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Abstract: Finite trigonometric sums occur in various branches of physics, mathematics, and their
applications. These sums may contain various powers of one or more trigonometric functions.
Sums with one trigonometric function are known; however, sums with products of trigonometric
functions can become complicated, and may not have a simple expression in a number of cases. Some
of these sums have interesting properties, and can have amazingly simple values. However, only
some of them are available in the literature. We obtain a number of such sums using the method
of residues.
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1. Introduction

There is a venerable tradition of computing finite sums of products of trigonometric functions in
the literature [1,2]. Such sums occur while addressing many different problems in physics, mathematics,
or their applications. Sums such as [1]:

d−1

∑
j=1

sin
(

2πmj
d

)
cot
(

π j
d

)
= d− 2m (1)

where d and m are positive integers such that m < d, have been known for a long time. However,
if a small variation of the arguments of these functions is made, like arguments are affine functions,
then these sums no longer remain easy to compute and are not available in various standard handbooks
of mathematics [3], including those that specialize in series sum [4–6]. As an example, we may wish
to compute:

d−1

∑
j=1

sin
(

2πmj
d

+ a
)

cot
(

π j
d

+ πb
)

(2)

There exist useful sum and difference formulas for sines and cosines that can be used, but such
formulas do not exist for other trigonometric functions. In such cases, there is a need to compute sums
separately. For example, the above sum can be computed for b = 0 by using existing results in the
handbooks, but for b 6= 0, the sum is nontrivial. In this paper, our focus is on such sums.

We have encountered such a sum in analyzing a Bell-type inequality for a system of two
finite-dimensional subsystems. We were computing Bell-Son-Lee-Kim (Bell-SLK) function for the
general state of a bipartite quantum system. We encountered the following sum [7]:

d−1

∑
α=0

cos
(2πm

d
(α +

1
4
)
)

cot
(π

d
(α +

1
4
)
)

(3)
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where m and d are integers satisfying 0 < m < d. We can use the cosine sum rule, but there is no such
rule for cotangent. So, we cannot compute it using results given in standard handbooks. This sum can
be computed using a corollary, given below. Interestingly, this complicated-looking sum has the value
d, which is remarkably simple, and is independent of m. Independence of m is intriguing, and may
have deeper mathematical meaning. Finite trigonometric sums have also appeared in the study of
chiral Potts model [8], theory of Dirac operators [9], Dedekind sums [10], theory of determinants and
permanents [11,12], and many other places.

There are many techniques for computing these sums; e.g., use of generating functions, Fourier
analysis, method of residues, etc. Sometimes, the same sum can be obtained by different methods,
giving different-looking results. Chu and Marini [13] have used generating functions extensively to
compute trigonometric sums. Berndt and Yeap [14] have used the method of residues. In this work,
we will employ the method of residues [14,15]. We will start with a function with suitable singularity
structure. The function and contour will be chosen in such a way that integration of the function over
the contour gives the desired series and its sum. So, the main trick is to find suitable functions and
compute residues at poles.

In the next section, we have computed a few sums involving the product of two different
trigonometric functions. In Section 3, we generalize the results to the sums of the product of more than
two trigonometric functions. In Section 4, we conclude.

2. Products of Two Trigonometric Functions

In this section, we will compute the finite sums involving the product of sine with powers of
cotangent/cosecants and cosine with powers of cotangent/cosecants. As a byproduct, we will also get
a result involving tangent instead of cotangent. In computing these sums, we will use the expansion:

1
tez − 1

=
∞

∑
ν=0

Aν(t)
ν!

zν (4)

where Aν(t) is a function of t and t 6= 1. The functions Aν(t) can be written in terms of the so-called
“Apostol–Bernoulli numbers” Bν(0, t) [16]. In fact:

Aν(t) =
Bν+1(0, t)

ν + 1
(5)

The first few terms are A0(t) = 1
t−1 , A1(t) = −t

(t−1)2 , A2(t) = t+t2

(t−1)3 , and A3(t) = −(t+4t2+t3)
(t−1)4 .

