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Abstract:



We shall discuss the numerical solution of the Cauchy problem for the fully fractional Fokker-Planck (fFP) equation in connection with Sinc convolution methods. The numerical approximation is based on Caputo and Riesz-Feller fractional derivatives. The use of the transfer function in Laplace and Fourier spaces in connection with Sinc convolutions allow to find exponentially converging computing schemes. Examples using different initial conditions demonstrate the effective computations with a small number of grid points on an infinite spatial domain.
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1. Introduction


The Fokker-Planck Equation (FP) is used in models of standard diffusion problems involving external fields:


∂tu(x,t)=LFPu(x,t)with−∞<x<∞andt≥0



(1)




where the linear FP operator is defined by [image: there is no content]:


LFP=∂∂xV′(x)mη+ϵ∂2∂x2



(2)




with the external potential [image: there is no content] [1]. [image: there is no content] represents the negative external forces in the system. The parameters m, η and ϵ are the mass, the friction coefficient, and the diffusion constant, respectively. Risken in his book collected and developed a rich variety of solution methods for the FP equation [1]. The basis of the FP equation is a diffusion process re-distributing [image: there is no content] in space x and time t the quantity may be related e.g., to mass, charge, or probability. From (2) it becomes apparent that the FP equation is a generalization of the diffusion equation. In recent years the integer order diffusion equation was generalized to a fractional diffusion equation in which the differentiations with respect to t and x are replaced by differentiations of non-integer order [2,3,4,5]. The aim of the current paper is to use such fractional generalizations for the FP equation, too.



Let us first examine Risken’s approach. To this end, we first separate the diffusion part from the rest of the equation, as follows:


∂tu(x,t)−ϵ∂2u(x,t)∂x2=−∂∂xV′(x)mηu(x,t)with−∞<x<∞andt≥0



(3)







We now assume that the function [image: there is no content] satisfies natural Dirichlet boundary conditions; i.e., [image: there is no content]. The initial condition for the problem is [image: there is no content]. Without loss of generality, we rescale the temporal coordinate by using the diffusion constant [image: there is no content] so that the equation becomes:


∂tu(x,t)−∂2u(x,t)∂x2=−∂∂xV′(x)ϵmηu(x,t)with−∞<x<∞andt≥0



(4)







It is well known that for vanishing external forces, the fundamental solution of (4) is given by a Gaussian:


G(x,t)=(4πt)1/2exp−x24t



(5)







This fundamental solution enables us to transform Equation (4) to the integral equation:


u(x,t)=v(x,t)+∫0t∫RG(x−ξ,t−τ)∂∂ξV′(ξ)ϵmηu(ξ,τ)dξdτ=v(x,t)−∫0t∫R∂∂ξ(G(x−ξ,t−τ))w(ξ)u(ξ,τ)dξdτ=v(x,t)−∫0t∫RGx(x−ξ,t−τ)w(ξ)u(ξ,τ)dξdτ



(6)




in which [image: there is no content] is the scaled external force, and in which the first derivative [image: there is no content] is given by:


Gx(x,t)=−πx(4πt)3/2exp−x24t



(7)







The function [image: there is no content] related to the initial condition is given by:


v(x,t)=∫RG(x−ξ,t)u(0)(ξ)dξ



(8)







The integral equations (IE) (6) and (8) can now be used to derive the solution of the FP equation. These straight forward steps enable us to transform the FP problem into an integral equation, which is suitable for approximate solution by our methods given below in this paper (see also [6,7]). We remark that there already exist a number of other methods for solving the FP equation. We refer to Risken [1] for an overview of such methods, and to [8,9,10,11] for a discussion of more recent developments. Our method of approximate solution has advantages over these other methods, for ease of solution and for exponential convergence.



Our aim in this paper is to generalize the integer order original FP equation to it’s fractional form, the fractional Fokker-Planck (fFP) equation. There exists a large number of papers dealing with such generalizations see e.g., [12,13,14] and references therein. However, constraints were added in each of these papers by way of replacing integer order derivatives by fractional order derivatives. Only the temporal derivative is replaced in some of these publications [13]. Some other papers consider replacing only the second order spacial whereas the other derivatives are kept at integer order, and so on. Thus these other approaches enable solutions which are not the most general possible. We will introduce a fractional representation which uses the full conversion of all integer derivatives to fractional order derivatives in all independent coordinates. Since the FP equation is of order one and two and one in time and spatial coordinates, respectively, we have to consider three different fractional differentiation orders β, α, and μ as follows:


CDtβu(x,t)−Dθα;xαu(x,t)=−Dθμ;xμV′(x)ϵmηu(x,t)with−∞<x<∞andt≥0



(9)







Here [image: there is no content], [image: there is no content], and [image: there is no content] are constraints for the fractional derivatives consistent with the FP equation. The two skewness parameters [image: there is no content] and [image: there is no content] satisfy the conditions [image: there is no content] and [image: there is no content], respectively. The fractional derivatives for temporal and spatial coordinates are defined in terms of Caputo and Riesz-Feller derivatives. For details of these definitions see Appendix A.



