,mET

m

]
YGA

m B−
(

YGA
m
0

)
+

(
Ẽ
0

)]∥∥∥∥∥
F

=

∥∥∥∥∥
[(

TA
mYGA

m B−YGA
m + Ẽ

TA
m+1,mET

mYGA
m B

)]∥∥∥∥∥
F

Therefore:
‖Rm‖F =

∥∥∥TA
m+1,mET

mYGA
m B

∥∥∥
F

This result is very important because it allows us to calculate the Frobenius norm of Rm(XGA
m )

without having to compute the approximate solution.
Next, we give a result showing that the error X − Xm is an exact solution of a perturbed Stein

matrix equation.

Theorem 4. Let Xm be the approximate solution of Equation (9) obtained after m iterations of the EBA
algorithm. Then:

(A− Fm)XmB− Xm = E (13)
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where Fm = Vm+1TA
m+1,mVT

m .

Proof. Multiplying the Equation (11) from the left by Vm, we obtain:

[AVm −Vm+1TA
m+1,mET

m]YmB−VmYm = VmẼ (14)

As VmẼ = E, we get:
(A− Fm)XmB− Xm = E (15)

where:
Fm = Vm+1TA

m+1,mVT
m

We can now state the following result, which gives an upper bound for the norm of the error.

Theorem 5. If ‖A‖2 < 1 and ‖B‖2 < 1, then we have:

‖X− Xm‖2 ≤
‖ TA

m+1,mEmYmB ‖2

1− ‖A‖2‖B‖2
(16)

Proof. By subtracting Equation (13) from Equation (9), we get:

A(X− Xm)B− (X− Xm) = −FmXmB (17)

The error Xm − X is the solution of the Stein matrix Equation (17) and can be expressed as:

Xm − X =
+∞

∑
i=0

Ai[FmXmB]Bi (18)

‖Xm − X‖2 ≤
+∞

∑
i=0
‖Ai‖2‖FmXmB‖2‖Bi‖2 (19)

≤ ‖FmXmB‖2

+∞

∑
i=0

(‖A‖2‖B‖2)
i (20)

≤ ‖FmXmB‖2

1− ‖A‖2‖B‖2
(21)

≤
‖ TA

m+1,mEmYmB‖2

1− ‖A‖2‖B‖2
(22)

In the next section, we present projection methods based on extended block Krylov subspaces
and MR property.

4. Minimal Residual Method for Large Scale Stein Matrix Equations

In this section, we present a MR method for solving large scale Stein matrix equations. A MR
method for solving large scale Lyapunov matrix equation is given in [22].

4.1. The Case: Both A and B Are Large

Instead of using a Galerkin condition as we explained in the preceding section, we consider here
approximate solutions XMR

m = VmYMR
m WT

m satisfying the following minimization property:

XMR = arg min
Xm=VmYmWT

m

∥∥∥AXmB− Xm + EFT
∥∥∥

F
(23)
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We have the following result.

Theorem 6. The solution XMR
m of the the minimization problem:

XMR
m = arg min

Xm=VmYmWT
m

∥∥∥AXmB− Xm + EFT
∥∥∥

F

is given by:
XMR

m = VmYMR
m WT

m

where YMR
m solves the following low dimentional minimization problem:

YMR
m = arg min

∥∥∥∥∥T̄A
mYm

(
T̄B

m

)T
−
(

I
0

)
Ym

(
I 0

)
+

(
RERT

F 0
0 0

)∥∥∥∥∥
F

(24)

with E = V1RE and F = W1RF, the QR factorization of E and F, respectively.

Proof. We have:

min
X=VmYmWT

m

∥∥∥AXB− X + EFT
∥∥∥

F

= min
Ym

∥∥∥AVmYmWT
mB−VmYmWT

m −V1RERT
FWT

1

∥∥∥
F

= min
Ym

∥∥∥∥∥Vm+1

[
T̄A

mYm

(
T̄B

m

)T
−
(

I
0

)
Ym

(
I 0

)
+

(
RERT

F 0
0 0

)]
WT

m+1

∥∥∥∥∥
F

= min
Ym

∥∥∥∥∥
[
T̄A

mYm

(
T̄B

m

)T
−
(

I
0

)
Ym

(
I 0

)
+

(
RERT

F 0
0 0

)]∥∥∥∥∥
F

One advantage of using the minimization approach is the fact that the projected problem (24)
always has a solution that is not the case when one uses a GA.

The main problem is now how to solve the reduced order minimization problem (24). One possibility
is the use of the preconditioned global conjugate gradient (PGCG) method.