We will also need to expand cotangent in a power series:

cot(πw) =
∞

∑
j=0

Cjπ
2j−1w2j−1 (6)

where w satisfies 0 < |w| < π, and:

Cj =
(−1)j22jB2j

(2j)!
(7)

where Bj are the well-known “Bernoulli Numbers”. The first few Cj are C0 = 1, C1 = − 1
3 , C2 = − 1

45 ,
and C3 = − 2

945 . In our case, we need the expansion:

cot(πz + πb) =
∞

∑
j=0

Cjπ
2j−1(z− 1 + b)2j−1 (8)

with the condition 0 < |z− 1 + b| < π. Let us start with the following theorem.
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Theorem 1. If m, n, and d denote positive integers with m < d and b /∈ Z/d, then:

en(d, m) =
d−1

∑
j=0

cos
(

2πmj
d

)
cotn

(
π j
d

+ πb
)

= −∑ iµ+ν+12µ+ν mµ

µ!
dν+1

ν!

(
t1 Aν(t2)− (−1)µ+νt′1 Aν(t′2)

)
D(j1, j2, . . . , jn)

(9)

Here, the sum is over all nonnegative integers j1,. . .,jn, µ, and ν such that 2j1 + · · ·+ 2jn + µ+ ν = n− 1.
We also have t1 = e−2πimb, t2 = e−2πidb, t′1 = e2πimb, and t′2 = e2πidb; here, b /∈ Z/d so that the trigonometric
sum is well-defined.

Furthermore:

D(j1, j2, . . . , jn) =
n

∏
r=1

Cjr (10)

Proof. We choose contour CR as a positively-oriented indented rectangle with vertices at ±iR and
1± iR. The contour has two semicircular indentations of radius ε (R > ε) to the left of both 0 and 1 [14].
Let us take the complex function as:

f (z) =
e2πimz cotn(πz + πb)

e2πidz − 1
− e−2πimz cotn(πz + πb)

e−2πidz − 1
(11)

and consider 1
2πi

∫
C f (z)dz. Since f (z) has period 1, the integrals along the indented vertical sides

of CR cancel. Since we have taken m < d, f (z) tends to zero uniformly for 0 6 x 6 1 as |y| → ∞.
Hence, 1

2πi

∫
C f (z)dz = 0. We can now calculate the contour integral using Cauchy’s residue theorem.

The function f (z) has poles at a number of points. To start with, f (z) has a simple pole at z = 0,
with residue:

Res( f , 0) =
1

πid
cotn(bπ) (12)

The function f (z) also has simple poles at z = j
d , with 1 6 j 6 d− 1. The corresponding residues

at these points are:

Res
(

f ,
j
d

)
=

1
πid

cos
(

2πmj
d

)
cotn

(
π j
d

+ πb
)

(13)

In addition, the function f (z) has a pole of order n at z = −b + 1. Using Equations (4) and (8),
we can write:

f (z) = t1

∞

∑
µ=0

(2πim)µ

µ!
(z + b− 1)µ

(
∞

∑
j=0

Cjπ
2j−1(z− 1 + b)2j−1

)n

∞

∑
ν=0

(2πid)ν

ν!
Aν(t2)(z + b− 1)ν (14)

−t′1
∞

∑
µ=0

(−2πim)µ

µ!
(z + b− 1)µ

(
∞

∑
j=0

Cjπ
2j−1(z− 1 + b)2j−1

)n

∞

∑
ν=0

(−2πid)ν

ν!
Aν(t′2)(z + b− 1)ν

Then, after few steps of straightforward calculation, one can show that:

Res( f ,−b + 1) = ∑ iµ+ν2µ+ν mµ

µ!
dν

ν!
( t1

π
Aν(t2)− (−1)µ+ν t′1

π
Aν(t′2)

)
D(j1, j2, . . . , jn) (15)
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Here, the sum is over all nonnegative integers j1,. . .,jn, µ, and ν such that 2j1 + · · ·+ 2jn + µ + ν =

n− 1. Using (12), (13), (15), and applying residue theorem, we can obtain the sum (9).

Corollary 1. Let m and d be positive integers such that m < d and b /∈ Z/d. Then:

e1(d, m) = d cos[(2m− d)bπ] cosec(bdπ) (16)

Proof. Put n = 1 in Theorem 1. Using the values A0(t) and C0, one can easily see this.

We will now consider sums involving sine and cotangents. We will need to modify our
functions suitably.

Theorem 2. Let m,n, and d denote positive integers with m < d and b /∈ Z/d. Then:

gn(d, m) = −∑ iµ+ν2µ+ν mµ

µ!
dν+1

ν!