We begin by considering the Cauchy problem for the (spatially one-dimensional) space-time fractional FP Equation (9). Note that our approximation method is also applicable to spatially higher dimensional cases and can be generalized to systems of FP equations.



We shall first generate the fundamental solution of the IE via application of Laplace and Fourier transforms to the fractional operators. Assuming, [image: there is no content], [image: there is no content], the transforms of Laplace and Fourier are defined as:


L(f(t),s)=f˜(s)=∫0∞f(t)e−stdt



(10)




and:


F(g(x),κ)=g^(κ)=∫−∞∞g(x)eiκxdx



(11)







Thus the corresponding transform of the fractional derivatives CDtβf(t) and [image: there is no content] are:


LCDtβf(t),s=sβf˜(s)−sβ−1f(0)



(12)




and:


FDθ;xαg(x),κ=−|κ|αiθsign(κ)g^(κ)=−|κ|αeisign(κ)θπ/2g^(κ)



(13)







The fundamental solution of the fractional diffusion equation in the Fourier-Laplace domain with the initial condition [image: there is no content] thus becomes:


FLCDtβu(x,t),s,κ−FLDθ1;xαu(x,t),s,κ=0



(14)




which delivers the equations:


sβu^(κ,s)−sβ−1u^(0)=−καeisign(κ)θπ/2u^(κ,s)



(15)






u^(κ,s)=sβ−1u^(0)sβ+|κ|αeisign(κ)θπ/2



(16)







If we use the initial condition [image: there is no content] then we finally get:


u^(κ,s)=sβ−1sβ+|κ|αeisign(κ)θπ/2=G^α,β(κ,s)



(17)




representing the Laplace-Fourier solution of the Green’s or transfer function for the fractional diffusion equation [15]. In fact the knowledge of the Laplace-Fourier representation of the fractional diffusion equation is sufficient to solve the fractional FP Equation (9) by Sinc convolution approximation.



Next, the Fourier–Laplace of the fFP Equation (9) takes the form:


FLCDtβu(x,t),s,κ−FLDθα;xαu(x,t),s,κ=−FLDθμ;xμ(w(x)u(x,t)),s,κ



(18)







Applying Leibniz’s rule for fractional derivatives, we write:


FLCDtβu(x,t),s,κ−FLDθα;xαu(x,t),s,κ=−FLw(x)Dθμ;xμu(x,t)+μw(1)(x)Dθμ;xμ−1u(x,t)∓…,s,κ



(19)







The Green’s function [image: there is no content] has to satisfy:


CDtβGα,β(x,t)−Dθα;xαGα,β(x,t)+Dθμ;xμw(x)Gα,β(x,t)=δ(t)δ(x)



(20)




with [image: there is no content] and [image: there is no content], which applied to (19) yields:


CDtβGα,β(x,t)−Dθα;xαGα,β(x,t)+w(x)Dθμ;xμGα,β(x,t)+μw(1)(x)Dθμ;xμ−1Gα,β(x,t)∓…=δ(t)δ(x)



(21)







Assuming that [image: there is no content] is negligible, relative to w, and since the Green’s function satisfies:


CDtβGα,β(x,t)−Dθα;xαGα,β(x,t)+w(x)Dθμ;xμGα,β(x,t)≈δ(t)δ(x)



(22)




which can be further simplified if we use a Taylor expansion of w around [image: there is no content]:


CDtβGα,β(x,t)−Dθα;xαGα,β(x,t)+w(0)+w(1)(0)x+…Dθμ;xμGα,β(x,t)≈δ(t)δ(x)



(23)







The major contribution now is assigned to the constant term [image: there is no content] so that:


CDtβGα,β(x,t)−Dθα;xαGα,β(x,t)+w(0)Dθμ;xμGα,β(x,t)≈δ(t)δ(x)



(24)







Equation (24) delivers when Fourier-Laplace transforms are applied to the determining equation for [image: there is no content]:


sβG^α,β(κ,s)−sβ−1G^α,β(0)=−καeisign(κ)θαπ/2G^α,β(κ,s)+w(0)κμeisign(κ)θμπ/2G^α,β(κ,s)



(25)







Under the assumption that the major contribution is generated by u itself in the Fourier-Laplace space, we approximate [image: there is no content] which then yields:


sβG^α,β(κ,s)−sβ−1G^α,β(0)≈−καeisign(κ)θαπ/2G^α,β(κ,s)+κμeisign(κ)θμπ/2G^α,β(κ,s)



(26)







Solving with respect to the Fourier-Laplace variable we get:


G^α,β(κ,s)=sβ−1G^α,β(0)sβ+|κ|αeisign(κ)θαπ/2−|κ|μeisign(κ)θμπ/2



(27)




and setting [image: there is no content], we finally get:


G^α,β(κ,s)=sβ−1sβ+|κ|αeisign(κ)θαπ/2−|κ|μeisign(κ)θμπ/2



(28)







Here, α as a superscript of [image: there is no content] denotes the collection of the parameters [image: there is no content]. This transfer/Green function collects the basic information about the fractional FP equation. It will be used in the discrete convolution representation to approximate the fractional IE:


u(x,t)=v(x,t)−∫0t∫RGxα,β(x−ξ,t−τ)w(ξ)u(ξ,τ)dξdτ



(29)




incorporating the initial condition:


v(x,t)=∫RG(x−ξ,t)u(0)(ξ)dξ



(30)




with [image: there is no content].