4.2. The Preconditioned Global CG Method for Solving the Reduced Minimization Problem

In this section, we adopt the preconditioned conjugate gradient method (PCG) [28,29] to solve the
reduced minimization problem (24). The normal equation associated with (24) is given by:

L∗m(Lm (Y)) = L∗m(C) (25)

where:

Lm(Y) = T̄A
mY
(
T̄B

m

)T
−
(

I
0

)
Y
(

I 0
)

Notice that L∗m is the adjoint of the linear operator Lm with respect to the Frobenius inner product
is given by:

L∗m(Z) = (T̄A
m)

TZT̄B
m −

(
I 0

)
Z

(
I
0

)
and:

C =
(

RERT
F 0

0 0

)



Mathematics 2017, 5, 21 8 of 13

We can decompose the matrices TA
m and TB

m as follows:

TA
m =

(
TA

m
hA

m

)
and TB

m =

(
TB

m
hB

m

)

where hA
m and hB

m represent the last 2r rows of the matrices TA
m and TB

m, respectively. Therefore,
the normal Equation (25) can be written as:

TA
m

T
TA

mYTB
m

T
TB

m + Y−TA
m

T
YTB

m −TA
mY(TB

m)
T −L∗m(C) = 0 (26)

Considering the singular value decomposition (SVD) of the matrices TA
m and TB

m:

TA
m = UAΣAVT

A; TB
m = UBΣBVT

B (27)

we get the eigendecomposition:

TA
m

T
TA

m = QADAQT
A, TB

m
T
TB

m = QBDBQT
B (28)

where QA = VA, QB = VB and DA = ΣT
AΣA.

Let Ỹ = QT
AYQB and C̃ = QT

AL∗m(C)QB, and then the normal Equation (26) is now expressed as:

DAỸDB + Ỹ− T̃A
mỸ(T̃B

m)
T − (T̃A

m)
TỸ(T̃B

m)− C̃ = 0 (29)

where T̃A
m = QT

AT
A
mQA and T̃B

m = QT
BTB

mQB. This expression suggests that one can use the first part as
a preconditioner, that is, the matrix operator:

P(Ỹ) = DAỸDB + Ỹ (30)

It can be seen that the expression (29) corresponds to the normal equation of the following
matrix operator:

L̃m(Ỹ) = T̃ A
m Ỹ (T̃ B

m )T −
(

QA
0

)
Ỹ
(

QT
B 0

)
(31)

where T̃ A
m = TA

m QA and T̃ B
m = TB

m QB. Then, the preconditioned global CG algorithm is obtained by
applying the preconditioner (30) to the normal equation associated with the matrix linear operator
defined by Equation (31). This is summarized in Algorithm 3.

Algorithm 3. The Preconditioned Global Conjugate Gradient (PGCG) Algorithm.

(1) Set Ỹ0 = 0
Compute R̃0 = C − L̃m(Ỹ0); S0 = L̃∗m(R̃0), Z0 = P−1(S0); P0 = S0

(2) For j = 0, 1, 2, ..., jmax

(a) Wj = L̃m(Pj)

(b) αj =
〈
Sj, Zj

〉
F /|Wj|2F

(c) Ỹj+1 = Ỹj + αjPj
(d) R̃j+1 = R̃j − αjWj
(e) If ‖R̃j+1‖F is small enough, then stop

Else
(f) Sj+1 = L̃∗m(R̃j+1)

(g) Zj+1 = P−1(Sj+1)
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(h) β j =
〈
Sj+1, Zj+1

〉
F /
〈
Sj, Zj

〉
F

(i) Pj+1 = Zj+1 + β jPj

(3) End For

Notice that the use of the preconditioner P requires the solution, at each iteration, of a Stein
equation. As the matrices DA and DB of these Stein matrix equations are diagonal matrices, this reduces
the costs.

The MR Algorithm 4 for the Stein matrix equations is summarized as follows:

Algorithm 4. The Minimal Residual (MR) Method for Nonsymmetric Stein Matrix Equations

(1) Choose a tolerance tol > 0, a maximum number of itermax iterations
(2) For m = 1, 2, 3, ..., itermax
(3) Update Vm,TA

m, by algorithm 1 (EBA) applied to (A, E)
(4) Update Wm,TB

m, by algorithm 1 (EBA) applied to (BT , F)
(5) Solve the low order problem (24)
(6) if ‖Rm‖F ≤ tol, stop
(7) Using Equation (8), the approximate solution XMR

m is given by Xm ≈ Z1,m ZT
2,m

4.3. The Case: A Large and B Small

In this subsection, we apply the MR norm method to the nonsymmetric Stein Equation (9) in the
case A large and B small. The approximate solution is given by:

XMR
m = VmYMR

m

with:
XMR = arg min

Xm=VmYm
‖AXmB− Xm + E‖F (32)

We have the following result, which is not difficult to prove.

Theorem 7. The solution of the minimization problem:

XMR
m = arg min

Xm=VmYm
‖AXmB− Xm + E‖F

is given by:
XMR

m = VmYMR
m

where:

YMR
m = arg min

Ym

∥∥∥∥∥
[
T̄A

mYmB−
[

Ym

0

]
+

[
RE
0

]]∥∥∥∥∥
F

(33)

with E = V1RE being the QR decomposition of E.

The reduced minimization problem (33) can also be solved by using the preconditioned global
CG method (PGCG), as we did for the problem (24).