(
t1 Aν(t2) + (−1)µ+νt′1 Aν(t′2)

)
D(j1, j2, . . . , jn)

(17)

We have already defined all the terms and conditions in Theorem 1. Here:

gn(d, m) =
d−1

∑
j=1

sin
(

2πmj
d

)
cotn

(
π j
d

+ πb
)

(18)

Proof. Our contour will be the same as in Theorem 1. Let us take the complex function as:

f (z) =
e2πimz cotn(πz + πb)

e2πidz − 1
+

e−2πimz cotn(πz + πb)
e−2πidz − 1

(19)

and consider 1
2πi

∫
C f (z)dz. As before,

∫
C f (z)dz = 0. The pole structure of this function is the same as

in Theorem 1. However, this time residue is zero at z = 0, so we take the sum from j = 1. Since sin x
vanishes at x = 0, we can take the sum from j = 0. The function f (z) has simple poles at z = j

d ,
with 1 6 j 6 d− 1. The corresponding residues at these points are:

Res
(

f ,
j
d

)
=

1
πd

sin
(

2πmj
d

)
cotn

(
π j
d

+ πb
)

(20)

The function f (z) also has a pole of order n at z = −b + 1. Using (4) and (8) (as in the case of the
last theorem), after a few steps of straight forward calculation, we can obtain:

Res( f ,−b + 1) = ∑ iµ+ν2µ+ν mµ

µ!
dν

ν!
( t1

π
Aν(t2) + (−1)µ+ν t′1

π
Aν(t′2)

)
D(j1, j2, . . . , jn) (21)

Using (20) and (21), and applying residue theorem, we can easily obtain (17).

Corollary 2. Let m and d be positive integers such that m < d and b /∈ Z/d. Then:

g1(d, m) = −d sin[(2m− d)bπ] cosec(bdπ) (22)

Proof. Put n = 1 in Theorem 2. Using the values A0(t) and C0, we can obtain this.

We will now consider sums involving sine and cosecants. We will do this for even and odd
powers of cosecants separately.
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Theorem 3. Let m, n, and d denote positive integers with m < d and b /∈ Z/d. Then:

hn(d, m) = −∑ iµ+ν2µ+ν mµ

µ!
dν+1

ν!

(
t1 Aν(t2) + (−1)µ+νt′1 Aν(t′2)

)
F(j1, j2, . . . , j2n)

(23)

where the sum is over all nonnegative integers j1,. . .,j2n, µ, and ν such that 2j1 + · · ·+ 2j2n + µ + ν = 2n− 1
and µ + ν must be odd. All other terms have already been defined in Theorem 1, except for F(j1, j2, . . . , j2n). Here:

hn(d, m) =
d−1

∑
j=1

sin
(

2πmj
d

)
cosec2n

(
πj
d

+ πb
)

(24)

The function F(j1, j2, . . . , j2n) is defined using the expansion:

cosec(πz + πb) = − cosec(πz + πb− π) =
∞

∑
j=0

Gjπ
2j−1(z− 1+ b)2j−1 (25)

with 0 < |z− 1+ b| < π. Here:

Gj =
(−1)j2(22j−1 − 1)B2j

(2j)!
(26)

where Bj is Bernoulli number. The first few Gj are G0 = −1, G1 = − 1
6 , G2 = − 7

360 , and G3 = − 31
15120 . Then:

F(j1, j2, . . . , j2n) =
2n

∏
r=1

Gjr (27)

Proof. Let us take the complex function as:

f (z) =
e2πimz cosec2n(πz + πb)

e2πidz − 1
+

e−2πimz cosec2n(πz + πb)
e−2πidz − 1

(28)

We can use the same contour and follow the same procedure as in Theorems 1 and 2. The function
f (z) has simple poles at z = j

d , with 1 6 j 6 d− 1 with residues:

Res
(

f ,
j
d

)
=

1
πd

sin
(

2πmj
d

)
cosec2n

(
πj
d

+ πb
)

(29)

The function f (z) also has a pole of order 2n at z = −b + 1. Using (4) and (25), we can write:

f (z) = t1

∞

∑
µ=0

(2πim)µ

µ!
(z + b− 1)µ

(
∞

∑
j=0

Bjπ
2j−1(z− 1+ b)2j−1

)2n

∞

∑
ν=0

(2πid)ν

ν!
Aν(t2)(z + b− 1)ν (30)