Comparing the spectral representation of the fFP equation with the Montrol-Weiss equation used for continuous time random walks (CTRW) [15], we identify the transfer function by means of the expression:


u^(κ,s)≈Ψ(s)1−Φ(κ,s)



(31)




where [image: there is no content] and [image: there is no content] with [image: there is no content] representing the asymptotic scaling behavior for [image: there is no content]. The separation of Fourier and Laplace variables in [image: there is no content] and [image: there is no content] yields [image: there is no content]:


u^(κ,s)≈sβ−1sβ−B^α(κ)+w^(κ)B^μ(κ)



(32)







In (32), B^γ(κ)≈−|κ|γeisign(κ)θγπ/2 represents the asymptotic scaling law in Fourier space as [image: there is no content], with [image: there is no content]. If in addition we also assume that [image: there is no content] as [image: there is no content], we set [image: there is no content] as a proper normalization. Thus the fundamental solution in Fourier-Laplace representation becomes:


u^(κ,s)≈sβ−1sβ+|κ|αeisign(κ)θαπ/2−|κ|μeisign(κ)θμπ/2



(33)




corresponding to a CTRW equation of the type:


u(x,t)=δ(x)Ψ(t)+∫0tψ(t−τ)∫RW(x−ξ)u(ξ,τ)dξdτ



(34)




with the survival function Ψ(t)=∫t∞ψ(τ)dτ denoting the probability that at instant t the particle is still sitting in its starting position [image: there is no content]. The transfer function [image: there is no content] in (33) will be the key expression in the solution of the fFP equation:


CDtβu(x,t)−Dθα;xαu(x,t)=−Dθμ;xμV′(x)ϵmηu(x,t)with−∞<x<∞andt≥0



(35)







The equivalent IE to (35) is numerically approximated by a successive Neumann iteration. Examples of fractional integral equations are solved for single valued functions in [16,17]. The work in [16] proves that for fractional integral equations the solution exists and converges exponentially under the condition that the functions are analytic. Using the property of separation of variables in convolution representations the results for single valued functions are also valid for multivalued functions [18]. Thus the existence of solutions and convergence of the numerical approximation to the solution is guaranteed (for details see [16,18]). Based on these facts, we shall next introduce Sinc methods to approximate fractional partial differential equations specifically the fFP equation.




2. Methods of Approximation


This section introduced the basic ideas of Sinc methods [19]. We will discuss only the main ideas as a collection of recipes to set up a Sinc approximation. We omit most of the proofs of the different important theorems and lemmas because these proofs are available in literature [6,18,20,21,22]. The following subsections collect information on the basic mathematical functions used in Sinc approximation. We introduce Sinc methods to represent indefinite integrations and convolution integrals. These types of integrals are essential for representing the fractional operators of differentiation and integration [7,18].



2.1. Sinc Basis


To start with we first introduce some definitions and theorems allowing us to specify the space of functions, domains, and arcs for a Sinc approximation.



Definition 1.

Domain and Conditions



Let [image: there is no content] be a simply connected domain in the complex plane and [image: there is no content] having a boundary [image: there is no content]. Let a and b denote two distinct points of [image: there is no content] and ϕ denote a conformal map of [image: there is no content] onto [image: there is no content], where [image: there is no content], such that [image: there is no content] and [image: there is no content]. Let [image: there is no content] denote the inverse conformal map, and let Γ be an arc defined by [image: there is no content]. Given ϕ, ψ, and a positive number h, let us set [image: there is no content], [image: there is no content] to be the Sinc points, let us also define [image: there is no content].





Note the Sinc points are an optimal choice of approximation points in the sense of Lebesgue measures for Sinc approximations [23].



Definition 2.

Function Space



Let [image: there is no content], and let the domains [image: there is no content] and [image: there is no content] be given as in Definition 1. If [image: there is no content] is a number such that [image: there is no content], and if the function ϕ provides a conformal map of [image: there is no content] onto [image: there is no content], then [image: there is no content]. Let α and β denote positive numbers, and let [image: there is no content] denote the family of functions [image: there is no content], for which there exists a positive constant [image: there is no content] such that, for all [image: there is no content]:


u(z)≤c1ρ(z)α(1+ρ(z))α+β



(36)







Now let the positive numbers α and β belong to (0,1], and let [image: there is no content] denote the family of all functions [image: there is no content], such that [image: there is no content] and [image: there is no content] are finite numbers, where [image: there is no content] and [image: there is no content], and such that [image: there is no content] where:


u(z)=g(z)−g(a)+ρ(z)g(b)1+ρ(z)



(37)









The two definitions allow us to formulate the following theorem for Sinc approximations.



Theorem 1.

Sinc Approximation [20]



Let [image: there is no content] for [image: there is no content] and [image: there is no content], take M = [β N/α], where [x] denotes the greatest integer in x, and then set [image: there is no content]. If [image: there is no content], and if [image: there is no content] then there exists a positive constant [image: there is no content] independent of N, such that:


u(z)−∑k=−MNuzkwk≤c2N1/2e−(πdβN)1/2



(38)




with [image: there is no content] the base function (see (41)).





