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Abstract: We consider the master equation of quantum Brownian motion, and with the application
of the group invariant transformation, we show that there exists a surface on which the solution of
the master equation is given by an autonomous one-dimensional Schrödinger Equation.
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1. Introduction

With the method of path integrals—specifically the Feynman–Vernon influence
functional [1]—Haake and Reibold [2] and few years later Hu, Paz, and Zhang derived an equation
that inherits the properties of quantum Brownian motion for a harmonic oscillator interacting with
a linear passive heat bath of oscillators [3,4]. An alternate derivation of that master equation has
been performed by Halliwell and Yu by tracing the evolution equation for the Wigner function of the
system [5].

The master equation of quantum Brownian motion is a (1 + 2) linear nonautonomous evolution
equation given by

Z,t = −
x
m

Z,y + mΩ2(t)yZ,x + 2Γ(t)(xZ),x + h̄mΓ(t)h(t)Z,xx + h̄Γ(t) f (t)Z,xy (1)

where m is the mass of the Brownian particle, and Z = Z (t, x, y) is the Wigner function of the density
matrix (x denotes the momentum of the oscillator and y its position). Furthermore, the coefficients,
Ω2 (t), Γ (t) , h (t), and f (t) in general are time-dependent and related to the natural frequency of
the Brownian motion and the terms interacting with the heat bath of oscillators. The derivation of
the coefficients is given in [5,6].

A general analytical solution of the master Equation (1) with the use of the Langevin Equation
has been derived in [6], whereas in [7], some solutions of the master equations for quantum Brownian
motion are given. The analysis of open quantum systems does not stop in Equation (1). A relation
of the exact master equation with the nonequilibrium Green functions for non-Markovian open
quantum systems was derived in [8], while new phenomena concerning the thermal-state of a
quantum system were predicted for a strongly non-Markovian enviroment in [9].
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In this work, we are interested in the existence of solutions for Equation (1), which follow from
the method of group invariant transformations; in particular, we are interested in the one-parameter
point transformations which were introduced by S. Lie [10], where the generator of the infinitesimal
transformation is called a Lie (point) symmetry. The importance of Lie symmetries is that they
provide a systematic method to facilitate the solution of differential equations, because they provide
first-order invariants which can be used to reduce the order of differential equations. Moreover, Lie
symmetries can be used for the classification of differential equations, and important information
for the differential equation can be extracted from the admitted group of invariant transformations.
The method of group invariant transformations has been applied in various systems of quantum
mechanics (see [11–16] and references therein).

By applying the Lie theory for differential equations, we show that Equation (1) is invariant
under a group of one-parameter point transformations in which the generators form the {A1 ⊕s

W5} ⊕s ∞A1, Lie algebra, where W5 denotes the five-element Weyl–Heisenberg algebra and ∞A1

is the infinite-dimensional abelian algebra of the solutions of the linear (1 + 2) evolution equation
and follows from the linearity of (1). Furthermore, from the Lie symmetries, we can define a surface
in which Equation (1) is independent of one of the independent variables, and with the use of the
zeroth-order invariants, we can reduce Equation (1) in a nonautonomous one-dimensional evolution
equation. We study the Lie point symmetries of this equation and show that is maximally symmetric.
Hence, it is invariant under a group of transformations which form the {sl(2, R) ⊕s W3} ⊕s ∞A1

Lie algebra (algebra sl(2, R) is the A3,8, and W3 is the A3,3 in the Mubarakzyanov Classification
Scheme [17–20]) . From S. Lie’s theorem, this indicates that there exists a “coordinate” transformation
in which the reduced equation is equivalent to the equation. Hence, solutions of the Schrödinger
equation are also solutions of the master Equation (1). The plan of the paper is as follows.

In Section 2, we give the basic properties and definitions of Lie symmetries, and we study the
existence of Lie symmetries for the master Equation (1). Furthermore, we apply the zeroth-order
invariants of the Lie symmetries and we reduce the original equation to a one-dimensional evolution
equation. In Section 3, we study the relationship between the reduced equation and the Schrödinger
equation. Finally, we draw our conclusions and give an example in Section 4.

2. Lie Point Symmetries of the Master Equation

For the convenience of the reader we present the basic properties and definitions of Lie
symmetries of differential equations.

Consider a differential equation Θ
(

xk, u, u,i, u,ij

)
= 0, where xk are the independent

variables, and u = u
(

xk
)

is the dependent variable. Then the differential operator,

X = ξi
(

xk, u
)

∂i + η
(

xk, u
)

∂u (2)

is called a Lie symmetry of Θ, if there exists a function λ such that LX[2]Θ = λΘ, where X[2] is

the second prolongation/extension of the vector field X in the space
{

xk, u, u,i, uij

}
[21,22].