+t′1
∞

∑
µ=0

(−2πim)µ

µ!
(z + b− 1)µ

(
∞

∑
j=0

Bjπ
2j−1(z− 1+ b)2j−1

)2n

∞

∑
ν=0

(−2πid)ν

ν!
Aν(t′2)(z + b− 1)ν

After a few steps of straightforward calculation, one obtains:

Res( f ,−b + 1) = ∑ iµ+ν2µ+ν mµ

µ!
dν

ν!
( t1

π
Aν(t2) + (−1)µ+ν t′1

π
Aν(t′2)

)
F(j1, j2, . . . , jn) (31)
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Using (29), (31), and applying residue theorem, we can easily obtain (23).

Corollary 3. Let m and d be positive integers, such that m < d and b /∈ Z/d. Then:

h1(d, m) = d cosec2 ((b− 1)dπ
)[

m sin
(
2(b− 1)(d−m)π

)
− (d−m) sin

(
2(b− 1)mπ

)]
(32)

Proof. Put n = 1 in Theorem 3. Using the values A0(t), A1(t) and B0, one can show this.

We will next consider a sum involving cosine and even powers of the cosecant. We will only have
to change the function slightly.

Theorem 4. Let m, n, and d denote positive integers with m < d and b /∈ Z/d. Then:

kn(d, m) = −∑ iµ+ν+12µ+ν mµ

µ!
dν+1

ν!

(
t1Aν(t2)− (−1)µ+νt′1Aν(t′2)

)
F(j1, j2, . . . , j2n)

(33)

where the sum is over all nonnegative integers j1,. . .,j2n, µ, and ν such that 2j1 + · · ·+ 2j2n + µ + ν = 2n− 1
and µ + ν + 1 must be even. Here:

kn(d, m) =
d−1

∑
j=0

cos
(

2πmj
d

)
cosec2n

(
πj
d

+ πb
)

(34)

Proof. Let us take the complex function as:

f (z) =
e2πimz cosec2n(πz + πb)

e2πidz − 1
− e−2πimz cosec2n(πz + πb)

e−2πidz − 1
(35)

Then, applying the same procedure as in Theorem 3, we can obtain (33).

Corollary 4. Let m and d be positive integers such that m < d and b /∈ Z/d. Then:

k1(d, m) = d cosec2 ((b− 1)dπ
)[

m cos
(
2(b− 1)(d−m)π

)
+ (d−m) cos

(
2(b− 1)mπ

)]
(36)

Proof. Put n = 1 in Theorem 4. Using the values A0(t), A1(t), and B0, this result can be obtained.

Let us now consider odd powers of cosecants. In this case, to keep the periodicity of the function
f (z), we shall have to use the argument of sine as πmj

d , instead of 2πmj
d as earlier.

Theorem 5. If m is an odd positive integer, and n and d are positive integers with m < d, then:

ln(d, m) = −∑ iµ+ν2ν mµ

µ!
dν+1

ν!

(
p1Aν(p2) + (−1)µ+ν p′1Aν(p′2)

)
F(j1, j2, . . . , j2n−1) (37)

where the sum is over all nonnegative integers j1,. . .,j2n−1, µ, and ν such that 2j1 + · · ·+ 2j2n−1 + µ + ν =

2n− 2, and µ + ν must be even. Here, p1 = e−πim(b−1), p2 = e−2πidb, p′1 = eπim(b−1), and p′2 = e2πidb;
b /∈ Z/d such that the trigonometric sum is well-defined:

ln(d, m) =
d−1

∑
j=1

sin
(

πmj
d

)
cosec2n−1

(
πj
d

+ πb
)

(38)
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Proof. Let us take the complex function as:

f (z) =
eπimz cosec2n−1(πz + πb)

e2πidz − 1
+

e−πimz cosec2n−1(πz + πb)
e−2πidz − 1

(39)

Proceeding in the same way as before, we can obtain (37).

Corollary 5. If m is an odd positive integer, and n and d are positive integers with m < d and b /∈ Z/d, then:

l1(d, m) = −d sin
(
(m− d)bπ

)
cosec(πdb) (40)

Proof. By putting n = 1 in Theorem 5 and taking the values of A0(p) and B0, one can easily see this.