The proof of this Theorem 1 is given in [20]. Note the choice [image: there is no content] is close to optimal for an approximation in the space [image: there is no content] in the sense that the error bound in Theorem 1 cannot be appreciably improved regardless of the basis [20]. It is also optimal in the sense of the Lebesgue measure achieving an optimal value less than Chebyshev approximations [23]. We also note that this behavior is found also in bi-variate approximations based on Poly-Sinc methods [24,25,26].



These definitions and the theorem directly allow the formulation of an algorithm for a Sinc approximation. Let [image: there is no content] denote the set of all integers. Select positive integers N and [image: there is no content] and set [image: there is no content]. The step length is determined by [image: there is no content] where α, β, and d are real parameters. In addition assume there is a conformal map ϕ and its inverse ψ such that we can define Sinc points [image: there is no content], [image: there is no content] [20]. The following relations define the basis of a Sinc approximation:


Sinc(z)=sin(πz)πz



(39)







The shifted Sinc is derived from relation (39) by translating the argument by integer steps of length h and applying the conformal map to the independent variable:


S(j,h)∘ϕ(z)=Sinc([ϕ(z)−jh]/h),j=−M,…,N



(40)







The discrete shifting allows us to cover the approximation interval [image: there is no content] in a dense way while the conformal map is used to map the interval of approximation from an infinite range of values to a finite one. Using the Sinc basis we are able to represent the basis functions as a piecewise defined function [image: there is no content] by:


wj=11+ρ(z)−∑k=−M+1N11+ekhS(k,h)∘ϕ(z)j=−MS(j,h)∘ϕ(z)j=−M+1,…,N−1ρ(z)1+ρ(z)−∑k=−MN−1ekh1+ekhS(k,h)∘ϕ(z)j=N



(41)




where [image: there is no content]. This form of the Sinc basis is chosen as to satisfy the interpolation at the boundaries. The basis functions defined in (41) suffice for purposes of uniform−norm approximation over [image: there is no content].



This notation allows us to define a row vector [image: there is no content] of basis functions:


Vm(S)=w−M,…,wN



(42)




with [image: there is no content] defined as in (41). For a given vector Vm(u)=u−M,…,uNT we now introduce the product as an approximation of the function [image: there is no content] by:


u(z)≈Vm(S)Vm(u)=∑k=−MNukwk



(43)







Based on this notation, we will introduce in the next few subsections the different integrals we need [18].




2.2. Indefinite Integral


We need for the representation of fractional derivatives indefinite integrals. This subsection describes how indefinite integrals can be defined [20] and how these definitions are related to the definition of definite integrals. For collocating an indefinite integral and for obtaining explicit approximations of the functions [image: there is no content] and [image: there is no content] defined by:


(Ju)(x)=∫axu(t)dtwithx∈(a,b)



(44)






(J′u)(x)=∫xbu(t)dtwithx∈(a,b)



(45)







We use the following basic relations [20]. Let [image: there is no content] denote the set of all integers, and let [image: there is no content] denote the complex plane. Let [image: there is no content] be given by (40) and [image: there is no content] be defined as:


σk=∫0kSinc(x)dx=1πSi(πk)



(46)




with [image: there is no content] the sine integral. This put us into position to write:


ek=12+σk,k∈Z



(47)







If now ϕ denotes a one−to−one transformation of the interval [image: there is no content] onto the real line [image: there is no content], let h denote a fixed positive number, and let the Sinc points be defined on [image: there is no content] by [image: there is no content], [image: there is no content], where [image: there is no content] denotes the inverse function of the conformal map ϕ. Let M and N be positive integers, set [image: there is no content], and for a given function u defined on [image: there is no content], define a diagonal matrix [image: there is no content] by [image: there is no content]. Let [image: there is no content] be a square Töplitz matrix of order m having [image: there is no content], as its [image: there is no content] entry i.e., [image: there is no content]:


I(−1)i,j=ei−jwithi,j=−M,…,N



(48)







Define square matrices [image: there is no content] and [image: there is no content] by:


Am=hI(−1)D(1/ϕ′)



(49)






Bm=hI(−1)TD(1/ϕ′)



(50)




where the superscript “T” denotes the transpose. The collocated representation of the indefinite integrals are thus given by:


Jmu=Vm(S)AmVm(u)=hVm(S)I(−1)D(1/ϕ′)Vm(u)



(51)






Jm′u=Vm(S)BmVm(u)=hVm(S)I(−1)TD(1/ϕ′)Vm(u)



(52)







These are collocated representations of the indefinite integrals defined in (44) and (45), respectively [18]. If we compare our results with the target equations for example (35) we observe that we need one additional step to extend the indefinite integrals to convolution integrals.