Lie symmetries of differential equations can be used to determine invariant solutions or
transform solutions to solutions [22]. From the Lie symmetry condition, one defines the associated
Lagrange’s system

dxi

ξ i =
du
η

=
dui
η[i]

= ... =
duij..in
η[ij...in ]

(3)

the solution of which provides the characteristic functions

Λ[0]
(

xk, u
)

, Λ[1]i
(

xk, u, ui

)
, ..., Λ[n]

(
xk, u, u,i, ..., uij...in

)
(4)
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The solution Λ[k] is called the kth-order invariant of the Lie symmetry vector, (2). These invariants
can be used in order to reduce the order or the number of the independent variables of the differential
equations. Another important feature of Lie symmetries of differential equations is that they span the
Lie algebra GL. The application of a Lie symmetry to Θ leads to a new differential equation Θ̄ which is
different from Θ, and possibly admits Lie symmetries which are not Lie symmetries of Θ. This means
that the reduced equation can have properties different from the original equation. However, the
solutions of these equations are related through the point transformation which transformed Θ to Θ̄.

2.1. The Master Equation

In order to simplify the presentation of the calculations, we rewrite Equation (1) in the following
form (it is also possible to apply a coordinate transformation, (x, y) → (x̄, ȳ), which “diagonalises”
the second derivatives in Equation (1). However, we prefer to work on the original physical system):

− x
m

Z,y + p(t)yZ,x + q(t) (xZ),x + r(t)Z,xx + s(t)Z,xy − Z,t = 0 (5)

where p (t) = mΩ2(t), q (t) = 2Γ(t), r (t) = h̄mΓ(t)h(t), s (t) = h̄Γ(t) f (t).
We assume the generator of the one-parameter infinitesimal point transformation to be

X = ξt∂t + ξx∂x + ξy∂y + η∂Z (6)

in which ξt, ξx, ξy, and η are functions of {t, x, y, Z}. Furthermore, because Equation (5) is a
linear equation, we have that η = G (t, x, y) Z + G0Z + b (t, x, y), where b (t, x, y) are solutions of
Equation (5) and form the infinite-dimensional Lie algebra ∞A1, [23].

Hence, from the Lie symmetry condition, we have that (in this work, we used the symbolic
package Sym for Mathematica [24]):

ξt = a(t) , ξy = f1(t) (7)

ξx = m
− f1 ps + 2r f ′1 + m

(
qs f ′1 + f ′1s′ − s f ′′1

)
(2r + m (2qs + s′))

(8)

and

G = −
(
2r + m

(
2qs + s′

))−2 [ f1
(
−myp′ (2r + m (2qs

+ s′
))

+ p
(

2(x + myq)r + m
(

2xqs + 2myq2s

+ 2mysq′ + 2yr′ + xs′ + 3myqs′ + mys′′
)))

+ m
(

2m2yq3s f ′1 − 2myr f ′1q′ −m2y f ′1q′s′ (9)

+ mq2 f ′1
(
2yr + 2xs + 3mys′

)
− yp f ′1 (2r + m (2qs

+ s′
))

+ 2xr f ′′1 + 2m2ysq′ f ′′1 + 2myr′ f ′′1 + mxs′ f ′′1 + m2y f ′′1 s′′

− 2myr f ′′′1 −m2ys′ f ′′′1 + q
(
2xr f ′1 + m

(
f ′1
(
2yr′ + xs′ + mys′′

)
+ 2

(
xs f ′′1 + mys′ f ′′1 −mys f ′′′1

))))]
where G0 is a constant and prime means differentiation with respect to time, “t”, and functions a (t)
and f1 (t) are related to p, q, r, s by a system of ordinary differential equations which we omit. We
can see that f1 (t) satisfies a linear fourth-order differential equation, which means that it provides us
with four symmetries. Another symmetry vector arises from the unique solution of a (t). Therefore,
from Equations (7)–(10), it is easy to see that the Lie symmetries of the master equation form the
{A1 ⊕s W5} ⊕s ∞A1 Lie algebra.
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Indeed, the form of the symmetry vector (6) it is not a closed form. The reason for this is that
we have considered arbitrary functions Ω2 (t), Γ (t) , h (t), and f (t) . In a case for specific functional
forms of the coefficients, one can calculate the symmetry vector in closed-form. For instance, in the
case for which the coefficients, p, q, r, and s are constants, the Lie symmetries are

Y1 = a1∂t , YZ = Z∂Z , Yb = b∂z (10)

X1 = e
λ−q

2 t [m (λ− q) ∂x + 2∂y
]

, X2 = e−
λ+q

2 t [m (λ+ q) ∂x − 2∂y
]

(11)

X3 = e−
(λ−q)

2 t
[
2rm (q− λ) ∂x + 4 (r + sqm) ∂y +

(
2mq (λ− q) x + m2q

(
λ2 − q2

)
y
)

Z∂Z

]
(12)

and

X4 = e
λ+q

2 t
[
2rm (λ+ q) ∂x + (r + sqm) ∂y +

(
−2mq (λ+ q) x + m2q

(
λ2 − q2

)
y
)

Z∂Z

]
(13)

where λ =
√

4p−mq2.
Below, we apply the zeroth-order invariants of the Lie symmetry which corresponds to the

solution of the function f1 (t).