Again as before, in the above sum, sine can be replaced with cosine by modifying f (z) slightly.

Theorem 6. If m is an positive odd integer, and n and d are positive integers with m < d and b /∈ Z/d, then:

qn(d, m) = −∑ iµ+ν+12ν mµ

µ!
dν+1

ν!

(
p1Aν(p2)− (−1)µ+ν p′1Aν(p′2)

)
F(j1, j2, . . . , j2n−1) (41)

where the sum is over all nonnegative integers j1,. . .,j2n−1, µ, and ν such that 2j1 + · · ·+ 2j2n−1 + µ + ν =

2n− 2 and µ + ν must be even. Here:

qn(d, m) =
d−1

∑
j=0

cos
(

πmj
d

)
cosec2n−1

(
πj
d

+ πb
)

(42)

Proof. Let us take the complex function as:

f (z) =
eπimz cosec2n−1(πz + πb)

e2πidz − 1
− e−πimz cosec2n−1(πz + πb)

e−2πidz − 1
(43)

Proceeding in the same way as before, we can obtain (41).

Corollary 6. If m is an odd positive integer, and n and d are positive integers with m < d and b /∈ Z/d, then:

q1(d, m) = d cos
(
(m− d)bπ

)
cosec(πdb) (44)

Proof. By putting n = 1 in Theorem 6 and taking the values of A0(p) and B0, we can easily
obtain this.

If we take tangent instead of cotangent in the sum of Corollary 1, then we will get:

d−1

∑
j=0

cos
(

2πmj
d

)
tan
(

πj
d

+ πb
)
=

{
(−1)m+1d cos[(2m− d)bπ] cosec(bdπ); if d = even

(−1)m−dd sin[(2m− d)bπ] sec(bdπ); if d = odd
(45)

Similarly, if we take tangent instead of cotangent in the sum of Corollary 2, then:

d−1

∑
j=1

sin
(

2πmj
d

)
tan
(

πj
d

+ πb
)
=

{
(−1)md sin[(2m− d)bπ] cosec(bdπ); if d = even

(−1)m−dd cos[(2m− d)bπ] sec(bdπ); if d = odd
(46)

For even d, the sums in (45) and (46) are not defined when b ∈ Z/d, and for odd d, the sums are
not defined when b ∈ O/2d, where O is the set of odd integers.
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Many more sums of the product of two trigonometric functions can be obtained with the same
contour, with a change of function. As an example, if we slightly change the arguments of the
exponentials of the complex functions f (z), we can get a different kind of sums. To illustrate this,
we can take the factor of 4 instead of 2 in the exponentials of the function f (z) in Theorems 1 and 2.
Following the same procedure as used there, we get:

2d−1

∑
j=0

cos
(

2πmj
d

)
cot
(

πj
2d

+ πb
)
= 2d cos[(2m− d)2bπ] cosec(2bdπ) (47)

and:
2d−1

∑
j=1

sin
(

2πmj
d

)
cot
(

πj
2d

+ πb
)
= −2d sin[(2m− d)2bπ] cosec(2bdπ) (48)

respectively, and b /∈ Z/2d such that the sum is well defined.
These are just a sample of sums that one can obtain with the contour described in Theorem 1,

but choosing a variety of integrands.

3. Products of More than Two Trigonometric Functions

We shall now consider a few sums involving the products of three trigonometric functions.
We shall consider only those functions for which integral along the two sides of the contour cancel
each other. Let us consider the following function:

f (z) =
[

e2πimz

e2πidz − 1
− e−2πimz

e−2πidz − 1

]
cosec(πz + πb1) cos(πz + πb2) (49)

Using the same contour and the same procedure as in Theorems 1 and 2, we get:

d−1

∑
j=0

cos
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
cos
(

πj
d

+ πb2

)
= −d cos[(2m− d)b1π] cosec(b1dπ) cos[π + (b2 − b1)π]

(50)

In the same way, by replacing the last term by sine in (49), we get:

d−1

∑
j=0

cos
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
sin
(

πj
d

+ πb2

)
= −d cos[(2m− d)b1π] cosec(b1dπ) sin[π + (b2 − b1)π]

(51)