2.3. Convolution Integrals


Indefinite convolution integrals can also be effectively collocated via Sinc methods [20]. This section discusses the core procedure of this paper, for collocating the convolution integrals and for obtaining explicit approximations of the functions p and q defined by:


p(x)=∫axf(x−t)g(t)dtwithx∈(a,b)



(53)






q(x)=∫xbf(t−x)g(t)dtwithx∈(a,b)



(54)




where [image: there is no content]. In presenting these convolution results, we shall assume that [image: there is no content], unless otherwise indicated. Note also, that being able to collocate p and q enables us to collocate definite convolutions like [image: there is no content].



Before we start to present the collocation of the Equations (53) and (54) we mention that there is a special approach to evaluate the convolution integrals by using a Laplace transform. In fact Lubich [27,28] introduced this way of calculation by the following idea:


p(x)=∫0xf(x−t)g(t)dt=12πi∫CF+(s)∫0xestg(x−t)dtds



(55)




for which the inner integral solves the initial value problem [image: there is no content] with [image: there is no content]. We assume that the Laplace transform (Stenger-Laplace transform):


F+(s)=∫Ef(t)e−t/sdt



(56)




with E any subset of [image: there is no content] such that [image: there is no content], exists for all [image: there is no content]. The eigenvalues of [image: there is no content] and [image: there is no content] are all positive which was a 20 year old conjecture by FS. This conjecture was recently solved by Han and Xu [29].



In the notation introduced above we get:


p=F+(J)g≈F+Jmg



(57)




and:


q=F+(J′)g≈F+Jm′g



(58)




are accurate approximations, provided that the inverse Laplace transform of [image: there is no content] again belongs to a space [image: there is no content] for some positive numbers [image: there is no content] and [image: there is no content] [18]. The procedure to calculate the convolution integrals is now as follows. The collocated integral [image: there is no content] and [image: there is no content], upon diagonalization of [image: there is no content] and [image: there is no content] in the form:


Am=Xmdiagsm,−M,…,sm,NXm−1



(59)






Bm=Ymdiagsm,−M,…,sm,NYm−1



(60)




with [image: there is no content] as the eigenvalues arranged in a diagonal matrix for each of the matrices [image: there is no content] and [image: there is no content]. Note that [image: there is no content] and [image: there is no content] have the same vector of eigenvalues. Then the Stenger-Laplace transform (56) delivers the square matrices [image: there is no content] and [image: there is no content] defined via the equations:


F+Am=XmdiagF+sm,−M,…,F+sm,NXm−1=XmF+(Σ)Xm−1



(61)






F+Bm=YmdiagF+sm,−M,…,F+sm,NYm−1=YmF+(Σ)Ym−1



(62)







We can get the approximation of (57) and (58) by:


F+(J)g≈F+Jmg=Vm(S)F+AmVm(g)=Vm(S)XmF+(Σ)Xm−1Vm(g)



(63)






F+J*g≈F+Jm*g=Vm(S)F+BmVm(g)=Vm(S)YmF+(Σ)Ym−1Vm(g)



(64)







These two formulas deliver a finite approximation of the convolution integrals p and q. The convergence of the method is exponential under the above Laplace transform assumptions—see [20] for a proof of a special case.




2.4. Convolution Integrals in Two Variables


Examining the IE (35) in more detail we realize that we have to extend the one dimensional convolution to a two dimensional one in fact we have to deal with integrals of the type:


p(x,t)=∫0t∫−∞∞f(x−ξ,t−τ)g(ξ,τ)dξdτ=∫0t∫−∞xf(x−ξ,t−τ)g(ξ,τ)dξdτ+∫0t∫x∞f(x−ξ,t−τ)g(ξ,τ)dξdτ



(65)







As discussed in the previous section we will use a Laplace representation of the convolution integrals but now in two dimensions. Where the approximation is sought over the region [image: there is no content], and with ai,bi∈R,i=1,2. Note that the method of separation of variables made possible by the one-dimensional convolution approximation, as well as to how easily the final algorithm can be adapted to parallel computation. In order to guarantee some accuracy in the final approximation, we shall simply assume, without going into detail, that the function p belongs to the class [image: there is no content] with respect to each variable [image: there is no content], for all fixed values of the other variables, each in its respective interval of definition, [image: there is no content].



We shall assume that the mappings [image: there is no content] have been selected properly according to the limits of the intervals. We furthermore assume that positive integers [image: there is no content] and [image: there is no content] as well as positive numbers [image: there is no content][image: there is no content] have been selected such that [image: there is no content]. These definitions ensure that we get the same order of accuracy of approximation [image: there is no content] in each variable [16,18]. We set [image: there is no content], and we define the Sinc points by [image: there is no content] for [image: there is no content]; [image: there is no content]. Next, we determine matrices [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] such that:


Aj=hjImj(−1)D1ϕj′=XjSjXj−1,j=1,2



(66)







In (66) [image: there is no content] is defined as in (48), and [image: there is no content] are diagonal matrices:


Sj=diags−Mj(j),…,sNj(j)



(67)







Arbitrarily taking [image: there is no content], we set:


Fs(1),x=∫0c1f(t,x)e−ts(1)dt



(68)






Gs(1),s(2)=∫0c2Fs(1),xe−xs(2)dx



(69)