5. Numerical Experiments

In this section, we present some numerical experiments of large and sparse Stein matrix equations.
We compared EBA-MR and EBA-GA methods. For the GA and at each iteration m, we solved the
projected Stein matrix equations by using the Bartels–Stewart algorithm [11]. When solving the
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minimization reduced problem by the PGCG, we stopped the iterations when the relative norm of
the residual was less than toll = 10−12 or when a maximum of kmax = 200 iterations was achieved.
The algorithms were coded in Matlab 8.0 (2014). The stopping criterion used for EBA-MR and GA was
‖R(Xm)‖F < 10−7 or a maximum of mmax = 100 iterations was achieved.

In all of the examples, the coefficients of the matrices E and F were random values uniformly
distributed on [0, 1].

Example 1. In this first example, the matrices A and B are obtained from the centered finite difference
discretization of the operators:

LA(u) = ∆u + f1(x, y)
∂u
∂x

+, f2(x, y)
∂u
∂y

+ f (x, y)u

LB(u) = ∆u + g1(x, y)
∂u
∂x

+ g2(x, y)
∂u
∂y

+ g(x, y)u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. The number of inner grid
points in each direction was n0 and s0 for the operators LA and LB, respectively. The matrices A and B were
obtained from the discretization of the operator LA and LB with the dimensions n = n2

0 and s = s2
0, respectively.

The discretization of the operator LA(u) and LB(u) yields matrices extracted from the Lyapack package [30]
using the command fdm_2d_matrix and denoted as A = fdm(n0,’f_1(x,y)’,’f_2(x,y)’,’f(x,y)’). In this example,
n = 10, 000 and s = 4900, respectively, and are named as A = fdm(n0, f1(x, y), f2(x, y), f (x, y))
and B = fdm(s0, g1(x, y), g2(x, y), g(x, y)) with f1(x, y) = −exy, f2(x, y) = − sin(xy), f (x, y) = y2,
g1(x, y) = −100ex, g2(x, y) = −12xy and g(x, y) =

√
x2 + y2. For this experiment, we used r = 3.

In Figure 1, we plotted the Frobenius norms of the residuals versus the number of iterations for
the MR and the GAs.
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Figure 1. Galerkin approach (GA): dashed line, minimal residual (MR): solid line.

In Table 1, we compared the performances of the MR method and the GA. For both methods, we
listed the residual norms, the maximum number of iteration and the corresponding execution time.
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Table 1. Results for Example 1.

Test Problem Method Iterations Residual Norm Times (s)

n = 8100, s = 3600, r = 2 GA 43 7.56 × 10−8 4.80
MR 3 1.46 × 10−8 1.87

n = 10,000, s = 4900, r = 4 GA 45 4.99 × 10−8 26.52
MR 3 6.28 × 10−8 3.75

n = 12,100, s = 7900, r = 3 GA 49 8.93 × 10−8 12.96
MR 3 4.98 × 10−8 3.63

Example 2. For the second set of experiments, we considered matrices from the University of Florida Sparse
Matrix Collection [31] and from the Harwell Boeing Collection (http://math.nist.gov/MatrixMarket).

In Figure 2, we used the matrices A = pde2961 and B = fdm(s0, 100ex, 12xy,
√

x2 + y2) with
dimensions n = 2961 and s = 3600, respectively, and r = 3.

0 5 10 15 20 25 30 35 40 45
−10

−8

−6

−4

−2

0

2

4

6

8

Iterations

Lo
g1

0 
of

 r
es

id
. n

or
m

s

 

 
MR
GA

Figure 2. GA: dashed line, MR: solid line.

In Figure 3, we used the matrices A=Themal and B=fdm(s0, exy, sin(xy), x2 − y2) with dimensions
n = 3456 and s = 6400, respectively, and r = 3.
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Figure 3. GA: dashed line, MR: solid line.
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In Table 2, we compared the performances of the MR method and the GA. For both methods, we
listed the residual norms, the maximum number of iterations and the corresponding execution time.

Table 2. Results for Example 5.2.

Test Problem Method Iterations Residual Norm Time (s)

n = 2961, s = 3600, r = 2, A = pde2961 GA 45 9.10 × 10−9 3.7440
and B = fdm(s0, 100ex, 12xy,

√
x2 + y2) MR 7 1.54 × 10−9 1.0296

n = 3456, s = 8100, r = 3, A = Thermal GA 40 3.27 × 10−8 10.1245
and B = fdm(ex, sin(xy), x2 − y2) MR 8 7.29 × 10−9 7.3008

6. Conclusions

We presented in this paper two iterative methods for computing numerical solutions for large
scale Stein matrix equations with low rank right-hand sides. The proposed methods are based on
projection onto extended block Krylov subspaces with a Galerkin or a minimal residual approach.
The approximate solutions are given as products of two low rank matrices and allow for saving memory
for large problems. The numerical experiments show that the proposed Krylov-based methods are
effective for large and sparse matrices.

Author Contributions: Authors have contributed equally in the mathematical part, the editorial as well as the
experimental part.
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