Of course, this sum (as before) is valid when b1 /∈ Z/d such that the trigonometric sum is well
defined. By replacing the cosecant in (49) by secant, we get following two sums:

∑d−1
j=0 cos

(
2πmj

d

)
sec
(

πj
d + πb1

)
cos
(

πj
d + πb2

)
=


(−1)m+1d cos[(2m− d)b1π] cosec(b1dπ)

cos[π
2 + (b2 − b1)π]; if d = even

(−1)m−dd sin[(2m− d)b1π] sec(b1dπ)

cos[π
2 + (b2 − b1)π]; if d = odd

(52)

and:

∑d−1
j=0 cos

(
2πmj

d

)
sec
(

πj
d + πb1

)
sin
(

πj
d + πb2

)
=


(−1)m+1d cos[(2m− d)b1π] cosec(b1dπ)

sin[π
2 + (b2 − b1)π]; if d = even

(−1)m−dd sin[(2m− d)b1π] sec(b1dπ)

sin[π
2 + (b2 − b1)π]; if d = odd

(53)
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For even d, the sums are well defined if b1 /∈ Z/d, and for odd d the condition on b1 is b1 /∈ O/2d.
In function (49), if we replace the minus sign between two exponentials with a plus sign, we

will find:

d−1

∑
j=1

sin
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
cos
(

πj
d

+ πb2

)
= d sin[(2m− d)b1π] cosec(b1dπ) cos[π + (b2 − b1)π]

(54)

Similarly, replacing the last cosine term by sine, we get:

d−1

∑
j=1

sin
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
sin
(

πj
d

+ πb2

)
= d sin[(2m− d)b1π] cosec(b1dπ) sin[π + (b2 − b1)π]

(55)

The condition on b1 for the above two sums is b1 /∈ Z/d.
Just like we obtained (52) and (53), we can find:

∑d−1
j=1 sin

(
2πmj

d

)
sec
(

πj
d + πb1

)
cos
(

πj
d + πb2

)
=


(−1)md sin[(2m− d)b1π] cosec(b1dπ)

cos[π
2 + (b2 − b1)π]; if d = even

(−1)m−dd cos[(2m− d)b1π] sec(b1dπ)

cos[π
2 + (b2 − b1)π]; if d = odd

(56)

and:

∑d−1
j=1 sin

(
2πmj

d

)
sec
(

πj
d + πb1

)
sin
(

πj
d + πb2

)
=


(−1)md sin[(2m− d)b1π] cosec(b1dπ)

sin[π
2 + (b2 − b1)π]; if d = even

(−1)m−dd cos[(2m− d)b1π] sec(b1dπ)

sin[π
2 + (b2 − b1)π]; if d = odd

(57)

For even d, the above two sums are well-defined if b1 /∈ Z/d and for odd d, the condition is
b1 /∈ O/2d.

Let us now take a different complex function. We can then obtain many more sums:

f (z) =
[

e2πimz

e2πidz − 1
− e−2πimz

e−2πidz − 1

]
cosec(πz + πb1) cosec(πz + πb2) (58)

By using residue theorem, we can show that:

d−1

∑
j=0

cos
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
cosec

(
πj
d

+ πb2

)
= −d cos[(2m− d)b1π] cosec(b1dπ) cosec[π + (b2 − b1)π] (59)

−d cos[(2m− d)b2π] cosec(b2dπ) cosec[π + (b1 − b2)π]
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This sum is valid for b1 /∈ Z/d and b2 /∈ Z/d such that the trigonometric sum is well defined.
In (58) if we use one cosecant and one secant instead of two cosecant, we will get:

∑d−1
j=0 cos

(
2πmj

d

)
cosec

(
πj
d + πb1

)
sec
(

πj
d + πb2

)
=



(
− d cos[(2m− d)b1π] cosec(b1dπ)

sec[π + (b2 − b1)π] + (−1)m+1d cos[(2m− d)b2π]

cosec(b2dπ) cosec[π
2 + (b1 − b2)π]

)
; if d = even(

− d cos[(2m− d)b1π] cosec(b1dπ)

sec[π + (b2 − b1)π] + (−1)m−dd sin[(2m− d)b2π]

sec(b2dπ) cosec[π
2 + (b1 − b2)π]

)
; if d = odd

(60)