We now illustrate the method of separation of variables. To this end, we first rewrite (65) in the notationally more convenient form:


p1(x,t)=∫a1t∫a2xf(x−ξ,t−τ)g(ξ,τ)dξdτ



(70)




representing the first integral in (65). Discretization with respect to t. We set:


g(ξ,τ)=gξ,z−M1(1),…,gξ,zN1(1)T



(71)




and we then define a vector [image: there is no content] by:


p(x)=∫a2xFx−ξ,A1g(ξ)dξ



(72)




where [image: there is no content] and F are defined in (66) and (68) respectively. Using the diagonalization identity [image: there is no content] given in (66), it now follows from (72) that:


p(x)=X1∫a2xFx−ξ,s−M1(1)⋱Fx−ξ,sN1(1)X1−1g(ξ)dξ



(73)







The expression (73) motivates the transformations:


h(ξ)=X1−1g(ξ),q(x)=X1−1p(x)



(74)







Thus, denoting the components of h and q by [image: there is no content] and [image: there is no content] respectively, with [image: there is no content], Equation (73) reduces to the decoupled set of scalar equations:


qi(x)=∫a2xFx−ξ,si(1)hi(ξ)dξ



(75)







Discretization with respect to x. We now set:


hi=hiz−M2(2),…,hizN2(2)T



(76)




and we then define a vector [image: there is no content] by:


qi(x)=∫a2xGA2,si(1)hi(ξ)dξ



(77)




where [image: there is no content] and G are defined in (66) and (69) respectively. Using the diagonalization identity [image: there is no content] given in (66), it now follows from (77) that:


qi(x)=X2∫a2xGs−M2(2),si(1)⋱GsN2(2),si(1)X2−1hi(ξ)dξ



(78)







This last expression motivates the transformations:


ki=X2−1hi(ξ),ri=X2−1qi(ξ)



(79)







Denoting the components of [image: there is no content] and [image: there is no content] by [image: there is no content] and [image: there is no content] respectively, with [image: there is no content] and [image: there is no content], Eq. (78) reduces to the decoupled set of scalar equations:


ri,j=Gsj(2),si(1)ki,j



(80)







By assumption, the [image: there is no content] are known at this point, and (80) then determines the [image: there is no content]. The second equation in (79) is then used to determine the vectors [image: there is no content] at the Sinc points [image: there is no content]. The second transformation of (74) is next used to determine the vector [image: there is no content] at the set of Sinc points. We can thus recover the complete array of values [image: there is no content] at the set of Sinc points [image: there is no content]. The algorithmic procedure is described in more detail in [21].




2.5. Sinc Collocation of fFP


For fractional differential equations there exists a solution in terms of a second kind Volterra integral equation incorporating the initial conditions of the Cauchy problem as given in (29) and (30) in the representation of (34) connected to (33). These relations are equivalent to the fFP Equation (35). The discrete version of Equation (34) follow as a collocation approximation as:


u−λF+(J)u=N≈Vm(u)−λ1F+Amt,AmxVm(u)−λ2F+Amt,BmxVm(u)=Vm(N)



(81)







Here, [image: there is no content] collects the given initial conditions of the problem and [image: there is no content], [image: there is no content] are factors independent of t or x related to the Caputo and Riesz-Feller operators (see Appendix A). The discrete version follows straight forward from (81) to be:


I−λ1F+Amt,Amx−λ2F+Amt,BmxVm(u)=Vm(N)



(82)







The matrices [image: there is no content] are set up according to the discussion in Section 2.4 using the transfer function (33) in the Laplace transform representation. Solving this linear system with respect to [image: there is no content] allows us to approximate the solution by:


u(t,x)≈Vm(S)Vm(u)



(83)







Note the solution of (82) is generated using a Neumann iteration applying a trash hold level for two consecutive approximations in view of generalizing the linear equation to a nonlinear one [16].





3. Experimental Section


This section collects four examples for the fFP equation using different types of external forces and different values for fractional derivatives. We also demonstrate the influence of the skewness parameters to exemplify the effects on the approximations such as the counter gradient transport [30]. The first three examples use a normalized Gaussian distribution with different amplitudes. Since the Sinc approximation allows an arbitrary initial distribution, we examine in the fourth example the influence of the initial distribution on the solution.



Example 1.

The first example uses a normalized Gaussian as initial distribution. The distribution follows from u(0)(x)=be−bx2/π with b = 4. The initial state is shown in Figure 1. The approximation on the time domain [0, T] = [0, 2.0] was iteratively generated using a Neumann iteration scheme. The external force [image: there is no content] was set to a constant value w(x) =−1. Figure 1 collects the initial distribution, a sequence of temporal steps represented on the spatial domain, and a [image: there is no content] graph of [image: there is no content]. The level lines of this graphs are also shown in a contour plot.

Figure 1. (a) Initial distribution [image: there is no content] used in the approximation of the fFP equation (35); (b) approximation of fFP for different times [image: there is no content], top down) using a normalized Gaussian with amplitude [image: there is no content]; (c) 3D graph of the approximation; and (d) contour plot of the approximation. The fractional exponent are given on top of the graphs (b), (c), and (d). Skewness parameters are zero resulting to a symmetric representation.