2.2. Application of the Lie Invariants

Consider now the Lie symmetry vector (6) for which G0 = 0 and a (t) = 0. The characteristic
functions are

Z (t, x, y) = U(t, B(t) f1(t)x− A(t)y) exp[J(t, x) (B(t) f1(t)x− A(t)y)] (14)

where

J =
x

2A2

[
A2 (2G + xH) +

+ B (−2 (B f1x− A(t)y) + xB f1)K

]
(15)

and the functions A (t) , B (t) , K (t) , G (t), and H (t) are the coefficients of the symmetry vector (6).
Hence, the application of (14) to (5) gives the reduced equation

S (t)U,ww − wR (t)U,w + q (t)U −U,t = 0 (16)

where w = B(t) f1(t)x− A(t)y, S (t) = B f1 (B f1r− As) , and R (t) = A−1 (B f1 p− A′) .
This means that the Lie symmetries provide us with a solution for the master Equation (1),

which is (14) and the function U (t, w) is given by (16). Below we study the Lie symmetries of (16),
and we show that it is maximally symmetric. This means that it is equivalent with the elementary
one-dimensional Schrödinger Equation.

3. Equivalence with the Schrödinger Equation

For simplicity in the following, we consider a “time” rescaling, t → T, such that S (T) = 1.
Hence, Equation (16) becomes

U,ww − wR (T)U,w + q (T)U −U,T = 0 (17)

We apply the Lie symmetry condition to the this equation, and we derive the following
symmetry vector field

Y = α(T)∂t +

[
α̇(T)v

2
+ β(T)

]
∂v +

(
F(T, w)U + b̄ (t, w)

)
∂U (18)
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where

F(T, v) = φ(T) +
1
4

[
2vβ(T)R(T) + v2R(T)α̇− 2vβ̇+ v2α(T)Ṙ− 1

2
v2α̈

]
(19)

in which overdot denotes differentiation with respect to T and the functions φ(T), β(T), and α(T)
are solutions of the equations

φ = φ0 + α(

(
q +

1
2

R
)
− 1

4
α̇ (20)

β̈ =
(

Ṙ + R2
)
β and (21)

...
α = 4α̇

(
Ṙ + R2

)
+ 2α

d
dT

(
Ṙ + R2

)
(22)

Furthermore b̄ (t, w) satisfies the original equation, Equation (17).
Equation (21) is a maximally symmetric linear second-order differential equation. In this case,

by application of the Riccati transformation R = L̇
L , in (21) we find the solution,

β (T) = β0L (T) + β1L (T)
∫

L−2 (T) dT (23)

Equation (22) is a nonautonomous third-order differential equation. We multiply with α (T) and
integrate to obtain

α(T)α̈− 1
2
α̇2 − 2α2(T)

(
Ṙ + R2(T)

)
= 2K

where K is a constant. We substitute α = γ2 into this equation, and hence we find the well-known
Ermakov–Pinney equation [25,26]

ρ̈− ρ(T)
(

Ṙ + R2(T)
)
=

K
ρ3(T)

(24)

The solution of (24) is given in [26], and it is related with the solution of the linear equation

σ̈−
(

Ṙ + R2(T)
)
σ = 0 (25)

Therefore, we conclude that Equation (17) admits as Lie symmetries the vector fields which form
the {sl(2, R)⊕s W3} ⊕s ∞A1 Lie algebra. Hence, from S. Lie’s theorem [10], we have that there exists
a transformation (T, w, U)→ (τ, χ, Ψ) , in which (17) becomes

− h̄
2M

∂2Ψ
∂χ2 = ih̄2 ∂Ψ

∂τ
(26)

which is the Schrödinger equation for a free particle. That is possible because Equations (17) and (26)
are both maximally symmetric.

4. Discussion

In this work, with the application of the group invariant transformations, we proved that
there exists a surface in the space of the dependent and independent variables in which the master
Equation (1) can be seen as a one-dimensional equation. That means that solutions of the latter
generate solutions for the master equation given by the expression (14); that is, there is class
of solutions which describe the two different systems, but the solutions are given in different
representations.

We remark that in our analysis, we considered that the coefficients of the master equation are
arbitrary functions of time, which means that the result holds when the coefficients are constants.
For instance, consider the application of the Lie symmetry X3, (11), in Equation (5) for constant
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coefficients. Hence, we have that Z = U (t, w) , where w = ym(L−q)−2x
m(L−q) , and U (t, w) satisfies

the equation

s̄U,ww −
(λ+ q)

2
wU,w + 2qU −U,t = 0 (27)

and s̄ = 2−2r+sm(λ−q)
m2(λ−q)2 . Therefore under the coordinate transformation,

U (t, w) = e2qtΨ (τ,χ) , w =

(
2Ms

h̄

)1/2
χe
(
λ+q

2 t
)

, dτ = −ih̄e−(λ+q)tdt (28)

The latter equation takes the form of the one-dimensional Schrödinger equation. A similar result
holds, and for the remaining Lie symmetry vectors, X2 − X4, or any linear combination of them.
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