For even d, the above sum is valid for b1 /∈ Z/d and b2 /∈ Z/d. In case of odd d, the conditions are
b1 /∈ Z/d and b2 /∈ O/2d. Again if both are secants, then:

∑d−1
j=0 cos

(
2πmj

d

)
sec
(

πj
d + πb1

)
sec
(

πj
d + πb2

)
=



(
(−1)m+1d cos[(2m− d)b1π] cosec(b1dπ)

sec[π
2 + (b2 − b1)π] + (−1)m+1d cos[(2m− d)b2π]

cosec(b2dπ) sec[π
2 + (b1 − b2)π]

)
; if d = even(

(−1)m−dd sin[(2m− d)b1π] sec(b1dπ)

sec[π
2 + (b2 − b1)π] + (−1)m−dd sin[(2m− d)b2π]

sec(b2dπ) sec[π
2 + (b1 − b2)π]

)
; if d = odd

(61)

The conditions on bs for even d are b1 /∈ Z/d and b2 /∈ Z/d. For the odd d case, the conditions are
b1 /∈ O/2d and b2 /∈ O/2d.

Like (59)–(61), we can get similar sums with sine as follows:

d−1

∑
j=1

sin
(

2πmj
d

)
cosec

(
πj
d

+ πb1

)
cosec

(
πj
d

+ πb2

)
= d sin[(2m− d)b1π] cosec(b1dπ) cosec[π + (b2 − b1)π] (62)

+d sin[(2m− d)b2π] cosec(b2dπ) cosec[π + (b1 − b2)π]

Conditions on b1 and b2 are b1 /∈ Z/d and b2 /∈ Z/d:

∑d−1
j=1 sin

(
2πmj

d

)
cosec

(
πj
d + πb1

)
sec
(

πj
d + πb2

)
=



(
d sin[(2m− d)b1π] cosec(b1dπ)

sec[π + (b2 − b1)π] + (−1)md sin[(2m− d)b2π]

cosec(b2dπ) cosec[π
2 + (b1 − b2)π]

)
; if d = even(

d sin[(2m− d)b1π] cosec(b1dπ)

sec[π + (b2 − b1)π] + (−1)m−dd cos[(2m− d)b2π]

sec(b2dπ) cosec[π
2 + (b1 − b2)π]

)
; if d = odd

(63)

For even d, the above sum is valid for b1 /∈ Z/d and b2 /∈ Z/d. In the case of odd d, the conditions
are b1 /∈ Z/d and b2 /∈ O/2d:

∑d−1
j=0 sin

(
2πmj

d

)
sec
(

πj
d + πb1

)
sec
(

πj
d + πb2

)
=



(
(−1)md sin[(2m− d)b1π] cosec(b1dπ)

sec[π
2 + (b2 − b1)π] + (−1)md sin[(2m− d)b2π]

cosec(b2dπ) sec[π
2 + (b1 − b2)π]

)
; if d = even(

(−1)m−dd cos[(2m− d)b1π] sec(b1dπ)

sec[π
2 + (b2 − b1)π] + (−1)m−dd cos[(2m− d)b2π]

sec(b2dπ) sec[π
2 + (b1 − b2)π]

)
; if d = odd

(64)
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The conditions on bs for even d are b1 /∈ Z/d and b2 /∈ Z/d. For the odd d case, the conditions are
b1 /∈ O/2d and b2 /∈ O/2d.

In this section, we have considered the product of three trigonometric functions with simple
powers. One can extend these results to higher powers of trigonometric functions, as well as products
of more than three trigonometric functions. The list is endless. We have only illustrated a few cases.

4. Conclusions

We have obtained a number of finite sums involving products of two or more trigonometric
functions. They were mostly based on a specific choice of contour and a wide variety of integrands.
Many more sums can be obtained. For the simpler powers of trigonometric functions, these sums
can be remarkably simple. Most of these sums involve tangents, cotangents, secants, and cosecants.
For these functions, we do not have simple expansions for the sum and difference of variables in their
arguments. Therefore, one has to compute them independently. We have calculated the sums for
a few cases. One can extend these calculations in many different directions, as discussed in the above
sections. Most of the simpler expressions should be in handbooks that have trigonometric sums.

Author Contributions: Both the authors contributed to the development and design of the problem. Chandan
Datta did most of the calculation. All authors contributed to the preparation of the manuscript.
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