[image: Mathematics 05 00012 g001]







The graphs in Figure 1 demonstrate that the approximations represent the expected dispersive behavior. The initially localized distribution starts to spread with reduced amplitudes for times larger than zero. The dispersion is visible by the broadening of the distribution if we step along the time axis the amplitude [image: there is no content] is reduced. We also observe that the function is positive; i.e., [image: there is no content].





Example 2.

The second example uses the same fractional parameters β, α, and μ except [image: there is no content] and [image: there is no content]. Figure 2 also includes a graph showing the convergence of the Neumann iteration of the IE (top left). The specified error level ϵ is reached within four iterations. The graphs in Figure 2 show again dispersive behavior of the approximation (broadening of the distribution and reduction of the amplitude). It becomes obvious that the decay of the amplitude is slower than that in Example 1 (see Figure 1). In addition we observe that the decaying maximum in time is shifted to the left in the graphs and the symmetry of the solution is distorted. The finite value of [image: there is no content] is responsible for this effect. Again the distribution is positive on the whole domain. Figure 2 also shows how the time evolution of the distribution [image: there is no content] as [image: there is no content] and contour plot. We observe that due to the finite value of [image: there is no content] the symmetry of the solution is broken and that a steep ramp on the right of the approximation exists. The left side of the solution decays in the spatial direction much more slower than that on the steep ramp. Over all, the dispersion of the solution is present but occurs mainly on the left side of the maximum of the distribution. The maximum location of the distribution follows an asymptotic relation like ∼tα.

Figure 2. (a) Top left panel shows the convergence of the Neumann iteration toward a fixed error level ϵ; (b) approximation of fFP for different times [image: there is no content], top down) using a normalized Gaussian with amplitude [image: there is no content]; (c) 3D graph of the approximation; and (d) contour plot of the approximation. The fractional exponent are given on top of the graphs (b), (c), and (d).



[image: Mathematics 05 00012 g002]









Example 3.

The third example uses the same initial condition and fractional parameters as that in Example 2 (see Figure 2) except for [image: there is no content]. The second skewness parameter is set to a negative value which affects the decay rate and the shifting of the maximum of the distribution. The dispersion rate is also affected by this second skewness parameter (see Figure 3).

Figure 3. (a) Approximation of fFP for different times [image: there is no content], top down) using a normalized Gaussian with amplitude [image: there is no content]; (b) 3D graph of the approximation; and (c) contour plot of the approximation. The fractional exponent are given on top of the graphs.



[image: Mathematics 05 00012 g003]







In Figure 4 we collect some characteristics of the approximations generated in Example 1,2, and 3. The data shown in Figure 4 represent the location of the maximum [image: there is no content] of [image: there is no content], the decay of the maximum value in time, and the change of the width [image: there is no content] of the maximum on the level [image: there is no content] corresponding to the 63% value of the maximum. The three graphs summarize the scaling properties of the approximations. The first graph (top row) shows that the maximum location is shifted in time if the skewness parameters are different from zero. The shift of the maximum follows a relation [image: there is no content] for [image: there is no content] and [image: there is no content]. As a reference for zero skewness parameters there is no shift of the maximum (top line in Figure 4 top row). The second characteristic of the approximation is the decay of the maximum in time. The decay follows the relation [image: there is no content]. Note the exponent of t is the same for all approximations. The width [image: there is no content] of the maximum also changes with time according to the dispersion. For vanishing skewness we have a relation [image: there is no content] while for the skewness [image: there is no content] and [image: there is no content] we found the relation [image: there is no content]. This indicates that the dispersion process is influenced by the skewness parameters.

Figure 4. (a) Location of the maximum [image: there is no content] as a function of time. The top curve shows the location of the maximum where the skewness parameters are zero. The lower two curves represent the skewness for [image: there is no content] and [image: there is no content]. The bending of the curve follows a relation [image: there is no content] with [image: there is no content]; (b) decay of the maximum amplitude satisfies the relation [image: there is no content] with [image: there is no content]; and (c) change of the width [image: there is no content]d) at a level [image: there is no content]. The width changes according to the relation [image: there is no content] with [image: there is no content] for zero skewness (top curve) and [image: there is no content] with [image: there is no content] and [image: there is no content] (lower curve).
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Example 4.

This example uses an external force [image: there is no content] with an initial condition [image: there is no content] where the prefactor is chosen in such a way that the integral on [image: there is no content] is normalized to one. Figure 5 collects the information about the fractional exponents used and displays the behavior of the approximation.

Figure 5. (a) Initial condition to approximate the fFP equation [image: there is no content]. The external force is set to [image: there is no content]; (b) the graph shows the approximation for different times [image: there is no content] (top down); (c) 3D graph of the approximation; and (d) contour plot of the approximation. The fractional exponent are given on top of the graphs (b), (c), and (d). The number of Sinc points is [image: there is no content].
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4. Conclusions


Starting from the integer order Fokker-Planck equation and applying the fractional operators to the temporal and spatial coordinates we derived a fully fractional Fokker-Planck equation in temporal and spatial coordinates. The equivalent representation of the Montrol-Weiss equation using the adapted transfer function with three fractional exponents and two skewness parameters provides us with a suitable Volterra integral equation of second type for the numerical approximation. The approximation of the integral equation is using exponentially converging Sinc convolution integrals extended to higher dimensions. The Volterra equation of the second kind is converted in Sinc convolution methods to a linear system of equations which are solved by a Neumann iteration. The convergence of this iteration is absolute and reaches a specified error margin in a reliable fast way. The examples presented demonstrate for a choice of different initial conditions [image: there is no content] dispersing approximations. The dispersion is affected by the fractional exponents and the two skewness parameters. Numerical examination of the shift of the maximum and the width of the distribution for different times show that these quantities follow a scaling relation in time. We also observe in these examples so called counter-gradient transport for the function u. Furthermore, a drift of the maximum concentration is observed.
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Appendix A


This appendix collects additional relations and definitions used in the formulation and computation of fractional derivatives.



Let us here discuss a simplified version of the fFP equation reduced to a fractional diffusion equation. The aim here is to introduce the different operators used in the representation of the fFP equation. The space-time fractional diffusion equation in [image: there is no content] dimensions is written as:


Dtβu(x,t)=Dx;θαu(x,t)with−∞<x<∞andt≥0



(A1)




where [image: there is no content], and θ are real parameters restricted to [image: there is no content], [image: there is no content], and [image: there is no content]. The fractional derivatives [image: there is no content] is the Riesz-Feller fractional derivative of order α and skewness θ, and [image: there is no content] is the Caputo fractional derivative of order β.



The time fractional derivative on the LHS of (1) can then be removed by a suitable fractional integration leading to:


u(x,t)=u(x,0)+1Γ(β)∫0tDx;θαu(x,τ)(t−τ)β−1dτ



(A2)




here the initial condition is used as [image: there is no content] reflecting the fact of fractional differentiating a constant. The Riesz–Feller fractional derivative is defined as follows:


Dx;θαf(x)=−Ix;θ−αf(x)=c−(α,θ)I+;x;θ−αf(x)+c+(α,θ)I−;x;θ−αf(x)



(A3)




where the following relations hold:


c+(α,θ)=sin((α−θ)π/2)sin(απ)andc−(α,θ)=sin((α+θ)π/2)sin(απ)



(A4)




and the corresponding fractional integral operators [image: there is no content] (Weyl integrals see e.g., [31]) are given as:


I+;x;θαf(x)=1Γ(α)∫−∞x(x−ξ)α−1f(ξ)dξ



(A5)




and:


I−;x;θαf(x)=1Γ(α)∫x∞(ξ−x)α−1f(ξ)dξ



(A6)







Note the negative sign in the Riesz-Feller operator means that we are dealing with fractional derivatives which are defined in terms of integral operators as follows:


I+;x;θ−αf(x)=1Γ(n−α)∫−∞x(x−ξ)n−α−1f(ξ)dξ



(A7)




and:


I−;x;θ−αf(x)=1Γ(n−α)∫x∞(ξ−x)n−α−1f(ξ)dξ



(A8)




with [image: there is no content] and [image: there is no content]; here [image: there is no content] represents the integer part of α.



In terms of these integrals the solution is then:


u(x,t)=u(x,0)+1Γ(β)∫0tDx;θαu(x,τ)(t−τ)β−1dτ=u(x,0)+1Γ(β)∫0tc−(α,θ)I+;x;θ−αu(x,τ)+c+(α,θ)I−;x;θ−αu(x,τ)(t−τ)β−1dτ⇔u(x,t)−1Γ(−α)1Γ(β)sin((α+θ)π/2)sin(απ)∫0t∫−∞x(x−ξ)−α−1(t−τ)β−1u(ξ,τ)dξdτ+sin((α−θ)π/2)sin(απ)∫0t∫x∞(ξ−x)−α−1(t−τ)β−1u(ξ,τ)dξdτ=u0(x)



(A9)







The above equation is a linear Volterra integral equation in two variables t and x for [image: there is no content], [image: there is no content], and [image: there is no content].



Here CDtβ denotes the Caputo fractional derivative of order β, acting on a sufficiently well-behaved function [image: there is no content] of the variable t:


CDtβf(t)=1Γ(1−β)∫0tf(1)(τ)(t−τ)βdτ,0<β<1



(A10)







The generalized higher order derivative uses the following definition:


CDtβf(t)=1Γ(m−β)∫0tf(m)(τ)(t−τ)m−β−1dτ,m−1<β<m,m∈Ndmf(t)dtmβ=m,m∈N



(A11)




where we have the two properties for integration and differentiation as follows:


Dt−βDtβf(t)=f(t)−∑k=0n−1tkk!f(k)(0),t>0



(A12)







Caputo fractional derivative:


CDtβf(t)=Dtβf(t)−∑k=0n−1tk−βΓ(k−β+1)f(k)(0),t>0



(A13)







In particular for [image: there is no content] (i.e., [image: there is no content]) we have:


CDtβf(t)=Dtβf(t)−f(0)t−βΓ(1−β)=Dtβ[f(t)−f(0)],t>0



(A14)







From Equation (A14) we recognize that the Caputo fractional derivative represents a sort of regularization in the time origin for the Riemann-Liouville fractional derivative.
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